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The answers of problems in “Raman spectroscopy in Graphene Related Systems”

(August 7, 2012 updated)

Edited by R. Saito

Q:1-1 The carbon-carbon distance of graphene (see Fig. 1.1) is 1.42Å. How much area is occupied by a single

carbon atom in the graphene plane?

Answer: Graphene is a two-dimensional hexagonal lattice. Each hexagonal ring consists of six carbon

atoms and each carbon atom is shared by three hexagons. Thus there are two carbon atoms per a

hexagonal ring as shown in Fig. (1-1-1).

aC−C

Figure 1-1-1: Each hexagon has 6 carbon atoms and each carbon
atom is shared by three hexagon. Thus there are 2 carbon atoms
in the hexagon.

The area of the hexagon corresponds to six times of the regular triangle whose edge length is aC−C. Thus

the area occupied by a single carbon atom isthree times of the triangle which is given by

3×
√
3

4
a2C−C = 2.62Å

2
= 2.62× 10−20m2 (1-1-1)

Here we used the value aC−C=1.42Å in Eq. (1-1-1).

Riichiro Saito (rsaito@flex.phys.tohoku.ac.jp) (02/14/11)

Q:1-6 Each carbon atom in a C60 molecule has one pentagonal and two hexagonal rings. Calculate the angles

(a) between the two hexagonal rings and (b) between the hexagonal ring and the pentagonal ring.

(a) See Fig. 1-6-1 . If we apply the law of cosines to the triangles ABC and ADC, with respect to the

side AC, we obtain

d2 = 2l2(1− cos(β))
d2 = 2h2(1− cos(α))

(1-6-1)

For the case of fullerene, the parameters in the figure are adapted in the following manner: β is the angle

of the pentagon, β = 3π/5; l is the side of the hexagon/pentagon, and the planes depicted are the hexagon

planes. We may, for convenience, define l = 2R. Since h is at right angles to the axis that intersect the

two hexagon planes, h is the hexagon height, h =
√
3l/2 =

√
3R.

Therefore, the Eq. 1-6-1 yields
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Figure 1-6-1: Auxialiary geometric construction to help determin-
ing α, the angle between the two hexagon sheets.

α = cos−1[3− 4(1− cos(3π/5)))/3] ≈ 139o. (1-6-2)

(b) See Fig. 1-6-2. The angle we wish to calculate is γ.

Figure 1-6-2: γ is the angle between the pentagon and the hexagon
planes.

Let us now consider the ABCD prism in Fig. 1-6-3.

Figure 1-6-3: Focused view of prism ABCD from Fig.1-6-2

We may construct two perpendicular segments forming an angle γ′: the first one is the height of the

triangle ABC with respect to the side AB. Let us call it CE (see Fig. 1-6-2). The other one is constructed

in the following manner: trace a segment perpendicular to AB, starting from point E, in the plane ABD,

which intersects the straight line AD on the point P. That is segment the segment EP. Fig. 1-6-4 shows

EP in the plane of the triangle ABD. We shall thus define γ′, by this construction, as the angle between

CE and EP.

As it was meant to be, γ′ = π − γ. Let us now consider the triangle EPC as in Fig 1-6-5.

Let us call u the magnitude of the segment EC and x the magnitude of the segment EP. We note that
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Figure 1-6-4: EP segment on the ABD triangle’s plane.

Figure 1-6-5: Triangle EPC.

since the planes of the triangles ABD and ADC are perpendicular, (see Fig. 1-6-3), trigonometry on a

rectangle triangle yields

cos(γ′) = − cos(γ) = x/u (1-6-3)

In terms of the known parameters, who are x and u? Fig. 1-6-2 shows that u = l sin(β). If we define

v = l cos(β), the magnitude of the segment BE, then Fig. 1-6-4 shows us that x = (l − v) tan(π/6).

Therefore, using that β = 3π/5, we have

γ = cos−1[
√
3(cos(β)− 1)/3 sin(β)] ≈ 143o. (1-6-4)

Answer:

Lucas Mussnich (mussnich@ufmg.br) (03/14/11)

Q:1-8 In spectroscopy, a wave vector is defined by 1/λ (where λ is the wavelength) while in solid state physics,

the definition of a wave vector is 2π/λ. Show that a 1eV photon corresponds to 8065 cm−1 (wavenumber).

In Raman spectroscopy, the difference between the wave vectors for the incident and scattered light is

called the Raman shift whose units are generally given in cm−1 .

Answer: The Energy of a photon is given by

E = h̄c
2π

λ
, (1-8-1)
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where h̄ = (1.054571596±0.000000082)×10−34 J·s is the Planck constant and c = 2.99792458×1010 cm·s−1

is the velocity of light. Using Eq. (1-8-1), we can obtain the corresponding value of the wave vector for a

1eV = (1.602176462± 0.000000063)× 10−19 J photon in the units of cm−1 as follows:

1

λ
=

1

2π

E

h̄c

=
1

2π

(1.602176462± 0.000000063)× 10−19 J

(1.054571596± 0.000000082)× 10−34 J · s × 2.99792458× 1010 cm · s−1

= 8065.54477± 0.00094 cm−1 . (1-8-2)

Shoichi Takahata (physics2070@yahoo.co.jp) (02/03/12)

Q:1-10 Consider the optical electric field of the incident light with an angular frequency ω0 = 2πν0 and

amplitude E0,

E = E0 cosω0t.

Then the dipole moment P of a diatomic molecule is proportional to E such that P = αE, in which α

is called the polarizability. When the molecule is vibrating with a frequency ω, then α is also vibrating

with the frequency ω,

α = α0 + α1 cosωt.

When substituting α into the formula P = αE, show that there are three different frequencies for the

scattered light (or P ), ω0 (elastic, Rayleigh scattering) and ω0 ± ω (inelastic, Stokes (-) and anti-Stokes

(+) Raman scattering).

Answer: The incoming electric field varies sinusoidally as

E = E0 cos 2πν0t (1-10-1)

where E0 is the amplitude and ν0 is the frequency of the laser. For a diatomic molecule the induced dipole

moment P is

P = αE = αE0 cos 2πν0t (1-10-2)

α is the polarizability. The vibration of the molecule is also sinusoidal, with frequency νm, and described

by the nuclear displacement coordinate q,

q = q0 cos 2πνmt (1-10-3)

where q0 is the amplitude. If the amplitude is small, α can be expanded as a function of the coordinate

q as,

α = α0 +

(
∂α

∂q

)
0

q + · · · (1-10-4)

where α0 is the polarizability at the equilibirum position, and

(
∂α
∂q

)
0

is the rate of change of α with respect

to the change in the coordinate q evaluated at the equilibrium position. Combining the expressions for P,

q, and α yields,

P = αE0 cos 2πν0t =

(
α0 +

(
∂α

∂q

)
0

q

)
E0 cos 2πν0t (1-10-5)

P = α0E0 cos 2πν0t +

(
∂α

∂q

)
0

qE0 cos 2πν0t (1-10-6)

P = α0E0 cos 2πν0t +

(
∂α

∂q

)
0

q0E0 cos 2πνmt cos 2πν0t (1-10-7)
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P = α0E0 cos 2πν0t +
1

2

(
∂α

∂q

)
0

q0E0

[
cos 2π (ν0 + νm) t + cos 2π (ν0 − νm) t

]
(1-10-8)

The first term in Eq. (1-10-8) represents the Rayleigh scattered light with the same frequency as that of

the incident laser light, the second term represents the anti-Stokes shifted light with frequency (ν0 + νm),

and the last term represents the Stokes shifted light with a frequency of (ν0 − νm).

Daniel Casimir (casimir.daniel@gmail.com) (08/03/12)

Q:2-3 Plot the rough shape of Rnl in Eq. (2.2) for 1s, 2s and 2p states as a function of r. Explain how these

functions are orthogonal to each other.

Answer: We consider a hydrogen atom. From Eq. (2.6) in the book, the form of of Rnl(r) for an electron

of a hydrogen atom (Z = 1) is expressed by

Rnl(r) = Cnl exp

(
− r

na0

)(
r

a0

)l

Gnl

(
r

a0

)
, (2-3-1)

where Cnl denotes the normalization constant. Gnl denotes the Laguerre polynomials as a function of

ρ = r/a0 (where a0 is the Bohr radius, a0 = h̄2/me2) and is defined by

Gnl(ρ) = L2l+1
n+l

(
2ρ

n

)
=

d 2l+1

dx2l+1

(
exp(x)

dn+l

dxn+l
xn+l exp(−x)

)∣∣∣∣
x= 2ρ

n

. (2-3-2)

Since (n, l) = (1, 0) , (2, 0) , and (2, 1) correspond to 1s, 2s and 2p states, respectively, normalized Rnl of

Eq. (2-3-1) for 1s, 2s and 2p states as a function of r/a0 can be written as follows:

R10(r) = C10 exp

(
− r

a0

)
, (2-3-3)

R20(r) = C20

(
1− r

2a0

)
exp

(
− r

2a0

)
, (2-3-4)

R21(r) = C21

(
r

a0

)
exp

(
− r

2a0

)
, (2-3-5)

where the normalization constants are given by C10 = 2a0
−3/2, C20 = a0

−3/2/
√
2, and C21 = a0

−3/2/2
√
6 ,

which can be obtained by the normalization condition as:

∫ ∞

0

drr2Rnl(r)
∗
Rnl(r) = 1 . (2-3-6)

In Fig. 2-3-1, we plot Rnl/Cnl for 1s, 2s, and 2p orbital as a function of r/a0. The inner product of radial

wave functions Inln′l′ of Eqs. (2-3-3), (2-3-4) and (2-3-5) is given by

Inln′l′ =

∫ ∞

0

drr2Rnl(r)
∗
Rn′l′(r) . (2-3-7)

Using the formula

∫ ∞

0

drrmexp(−αr) = m!α−(m+1) , (2-3-8)

where α is a positive constant and m is non-negative integer, we can calculate Eq. (2-3-7) as follows:
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Figure 2-3-1: The radial wave functions of a hydrogen atom for
1s, 2s and 2p orbitals.

I1020 =

∫ ∞

0

drr2R10(r)
∗
R20(r)

=

√
2

a03

∫ ∞

0

drr2exp

(
− 3r

2a0

)
−

√
2

a03
1

2a0

∫ ∞

0

drr3exp

(
− 3r

2a0

)
=

16
√
2

27
−

√
2

2

32

27
= 0 , (2-3-9)

I1021 =

∫ ∞

0

drr2R10(r)
∗
R21(r)

=
1√
6a03

1

a0

∫ ∞

0

drr3exp

(
− 3r

2a0

)
=

32

27
√
6

6= 0 , (2-3-10)

I2021 =

∫ ∞

0

drr2R20(r)
∗
R21(r)

=
1

4
√
3a03

1

a0

∫ ∞

0

drr3exp

(
− r

a0

)
− 1

4
√
3a03

1

2a02

∫ ∞

0

drr4exp

(
− r

a0

)
=

6

4
√
3
− 12

4
√
3

= − 6

4
√
3

6= 0 , (2-3-11)

which show that radial wave functions for only 1s and 2s states are orthogonal to each other. For 1s and

2p (2s and 2p) orbitals, the orthogonal condition is satisfied by the orthogonality of spherical harmonics

Ylm.

Shoichi Takahata (physics2070@yahoo.co.jp) (02/03/12)

Q:2-6 Using the unitary matrix U in Eq. (2.16), diagonalize the Hamiltonian in Eq. (2.14).
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Answer: The diagonalization can be done by a unitary transformation of the Hamiltonian matrix H given

by U†HU , where the Hamiltonian H and the unitary matrix U are given, respectively, by Eqs. (2.13) and

(2.15):

U†HU =
1

2

(
1 1
1 −1

)(
E1s V0

E1s V0

)(
1 1
1 −1

)
=

1

2

(
E1s + V0 V0 + E1s

E1s − V0 V0 − E1s

)(
1 1
1 −1

)
=

1

2

(
2(E1s + V0) 0

0 2(E1s − V0)

)
=

(
E1s + V0 0

0 E1s − V0

)
(2-6-1)

Shotaro Maruyama (shotaro.maruyama@cmpt.phys.tohoku.ac.jp) (2/3/12)

Q:2-7 Solve the Schrödinger equation for the H molecule for the case that s = 〈Ψ1|Ψ2〉 is not zero. Obtain

both eigenvalues and wave functions.

Answer:

We consider the Hamiltonian H = H0+V where H0 and V mean, respectively, unperturbed Hamiltonian

of isolated H atoms and interactions between one hydrogen atom and another hydrogen atom. H0 satisfy

the following equation.

H0|Ψi〉 = Es|Ψi〉 (i = 1, 2), (2-7-1)

where Es and |Ψi〉 are eigenvalue and eigen vector of each H atom, respectively. We express the eigenstate

of the molecule by taking linear combination of atomic orbitals as follows:

|Ψ〉 = C1|Ψ1〉+ C2|Ψ2〉, (2-7-2)

where C1 and C2 are coefficients to be solved. The Schrödinger equation H|Ψ〉 = E|Ψ〉 gives

C1H|Ψ1〉+ C2H|Ψ2〉 = E(C1|Ψ1〉+ C2|Ψ2〉). (2-7-3)

Operating 〈Ψ1| from left side in Eq. (2-7-3), we get

C1E
′

s + C2EsS + C2V0 = C1E + C2ES

(E
′

s − E)C1 + (EsS + V0 − ES)C2 = 0, (2-7-4)

where E
′

s = 〈Ψi|H|Ψi〉, V0 = 〈Ψ1|V |Ψ2〉 = 〈Ψ2|V |Ψ1〉, and S = 〈Ψ1|Ψ2〉 = 〈Ψ2|Ψ1〉. Similarly, we get the

following equation by operating 〈Ψ2| from left side in Eq. (2-7-3):

(EsS + V0 − ES)C1 + (E
′

s − E)C2 = 0. (2-7-5)

In matrix form, Eqs. (2-7-5) and (2-7-6) can be written as:(
Es − E ε− ES

ε− ES E
′

s − E

)(
C1

C2

)
=

(
0
0

)
, (2-7-6)

where ε = EsS+V0. In order to get not trivial solution for

(
C1

C2

)
, we get the following secular equation.

det

(
E

′

s − E ε− ES

ε− ES E
′

s − E

)
= 0. (2-7-7)
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We obtain E by using Eq. (2-7-7) as follows:

(E
′

s − E)2 − (ε− ES)2 = 0

(1− S2)E2 + 2(ε− E
′

s)E + E
′2
s − ε2 = 0

(1− S2)

{
E − E

′

s + ε

1 + S

}{
E − E

′

s − ε

1− S

}
= 0 ,

which gives

E± =
E

′

s ± ε

1± S
. (2-7-8)

In the case of E = E+, Eq. (2-7-6) is written as:(
E

′

s − E+ ε− E+S

ε− E+S E
′

s − E+

)(
C1

C2

)
=

(
0
0

)
. (2-7-9)

Eq. (2-7-9) gives

C1 : C2 = ε− E+S : E+ − E
′

s = 1 : 1. (2-7-10)

Normalizing |Ψ〉, we determine the coefficients of Eq. (2-7-2) as follows:

1 = 〈Ψ|Ψ〉 = |C1|2(〈Ψ1|Ψ1〉+ 〈Ψ1|Ψ2〉+ 〈Ψ2|Ψ1〉+ 〈Ψ2|Ψ2〉)

= 2|C1|2(1 + S). (2-7-11)

Using Eq. (2-7-11), C1 and C2 are written as:

C1 = C2 =
1√

2(1 + S)
. (2-7-12)

Thus we get the eigenstate of the molecule:

|Ψ+〉 =
1√

2(1 + S)
(|Ψ1〉+ |Ψ2〉). (2-7-13)

Similarly, we get the eigenstate of the molecule for the case of E = E− as follows:

|Ψ−〉 =
1√

2(1− S)
(|Ψ1〉 − |Ψ2〉). (2-7-14)

|Ψ+〉and|Ψ−〉 are, respectively, bonding and anti-bonding states.

Shotaro Maruyama (shotaro.maruyama@cmpt.phys.tohoku.ac.jp) (2/3/12)

Q:2-10 Obtain Eqs.(2.33) and (2.34). Evaluate the value of the Fermi velocity.

Answer: Using the phase factor f(k) in Eq. (2.28);

f(k) = 1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
, (2-10-1)

The eletronic energy E±(kx, ky) of graphene is given by Eq. (2.32);

E±(kx, ky) = ±t

√
|f(k)|2

= ±t

√√√√1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
, (2-10-2)
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where t is the nearest neghbor transfer integeral which is also called −γ0 (t = −γ0). γ0 is given a positive

value. We can evaluate the Fermi velocity as follows. At first, we calculate the lowest order term in f(k)

around the K points. Because the K point has a three-fold rotational symmetry in the k-space, the first

order term in f(k) becomes zero. For example, when we consider a K point;

K = (0,−4π

3a
), (2-10-3)

the lowest order term in f(k) is written as

∂f(k)

∂kx

∣∣∣
kx=0

= 0

∂f(k)

∂ky

∣∣∣
ky=

4π
3a

= 0. (2-10-4)

Thus the f(k) is written as

f(k) = f(k)|kx=0,ky=− 4π
3a

+
∂2f(k)

∂k2x

∣∣∣
kx=0

+
∂2f(k)

∂k2y

∣∣∣
ky=− 4π

3a

+ 2
∂2f(k)

∂kx∂ky

∣∣∣
kx=0,ky=− 4π

3a

=
3a2k2

4
, (2-10-5)

where k2 is defined by k2 = k2x + k2y. If we use the difinition of the Fermi velocity;

vF =
1

h̄

∂E

∂k

∣∣∣
E=EF

, (2-10-6)

The E±(k) can expressed by

E±(k) = ±h̄vF | k | . (2-10-7)

Using Eqs. (2-10-2) and (2-10-5), we got Fermi velocity as follows;

vF =
√
3
(γ0a

2
h̄
)
, (2-10-8)

Kouki Yonaga (yona@cmpt.phys.tohoku.ac.jp) (12/7/11)

Q:2-12 Plot the density of states for the parabolic energy band, E = a
(
kx

2 + ky
2
)
.

Answer: We now consider the parabolic energy band in two dimension as follows:

E = a
(
kx

2 + ky
2
)
= ak2, (2-12-1)

where k is
√
kx

2 + ky
2. If the length of x and y axis in the system is Lx and Ly, the area which

a microscopic state occupies in the reciprocal space is
2π

Lx
· 2π
Ly

. When we consider the isotropic two

dimensional plane in k space, the number of states dN with the wave number from k to k+ dk is written

as:

dN = 2 · 2πkdk
2π

Lx
· 2π
Ly

=
Sk

π
dk, (2-12-2)

where the factor 2 is the spin degeneracy and S = Lx · Ly is the area of the system. Using Eq. (2-12-2),

we obtain
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dN

dk
=

Sk

π
. (2-12-3)

Using Eq. (2-12-1), we obtain

dE

dk
= 2ka. (2-12-4)

Using Eqs. (2-12-3) and (2-12-4), we can obtain the density of states for the parabolic energy band E =

a
(
kx

2 + ky
2
)
as follows:

D(E) =
dN

dE
=

dN

dk
dE

dk

=
S

2πa
. (2-12-5)

In Fig. (2-12-1), the density of states for the parabolic energy band is plotted as a function of the energy

E.

0
E

0

0.5

1

πa
D

(E
)/

S

Figure 2-12-1: Density of states (DOS) for the parabolic energy band E =
a
(
kx

2 + ky
2
)
. The DOS is constant for E > 0.

Yuki Tatsumi (tatsumi@flex.phys.tohoku.ac.jp) (02/05/12)

Q:2-13 By expanding f(k) of Eq. (2.28) near the K point, show that the Hamiltonian matrix is written by

Eq. (2.35).

Answer: We use the definition of the real space unit vectors a1 and a2 and the reciplocal space unit

vectors b1 and b2, shown in Fig. (2-13-1). This definition is the same as the textbook.

Using the definition, the sum of the phase factors f(k) (Eq. (2.28) in the textbook) is given by

f(k) = eikxa/
√
3 + 2e−ikxa/2

√
3 cos

(
ky
2
a

)
. (2-13-1)

By expanding f(k) around the K point (0,−4π/3a),

f

(
kx = 0, ky = −4π

3a

)
= 1 + 2cos

(
−2

3
π

)
= 1 + 2 ·

(
−1

2

)
= 0, (2-13-2)
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Figure 2-13-1: Definition of the real space unit vectors a1 and a2,
and the reciplocal space unit vectors b1 and b2. The gray zone of
the reciprocal space is the first Brillouin zone.

∂f

∂kx

(
kx = 0, ky = −4π

3a

)
=

ia√
3
· eikxa/

√
3 − 2 · ia

2
√
3
· e−ikxa/2

√
3 cos

(
−2

3
π

)∣∣∣∣
kx=0,ky=− 4π

3a

=
ia√
3
− ia√

3
·
(
−1

2

)
=

√
3

2
ai, (2-13-3)

∂f

∂ky

(
kx = 0, ky = −4π

3a

)
= 2·e−ikxa/2

√
3·a
2

{
− sin

(
−2

3
π

)}∣∣∣∣
kx=0,ky=− 4π

3a

= 2 · a
2
·
√
3

2

=

√
3

2
a, (2-13-4)

we can write f(k) as follows:

f(k) =

√
3

2
aikx +

√
3

2
a

(
ky +

4π

3a

)
=

√
3

2
a (ik′x + ik′y) , (2-13-5)

where kx = k′x , ky +
4π
3a = k′y. Using f(k), the Hamiltonian matrix (ε2p = 0) is described by

H =

(
ε2p tf(k)

tf(k)∗ ε2p

)
= −

√
3

2
at

(
0 −ik′x − k′y

ik′x − k′y 0

)
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=

√
3

2
aγ0

[(
0 −i
i 0

)
k′x −

(
0 1
1 0

)
k′y

]
= h̄vF [σyk

′
x − σxk

′
y] , (2-13-6)

where the Fermi velocity vF =
√
3

2h̄ aγ0, transfer integral t = −γ0 and the σx and σy are the Pauli matrices.

To obtain the Hamiltonian of plain formula, we change of the coordinates. It must be that the eigenvalues

are invariant when the coordinates are changed. Then we change of the coordinate k′x and k′y by rotating

by π/2. The π/2 rotation matrix is given by

Cπ
2
=

(
cos π

2 − sin π
2

sin π
2 cos π

2

)
=

(
0 −1
1 0

)
. (2-13-7)

Using Eq. (2-13-7), k′′x and k′′y which rotate π/2 from k′x and k′y are given by

(
k′′x
k′′y

)
=

(
cos π

2 − sin π
2

sin π
2 cos π

2

)(
k′x
k′y

)
=

(
0 −1
1 0

)(
k′x
k′y

)
=

(
−k′y
k′x

)
. (2-13-8)

Using Eq. (2-13-8), we can obtain

k′x = k′′y, k
′
y = −k′′x. (2-13-9)

Therefore we can exchange k′x and k′y for k′′x and k′′y. Hamiltonian matrix in Eq. (2-13-6) is described

by

H = h̄vF [σyk
′
x − σxk

′
y]

= h̄vF [σxk
′′
x + σyk

′′
y]

= h̄vF(σ·κ), (2-13-10)

where κ = −i∇. This is a form of Dirac Hamiltonian. In general, the part of Pauli matrices in the Dirac

Hamiltonian have arbitrary property if they satisfy any conditions. These descriptions have the same

eigenvalues respectively. Thus we can obtain the same eigenvalues from Eq. (2-13-6) and Eq. (2-13-10)

and we can alter Eq. (2-13-6) to the massless Dirac Hamiltonian in Eq. (2-13-10).

Yuki Tatsumi (tatsumi@flex.phys.tohoku.ac.jp) (01/05/12)

Q:2-15 Calculate the diameter for an (n,m) SWNT. What are the values of the diameters for (5,5), (9,0), (10,5)

SWNTs? What are possible (n,m) values for SWNTs having a 1.5± 0.02 nm diameter?

Answer: A.Calculate the diameter for an (n,m) SWNT.

B.What are the values of diameters for (5,5), (9,0), (10,5) SWNTs?

C.What are possible (n,m) values for SWNTs having a 1.5± 0.02 nm?

The parameters

a = 0.246 nm :Graphene lattice constant
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a1 =
(√

3
2 , 12

)
a, a2 =

(√
3
2 ,−1

2

)
a : Graphene unit vectors

(n,m) : integers such that 0 ≤ m ≤ n

Ch = na1 +ma2 : Nanotube chiral vector

The ansewer for A

The diameter of a nanotube dt can be calculated by |Ch|/π whose formula is given as follows:

dt =
a
√
n2 + nm+m2

π
units : nm . (2-15-1)

The answer for B

Substituting a = 0.246 nm and each (n,m) value into Eq. (2-15-1), we can obtain the corresponding values

of dt as follows:

dt =

 0.678 nm (n,m) = (5, 5)
0.705 nm (n,m) = (9, 0) .
1.04 nm (n,m) = (10, 5)

(2-15-2)

The answer for C

From Eq. (2-15-1) and the condition that 1.48 ≤ dt ≤ 1.52, we can obtain the following inequality:

(1.48× π

0.246

)2
≤ n2 + nm+m2 ≤

(1.52× π

0.246

)2
. (2-15-3)

Since {(1.48×π)/0.246}2 = 357.2, {(1.52×π)/0.246}2 = 376.8 and n2+nm+m2 is integer, (n,m) values

for SWNTs having a 1.5± 0.02 nm diameter should satisfy the condition as follows:

358 ≤ n2 + nm+m2 ≤ 376 and 0 ≤ m ≤ n , (2-15-4)

by which we can obtain the proper (n,m) values as follows:

(n,m) = (19, 0), (18, 2), (17, 4), (16, 5), (14, 8), (13, 9), (12, 10), (11, 11) . (2-15-5)

Shoichi Takahata (physics2070@yahoo.co.jp) (02/03/12)

Q:2-16 For a given (n,m) SWNT, show the expression of ~T = (t1, t2) as a function of n and m. What is the

length of ~T ?

Answer: If we apply the condition that

~T · ~Ch = 0, (2-16-1)

we get

(t1 ~a1 + t2 ~a2) · (n~a1 +m~a2) = 0, (2-16-2)

where ~a1 = (
√
3
2 , 1

2 )a and ~a2 = (
√
3
2 , −1

2 )a. Eq. (2-16-2) can be expressed by

(m+ 2n)t1 + (n+ 2m)t2 = 0. (2-16-3)
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Thus we get

t1 : t2 = (n+ 2m) : −(m+ 2n). (2-16-4)

The condition that gcm(t1, t2) = 1 gives

t1 =
n+ 2m

dR
,

t2 =
m+ 2n)

dR
, (2-16-5)

where dR = gcm(n+2m,m+2n). The length of ~T is given by using the formula | ~Ch| = a
√
n2 +m2 + nm:

T = |~T |

=
√
t21a

2 + t22a
2 + t1t2a2

=
a

dR

√
(n+ 2m)2 + (m+ 2n)2 − (n+ 2m)(m+ 2n)

=
a

dR

√
3(n2 +m2 + nm)

=

√
3Ch

dR
. (2-16-6)

Shotaro Maruyama (shotaro.maruyama@cmpt.phys.tohoku.ac.jp) (2/3/12)

Q:3-3 We consider N - 1 atoms attached between the two walls. When we consider x0 and xn as the coordinates

of the two walls, show that all the equations of motion are expressed by the same fomula. Then considering

that the Bloch theorem applies, substitute xl = A exp(iqla− iωt) into the equations of motion and obtain

the dispersion of the phonon frequency ω(q). Plot dispersion of the phonon within the first Brillouin

zone.

Answer: The equations of motion for the displacement of the l−th atom is given by

Miẍl = −2K(xl − xl−1 − xl+1), (3-3-1)

where M and K are, respectively, the mass and the force constant. Using xl, the Eq. (3-3-1) can be written

as

−Mω2xl = −2K (1− exp(−iqa)− exp(iqa))xl, (3-3-2)

where q and a are, respectively, the wave number and the lattice constant. For the boundary conditions

that the end aoms are fixed, Re(x0) and Re(xN ) are zero. When we conseder t = 0, Re(x0) = 0 is written

as

Re(A) = 0. (3-3-3)

From Eq. (3-3-3), A is purely imaginary number and satisfies Eq. (3-3-4);

A = iB, (3-3-4)

where B is real number. Simiraly, from Re(xN ) = 0, the Re(xN ) is written as

Re(xN ) = −iB sin(qna)

= 0 (3-3-5)

The wave number satisfy Eq. (3-3-6);

q =
mπ

Na
(m = 1, 2, ..., N − 1). (3-3-6)
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The first Brillouin zone is given by

−π

a
< q <

π

a
. (3-3-7)

From Eq. (3-3-2), ω is obtaind by

ω = 2

√
K

M
| sin(qa

2
) | . (3-3-8)

In Fig. (3-3-1), the Eq. (3-3-8) is plotted within the first Brillouin zone, where ω0 is defined by 2

√
K

M
.

Figure 3-3-1: Dispersion of frequency

Kouki Yonaga (yona@cmpt.phys.tohoku.ac.jp) (12/7/11)

Q:3-8 In Figure 3.3, choose any unit cell vibrational mode and show that the motion of the atoms for q =

0 (λ → ∞) and for q = 2π/a (λ = a) is the same.

Answer: Let us consider 1D crystal system that has a 2N linear chain of atoms in which two different

atoms A and B in the unit cell. If we use the Broch theorem, motions of two different atoms are in j−th

unit cell written as

xi
j(q) = Ai exp(iqja), (i = A,B, and j = 1, 2, ..., N), (3-8-1)

where xi
j(q), a, q and Ai are, respectively, the displacement of A (B) atom, lattice constant, wave numbers

and amplitude of A (B) atom. The first Brillouin zone is given by

−π

a
< q <

π

a
, (3-8-2)

which is defined by the smallest basic region in k−space. When we consider q = 0 and q = 2π/a, xi
j(q) is

obtained by

xi
j(0) = Ai exp(0) = Ai,

xi
j(2π/a) = Ai exp(2πj) = Ai. (3-8-3)

Therefore, at q = 0 and q = 2π/a, the motion of atoms is the same (Fig.(3-8-1)).

Kouki Yonaga (yona@cmpt.phys.tohoku.ac.jp) (12/7/11)

Q:3-11 Consider a 2(N − 1) linear chain of atoms in which two different atoms A and B with masses MA

and MB are connected along a chain (wall-A-B...-B-wall). Obtain and plot the phonon dispersion for this

configuration.

Answer: The equations of motion for the displacement of the j−th atoms are given by

MAẍj = −K(xj − yj−1)−K(xj − yj)
MB ÿj = −K(yj − xj)−K(yj − xj+1).

(3-11-1)
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-π/a 0 π/a 2π/a 3π/a
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ω
1st Brillouin zone 2nd Brillouin zone

Figure 3-8-1: Schematic phonon dispersion relation of two atoms in the unit cell in the first Brillouin
zone (black) and the second Brillouin zone (red).

where xj , yj and K are, respectively, the displacements of two different atoms in j−th unit cell and force

constatnt. When we consider the Bloch therem, the xj , yj are written as

xj = A exp(i2kja− iωt)
yj = B exp(i2kja− iωt).

(3-11-2)

where A, B represent amplitude, and k and a are, respectively, the wave number and lattice constant. For

the boundary conditions that the end atoms are fixed, Re(xN ) and Re(x0) are zero. When we consider

t = 0, Re(x0) is written as

Re(A) = 0. (3-11-3)

From Eq. (3-11-3), A is a purely imaginary number and satisfies

A = iR, (3-11-4)

where R is real number. From Re(xN ) = 0, the Re(xN ) is written as

Re(xN ) = −iR sin(kNa) = 0. (3-11-5)

The wave numbers which satisfy Eq. (3-11-5) are given by

k =
mπ

Na
, (m = 1, 2, ..., N − 1). (3-11-6)

Since length of the unit cell is 2a, the first Brillouin zone is defined by a region in the k−space;

− π

2a
< k <

π

2a
. (3-11-7)

Using Eq. (3-11-1), Eq. (3-11-2) can be written as

−ω2MAA = −2KA+K(1 + e−i2ka)B

−ω2MBB = K(1 + ei2ka)A− 2KB. (3-11-8)

From Eq. (3-11-8), the simultaneous equations of motion can be expressed by

D(k)u = 0, (3-11-9)
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where D(k) and u are defined, respectively, by

D(k) =


− 2K

MA
+ ω2 K

MB
(1 + ei2ka)

K

MA
(1 + e−i2ka) − 2K

MB
+ ω2

 , (3-11-10)

and

u =

[
A
B

]
. (3-11-11)

To obtain the eigenvalues ω2(k) for dynamical matrix with u 6= 0, we solve a seculr equation

− 2K

MA
+ ω2 K

MB
(1 + ei2ka)

K

MA
(1 + e−i2ka) − 2K

MB
+ ω2

= 0. (3-11-12)

From Eq. (3-11-12), we get ω2
± as follows;

ω2
±

ω2
0

= 1±

√
1− 4MAMB sin2(ka)

(MA +MB)2
, (3-11-13)

where ω0 is difined by ω0 =

√
K

(
1

MA
+

1

MB

)
. When we denote MB with a positive number l

MB = lMA, (3-11-14)

we get the ω±;

ω+

ω0
=

√√√√
1 +

√
1− 4l sin2(ka)

(1 + l)2

ω−

ω0
=

√√√√
1−

√
1− 4l sin2(ka)

(1 + l)2
. (3-11-15)

In Fig. (3-11-1),
ω+

ω0
and

ω−

ω0
are plotted within the first Brillouin zone. Here we consider the case that

4l

(l + 1)2
= 0.9.

The ω+ and ω− are called, respectively, optical mode and acoustic mode. When we define an energy gap

∆ω at k = ±π

a
, ∆ω is expressed by

∆ω =
ω2
+

ω2
0

−
ω2
−

ω2
0

,

= 2

√
1− 4l sin(ka)2

(1 + l)2

= 2
| 1− l |
(1 + l)2

. (3-11-16)

∆ω is plotted as a function of l for l > 1. Fig. (3-11-2), here we consider sin ka = 1. Fig. (3-11-2) shows

that, when the atoms in unit cell is equal (l = 1), the gap becomes zero. In the limit of l = ∞, ω+ and

ω− goes, respectively, 2ω0 and 0

Kouki Yonaga (yona@cmpt.phys.tohoku.ac.jp) (12/7/11)
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Figure 3-11-1: Energy Dispersion.
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Figure 3-11-2: ∆ω/2 vs l.

Q:3-15 How many normal modes exist for the CH4, C2H2 and C60 molecules which, respectively, have the

shapes of a regular tetrahedron, a linear chain, and a truncated icosahedron?

Answer: The molecular vibration M is defined by

M = 3N − d, (3-15-1)

where N and d are, respectively, the number of atoms in the molucle and the degree of freedom that the

molecule has. When we consider nonlinear molecules, M is written as

M = 3N − 6, (3-15-2)

since nonlinear molecules have 3 translations and 3 rotations. When we consider linear molecules, M is

written as

M = 3N − 5, (3-15-3)

since linear molecules have 3 translations and only 2 rotations. Because, when we consider linear molecule

along z axis, the rotation around the z axis dose not exist. Since CH4 is a nonlinear molecule, from

Eq. (3-15-2), the number of the modes of CH4 are given by

M = 3× 5− 6 = 9. (3-15-4)

Similarly, from Eq. (3-15-2), the modes of C60 are given by

M = 3× 60− 6 = 174. (3-15-5)

Since C2H2 is a linear molecule, from Eq. (3-15-3), the number of the modes of C2H2 are obtained by

M = 3× 4− 5 = 7. (3-15-6)

Kouki Yonaga (yona@cmpt.phys.tohoku.ac.jp) (12/7/11)

Q:4-2 Obtain Eq. (4.7) from Eq. (4.6).

Answer: Eq. (4.6) is given by

χ ≡ P

E
=

∑
j

Njαj

1− 4π

3

∑
j

Njαj

, (4-2-1)
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where χ, P , E, Nj and αj are the susceptibility, the polarization of crystal, the macroscopic electric field,

the atomic concentration and the polarizability of each species, respectively. Using the relation of the

dielectric constant and the susceptibility, ε = 1 + 4πχ (CGS), we calculate Eq. (4.6) as follows:

ε− 1

4π
=

∑
j

Njαj

1− 4π

3

∑
j

Njαj

(ε− 1)

1− 4π

3

∑
j

Njαj

 = 4π
∑
j

Njαj

ε− 1 =

(
4π

3
ε− 4π

3
+ 4π

)∑
j

Njαj

ε− 1 =
4π

3
(ε+ 2)

∑
j

Njαj

ε− 1

ε+ 2
=

4π

3

∑
j

Njαj . (4-2-2)

Then we obtain “ the Clausius-Mossotti relation” Eq. (4.7) which relates the dielectric constant and the

electric polarizability, but only for crystal structures for which the Lorentz local field relation applies.

Yuki Tatsumi (tatsumi@flex.phys.tohoku.ac.jp) (01/16/12)

Q:4-4 Show that 1 eV corresponds to 8065 cm−1. What is the energy in eV for the G-band Raman spectrum

of graphite at 1580 cm−1?

Answer: The energy of a photon E is given by

E = hω = hck, (4-4-1)

where h, ω, c, and k are Plank’s constant, the angular frequency of light, the velocity of light and the

wave number of light (k = 1/λ λ : wavelength of right), respectively. Plank’s constant and the velocity

of light is given by

h = 6.6262× 10−34 J·s, (4-4-2)

c = 2.9979× 108 m/s = 2.9979× 1010 cm/s. (4-4-3)

Using 1 eV = 1.602× 10−16 J, the wave number which corresponds to 1 eV is obtained from Eq. (4-4-1) as

follows:

E = hck

1.602× 10−16 = (6.6262× 10−34)× (2.9979× 1010)× k

k = 8065 cm−1. (4-4-4)

Then it is shown that 1 eV corresponds to 8065 cm−1. What wavenumber the G-band Raman spectrum

of graphite at 1580 cm−1 corresponds to is obtained as follows:
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1 : 8065 = x : 1580

x = 0.196 eV. (4-4-5)

Thus the G-band Raman spectrum of graphite at 1580 cm−1 corresponds to 0.196 eV.

Yuki Tatsumi (tatsumi@flex.phys.tohoku.ac.jp) (01/16/12)

Q:4-5 Obtain the energy in eV of a laser with a wavelength of 633 nm. What is the conversion formula from

nm to eV and from eV to nm?

Answer: It is shown that 1 eV corresponds to 8065 cm−1 in Q4-4. Then the units of energy is converted

from eV to nm−1 as follows:

1 eV = 8065 cm−1 = 8065× 10−7 nm−1. (4-5-1)

The relation between the wavenumber and the wavelength is given by

k =
1

λ
, (4-5-2)

where λ and k are the wavelength and the wavenumber, respectively. Using Eqs. (4-5-1) and (4-5-2), the

energy in eV of a laser with a wavelength of 633 nm is written as follows:

E =
1/633

8065× 10−7
= 1.96 eV. (4-5-3)

The conversion formula from λ nm to E eV and that from E eV to λ nm are written by

E =
k

8065× 10−7
=

107

8065λ
=

1239.9

λ
eV, (4-5-4)

or

λ =
107

8065E
=

1239.9

E
nm. (4-5-5)

Yuki Tatsumi (tatsumi@flex.phys.tohoku.ac.jp) (01/24/12)

Q:5-3 When we consider the Hamiltonian in the presence of a vector potential, expand the Hamiltonian and

retain the linear term in A. This corresponds to a perturbation Hamiltonian for the electron-photon

coupling constant. Use the Coulomb gauge divA = 0 when you obtain this result.

Answer: We consider an electron in the presence of a vector potential A. Since the charge of an electron

is −e, the form of the Hamiltonian for the electron is given by

H =
1

2m
(p+ eA)2 + V (r)

=
1

2m
(−ih̄∇+ eA)2 + V (r)

=
1

2m
(−h̄24− ieh̄A · ∇ − ieh̄∇ ·A+ e2A2) + V (r) . (5-3-1)
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Since ∇ in the third term in the third row of Eq. (5-3-1) operates not only A but wavefunctions, we can

obtain the following equation:

∇ ·A = divA+A · ∇ = A · ∇ , (5-3-2)

if we use the fact that A satisfies the Coulomb gauge divA = 0. Substituting Eq. (5-3-2) into Eq. (5-3-1),

the form of the Hamiltonian can be written as:

H = H0 −
ieh̄

m
A · ∇+

e2A2

2m
, (5-3-3)

where H0 is defined by

H0 = − h̄2

2m
4+ V (r) . (5-3-4)

From Eq. (5-3-3), we can obtain the linear term in A of the Hamiltonian HeR as follows:

HeR = − ieh̄

m
A · ∇ . (5-3-5)

Shoichi Takahata (physics2070@yahoo.co.jp) (02/03/12)

Q:5-4 In the privious problem, we also have a term which is propotional to A2. In order to neglect this term,

this term should be at least 1/10 smaller than the linear A term. What is the corresponding value of the

electric field? If A gives an electric field above this value, we should then consider the nonlinear A2 effect

of light.

Answer: When monochromatic visible light (wavelength λlight, angular frequency ω = 2πc/λlight) enters

a graphene layer, a π electron which exists near the K or K’ points in the two-dimensional Brillouin zone

absorbs the light. The relation between a vector potential A and an electric field E of the light can be

written as:

A = − i

ω
E = − iλlight

2πc
E , (5-4-1)

by considering the Maxwell equation E = −∂A/∂t and A ∝ exp(−iωt). From the Eq. (5-4-1), we get

A2 = −
(
λlight

2πc

)2

E2 . (5-4-2)

From the Eq. (5.27) in the book, the perturbation Hamiltonian HeR for an electron in the presence of the

vector potential is given by

HeR =
e

m
A · p+

e2

2m
A2

= − ieh̄

m
A · ∇+

e2

2m
A2

=
eh̄

m
A · ke +

e2

2m
A2 , (5-4-3)

where p = −ih̄∇ = h̄ke is a momentum operator of an electorn in vacuum. From the Eqs. (5-4-1) and

(5-4-2), we can obtain the ratio R of the absolute value of the term in A2 of the Eq. (5-4-3) to the one of

A as follows:
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R =

∣∣∣∣ e22mA2

∣∣∣∣∣∣∣∣eh̄m A · 〈ke〉
∣∣∣∣ =

e2

2m

(
λlight

2πc

)2

eh̄

m

λlight

2πc

|E2|
|E · 〈ke〉|

=
eλlight

2πh̄c

|E2|
|E · 〈ke〉|

' eλlight

2πh̄c

|E|
|〈ke〉|

, (5-4-4)

where 〈ke〉 is the average of ke. Using Eq. (5-4-4) the corresponding thresfold value of the electric field

|Eth| for R = 1/10 can be written as:

|Eth| =
πh̄c

5eλlight
|〈ke〉| . (5-4-5)

The wavenumber of the electoron around the K and K’ points in the graphene layer |〈ke〉| can be approx-

imated as follows:

|〈ke〉| ' |kF | =
m

h̄
vF , (5-4-6)

where kF is the Fermi wave vector and vF is the Fermi velocity of the π electron in the graphene layer.

From Eq. (2.34) in the book, vF is given by

vF =
3γ0ac−c

2h̄
, (5-4-7)

where ac−c = 0.142 nm is the nearest neighbor carbon-carbon distance and t = −γ0 = −3.033 eV is the

nearest neighbor transfer integral. Using the Eqs. (5-4-5), (5-4-6) and (5-4-7), we can obtain the thresfold

value of the electric field of the monochromatic visible light (3.8 ≤ λlight ≤ 7.5 in the units of 10−7 m) in

the units of V·m−1 as follows:

|Eth| =
3πmcγ0ac−c

10eh̄λlight
, (5-4-8)

above which we should consider the nonlinear effect of light. In the case of λlight = 750 nm, |Eth| =
2.4× 109 V ·m−1.

Shoichi Takahata (physics2070@yahoo.co.jp) (02/03/12)

Q:5-5 The Poynting vector, ~S = ~E × ~H is the power density per unit area of the electromagnetic field. In a

typical micro-Raman measurement system, the diameter of the light beam is about 1µm and the laser

power is 1mW. Estimate the power density of this micro-Raman setup and caliculate ~E. Show that the

electric field thus obtain is not strong enough to be in the non-liniear regime.

Answer: Using | ~B| = | ~E|/c, we get a formula for |~S|.

|~S| = | ~E|| ~H| sin π

2

=
1

µ0
| ~E|| ~B|

=
1

µ0c
| ~E|2, (5-5-1)

where µ0 is absolute permeability of vacuum. We also get the following equation from the numerical value

given by Q5-5 as follows:

|~S| = 10−3

π(0.5× 10−6)2
Wm−2. (5-5-2)
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Using Eqs. (5-5-1) and (5-5-2), we obtain the magnitude of ~E as follows:

| ~E|2 = µ0c×
10−3

π(0.5× 10−6)2

= (4π × 10−7)× c× 10−3

π(0.5× 10−6)2

= 4.78× 1011 V2m−2. (5-5-3)

Using Eq. (5-5-3), we get

| ~E| = 6.9× 105 Vm−1, (5-5-4)

where µ0 = 4π × 10−7 N/A2, c = 2.99m/s. In the previous problem Q5-4, we show the numerical value

where we can neglect the non-linear term of ~E. According to the result, the electric field is not strong

enough to be in the non-linear term when the magnitude of ~E is smaller than 109 Vm−1. The numerical

value in Eq. (5-5-3) satisfies the condition and we can neglect the higher term of | ~E|.

Shotaro Maruyama (shotaro.maruyama@cmpt.phys.tohoku.ac.jp) (2/3/12)


