1994年度 卒業論文

鎖状及び環状炭素クラスターの振動構造

末花 貴

電気通信大学 電子工学科 電子デバイス工学講座

指導教官 齊藤理一郎
概要

1985年にKrotoらによりC_{60}が発見され、特に1990年にKrätschmerらによりC_{60}が大量に生成されるようになってから、まだわずか数年しか経ってないが、この新しい原子とも呼ばれるフラーレンについて、世界中で相当な数の研究がなされている。

それらの研究によって、フラーレンによる超電導物質や、フラーレンの光学異性体、また最近ではフラーレンを引き延ばしたカーボンナノチューブなどの興味深い性質が発見されている。

しかし、いまだにフラーレンの生成過程は明らかにされていない。本研究ではフラーレンの生成の初期段階においてどのような構造をした炭素クラスターが、どういった構造になるかという構造面でのシミュレーションや、そのエネルギー計算、また振動解析により、炭素クラスターがどのような振動をするかという計算を行なった。また可視化のソフトを用いて振動の様子を見た。これにより、環状炭素クラスターが炭素原子の数とその数が奇数と偶数かによってポンド長の関係がわかることがや、炭素原子の数が大きくなるに従って最低エネルギーの振動数が0に近づいていくことがわかった。さらに炭素原子の数によって炭素クラスターの構造が鎖状のものと環状のものにわかることを確認した。
目次

1 序論 1
 1.1 目的 1
 1.2 フラーレンの歴史 1
 1.3 図形的特徴 2
 1.4 生成過程 3

2 シミュレーション方法 6
 2.1 手順 6
 2.2 使用ソフト 6
 2.2.1 MOPAC93 6
 2.2.2 IRIS Explorer 9
 2.2.3 xmol 9

3 結果・考察 10
 3.1 振動数 10
 3.2 ポンド長 14
 3.3 フィッティング 17
 3.4 トータルエネルギーガ 23

4 結論 25

A 付録 carbon-ring C_{10} の出力データ例 28

B 付録 クラスターの構造と構造データ 35
1 序論

本節では、研究の目的ならびに扱う対象であるフラーレンの歴史、図形的特徴、生成過程について述べる。

1.1 目的

本研究の目的は現在明らかにされていないフラーレンの生成過程を、その初期クラスターの最適化構造、電子状態、振動構造から検証する。

1.2 フラーレンの歴史

1985年、Kroto, Smalleyらはグラファイトに高エネルギーのレーザー光を照射して気化した成分を質量分析計で測定した結果から、炭素原子60個からなるクラスターが特異的に安定であることを発見した[1]。彼らはC₆₀が、五角形12個、六角形20個からなるサッカーボール状の構造をしているであろうと推定し、その形状の類似性からドーム構造で有名な建築家Buckminster Fullerにちなんで「バックミンスターフラーレン」もしくは単に「フラーレン」と名付けた。

1990年、KrätschmerとHuffmanらにより、炭素電極間のアーク放電によるC₆₀の大合成法が確立すると[3]、C₆₀の研究は爆発的に進展したのであった。

1 図1:C₆₀

1c60.ps
1.3 図形的特徴

フラーレンは正五角形と正六角形からなりたつ多面体である。ここで五角形 n 個、六角形 m 個、辺 (e)、頂点 (v)、面 (f) の数とし、各頂点から出ている辺の数が三本と仮定すると（二つ以下ならば立体内にならず、また四つ以上なら凸多面体にならない）凸多面体に関するオイラーの定理により、

$$
e = v + f - 2$$
$$e = \frac{5n + 6m}{2}$$
$$v = \frac{5n + 6m}{3}$$
$$f = n + m$$

である。上の式をまとめると

$$n = 12$$
$$m = \frac{v}{2} - 10$$
$$2e = 3v$$

となる。上の式よりフラーレンは五角形を常に 12 個持つこととなる。また e は整数なので v は偶数でなければならない。よってフラーレンは偶数個の炭素原子からなりたち、六角形の数には制限がないので幾何学的には五角形だけからなる C_{20} から始まり、任意の $C_{20} + 2n$ が可能である。

特に C_{60} で考えた場合、辺 (e)、頂点 (v)、面 (f) の数はそれぞれ 90、60、32 であり、これはオイラーの定理を満たしている。また C_{60} は正二十面体の頂点を正五角形に切り落としてできる切頭二十面体という極めて対称性の高い構造をしている。
1.4 生成過程

これまで積み重ねられてきた炭素クラスターの実験結果をもとに、少し大胆に、炭素原子からフラーレンに至る生成過程のシナリオを描いてみる。

Kroto, Smalley らの C_{60} の発見（1985 年）から、Krätschmer と Huffman らの大量合成法の発表（1990 年）までの 5 年間、レーザー蒸発と質量分析法を組み合わせた実験で、炭素クラスターと呼ばれる、原子数が数個から数十個ほどの物質が超高真空化で調べられてきた。炭素原子が直線状につながった直鎖構造の炭素クラスターは、星間物質として C_{5} が発見されるなど興味深い分子である。実験室でも生成条件によっては C_{40} 付近まで直鎖構造のクラスター C_{n} が存在することが確かめられている。[4] Smalley らのグループでは負イオンクラスターの光電子分光から炭素クラスターの電子光和力を求め、クラスターのサイズによって二種類の構造変化があるとした（図 2）。[5] 一つは C_{2} から現れる直鎖状のもの。もう一つは単環構造の炭素クラスターで、C_{10} 以上のサイズで観測される。

2 図 2: 小さな炭素クラスターの構造変化（文献 [5] より）

キャリアーガスであるヘリウム密度が比較的高い条件では単環のものが多く見られ、その質量スペクトルから C_{10} が生成量としては多く、ついで C_{12}, C_{16}, C_{18} などが高頻度として現れる。[6] 負イオンを観測する実験では、面白いことに Kaldor らが観測した n = 32〜120 付近の強い分布（図 3）は観測されず、炭素数 60 個ぐらいのクラスターまで単調減少していく。

\[^{2} \text{mac1} \]
陽イオンクラスターの実験や中性クラスターの光イオン化の実験（図3）でも C_{25} 付近までの比較的小さいクラスターが観測されることがあるが、これらは激しいイオン化のプロセスを介しているためにフラグメンテーションによる生成物がかなり含まれている。一方この実験で注目されるのは、C_{30} 付近より大きい領域に分布をもつ炭素クラスターである。これらには偶数原子数のクラスターしか現れず、C_2 脱離が起きやすいなどの特徴がある。また、C_{30} が C_2 脱離を起こす最小クラスターであるという実験事実もあり、このことから C_{28} がこの一連のクラスター中で最小のものであると考えることができる。つまり、C_{28} 以上の炭素クラスターは直鎖とも環状ともことなる構造で、これを五員環と六員環からなるネットワーク構造（球状構造）のクラスターであるとするのが最も自然であると考えられる。

図3: レーザー蒸発で生成した中性炭素クラスターの光イオン化マススペクトル（文献[7]より）

このサイズ領域の炭素クラスターの構造は、Kroto やそのほかの人たちによって以前から提案されているが、多くはダングリングボンドをもたない閉じた構造である。[8] 当然、C_{60} 以下のものでは五員環が隣接した構造を含んでいる。C_{20} の場合、五角形 12 個だけで囲まれた正二十面体構造が可能で、最小のフラーレンと考えられていた。かなり精度の高い計算によってこれは確かに安定点をもつ安定分子であると結論されるが、熱力学的にエネルギー最安定な構造があればそれがただちに実在することにはならない。この構造を支持する実験は今のところない。[9]
また carbon-ring という炭素クラスター [炭素 (N 個) を円状につないだもの] が、下図のように、ある数 N でねじれるともいわれている。

これらをふまえ、本研究では carbon-ring という炭素クラスターが、一度ねじれてしまえば、それが繰り返し起こることによってフラーレンの構造に近づくのではという予測のもとにこの円状、棒状クラスター注目し、分子軌道計算ソフトを用いて、その構造や振動のシミュレーションを行なった。

また carbon-chain という炭素クラスター [炭素 (N 個) を鎖状につないだもの] と carbon-ring の安定性についても同様にシミュレーションを行なった。以下本論文は、第 2 章でシミュレーション方法、第 3 章で結果・考察、第 4 章で結論を述べる。
2 シミュレーション方法

本節ではシミュレーションにおける手順を述べた後、使用したソフト（MOPAC93, IRIS Explorer, xmol）について説明する。

2.1 手順

MOPAC93 を用いてクラスター（carbon-ring, carbon-chain）の構造最適化と振動解析の計
算を行う。入力データとしては、carbon-ring については carbon が正 2 角形になる
ように、つまり炭素原子 N 個が正 2 角形を作るようにする。となり合う炭素原子間の距離
は二重結合の値（1.28 Å）として、クラスターは平面上にあるとする。また炭素原子の距離、
結合角を全てを最適化する。carbon-chain は直線上にあるようにして、となり合う炭素原
子間の距離は三重結合の値（1.20 Å）、と単結合の値（1.38 Å）が交互にあるようにする。クラ
スターの炭素原子の数 N は前節をふまえ、carbon-ring は 7 〜 32 個、carbon-chain は 2 〜 16 構のものを計算した。実際の入力データの例については次の項で述べる。その結果から、
IRIS Explorer、もしくは xmol を用いてクラスターの振動の様子を見る。

2.2 使用ソフト

2.2.1 MOPAC93

MOPAC93 は Stewart 博士によって 26 年前から始められたプロジェクトの成果であり、
これによって我々は化合物の電子状態、最適化構造、生成熟、振動解析などを半經驗的分子
計算法で計算することができる。ここで半經驗的分子計算法とは、Zero Differential Over-
lap の近似を採用することによって、本来原子軌道の数 m の 4 乗のオーダーになる 2 電子
間反発積分の数を m² のオーダーに減らし、その他の積分の多くをあらかじめ実際の分子の
諸性質を再現するように定めた実験的なパラメータとして与えてしまうことで計算量の激減
をはかり、かなり大きな分子に対しても容易に分子軌道を求めることができるようする方
法である。また MOPAC93 が扱う半經驗的分子計算法としては、MNDO 法、MINDO/3
法、AM1 法、PM3 法があり、本研究では最適化構造で最も良い値を与えるとされている
PM3 法を使用した。これは MNDO 法や AM1 法と比べてパラメータの数が少ないながら
も、他と比べて遜色ない結果を得られる方法である。計算の精度に関しては文献[10] にお
2 シミュレーション方法

続いて詳しく述べられている。

次に MOPAC93 の入力データについて説明する。入力データ例として carbon-ring \text{C}_{10} を示す。

T=1.0D NOINTER GNORM=0.1 PM3 GEO-OK FORCE LARGE SHIFT=10
carbon-ring symmetry adopted MOPAC coordinates
neutral

\begin{verbatim}
X 0.00000 0 0.00000 0 0.00000 0 0 0 0
X 3.07108 0 0.00000 0 0.00000 0 1 0 0
C 2.07108 1 90.00000 1 0.00000 0 2 1 0
C 2.07108 1 90.00000 1 36.00000 1 2 1 3
C 2.07108 1 90.00000 1 36.00000 1 2 1 4
C 2.07108 1 90.00000 1 36.00000 1 2 1 5
C 2.07108 1 90.00000 1 36.00000 1 2 1 6
C 2.07108 1 90.00000 1 36.00000 1 2 1 7
C 2.07108 1 90.00000 1 36.00000 1 2 1 8
C 2.07108 1 90.00000 1 36.00000 1 2 1 9
C 2.07108 1 90.00000 1 36.00000 1 2 1 10
C 2.07108 1 90.00000 1 36.00000 1 2 1 11
X 1.07823 0 90.00000 0 36.00000 0 2 1 12
\end{verbatim}

一行目は MOPAC93 を実行させる上で、必要なオプションを書く。使用しているオプションの意味は以下の通りである。

\begin{itemize}
 \item[T=1.0D] 一日経ってもデータが収束しない場合は強制終了させる。
 \item[NOINTER] 出力データから原子間距離を省く。
 \item[GNORM=0.1] エネルギー勾配ノルムが 0.1 以下になったらプログラム終了。
 \item[PM3] PM3 法を用いて計算する。
 \item[GEO-OK] 原子が異常接近した場合のチェックを無視する。
 \item[FORCE] 振動解析を行なう。
 \item[LARGE] 印字する情報量を拡張する。
 \item[SHIFT=10] SCF 計算の開始に減衰ファクター 10 を定義する。
\end{itemize}

2, 3 行目はコメント行であり、データのタイトルなどを書く。4 行目以降は構造最適化を行うための内部座標及び最適化指標である。内部座標で新たに \text{i} 番目の原子の位置を定義する場合には、定義済みの \text{j} 番目の原子との距離 (オングストローム)、定義済みの \text{k} 番目の原子 (\text{i} \neq \text{k}) を用いて定義する接続角 \text{ijk} (度)、定義済みの \text{l} 番目の原子 (\text{l} \neq \text{k}, \text{j}) を用い、原子 \text{i}, \text{j}, \text{k} によってできる平面と、原子 \text{j}, \text{k}, \text{l} によってできる平面とすなわち二面角 (度) の三
つのパラメータを用いる。例外として、1番目の原子については三つのパラメータはすべて0である。2番目の原子については原子間距離のみ定義して後はすべて0である。3番目の原子については二面角は定義しないこととする。実際のデータは左から、定義する元素名、原子間距離、その最適化指標、接続角、その最適化指標、二面角、その最適化指標、j、k、lの順に記述する。最適化指標は0または1を指定し1の場合にその値に対して構造最適化が行なわれる。

本研究の入力データ(carbon-ring)は、すべての炭素原子がなるべく等価であるように、ダミー原子(X)を用いて、図5のような構造で作った。

![carbon-ring C10の入力データモデル](carbon-ring10-xfig.eps)

図5: carbon-ring C10 の入力データモデル

○ はダミー原子 ◯ は炭素原子

原子1、2はダミー原子でこれを軸とし、角123は90度とし、平面上にあるようにする。面123と面124のなす角θは正十角形になるように36度とする。同様に他の炭素原子(4～12)も決めていく。また炭素原子の数が違う場合も同じように決める。

実際に動かすには、mopac.exeとsubmit、jclの三つのファイルを作業させるディレクトリに配置する。submit、jclはともにバッチファイルで内容は以下の通りである。

```bash
% cat submit
#
batch -c jcl
echo job MOPAC is submitted.
```

⑤carbon-ring10-xfig.eps
2 シミュレーション方法

% cat jcl
#
mopac.exe test
echo batch job is finished.

submit は常に上のようにしておき、jcl の内容は扱う file 名に応じて書き変える。上の場合は取り込むデータを test.dat に指定している。後はコマンドラインで

% submit

と入力すれば構造最適化が始まり、終了するとその旨メールが送られてくる。計算結果は.out という拡張子のついたファイルに記録される。carbon-ring C_{10} の出力データ例を付録に示す。

2.2.2 IRIS Explorer

IRIS Explorer は流体解析や構造解析、統計データの三次元グラフ処理など様々な分野における数値データの可視化をプログラム無しで行なえるツールである。

任意の可視化を行なうために、各機能がモジュールと呼ばれるアイコンで定義されている。モジュールは単一機能をもったサブルーチンのようなものである。ユーザはこれらのモジュールをマウスで選択し組み合わせることによって、可視化のビジュアルネットワークを構築することができる。また、ユーザ独自の計算ルーチンやプログラムをユーザモジュールとして IRIS Explorer に組み込むこともできる。そして、本研究で使用した MOPAC93 の out ファイルをそのまま読み込むことのできるモジュールなどもある。さらに、MOPAC93 で計算させる際、FORCE と LARGE というオプションを与えてもと、振動のアニメーションなどをもできる。

2.2.3 xmol

xmol は Research Equipment Inc. 及び、dba Minnesota Supercomputer Center, Inc. が製作した分子描画ソフトである。各原子の座標を与えると、拡大・縮小・回転が自由に行なえ、また原子間距離や二面角を自動的に計算してくれる。アニメーション形式のデータを与えると、振動等の動画が表示できる。
3 結果・考察

本節では、前節で述べた方法に基づいて行なった計算の結果を振動数、結合長、フィッティング、トータルエネルギーの順に述べる。

3.1 振動数

carbon-ring の振動解析の計算の結果を示す。

図 6: carbon-ring C_n の振動数

6carbon-ring-fr.ps
3 結果・考察

N 個の原子からできている分子（ここでは carbon-ring）は $3N$ 個の自由度を持ち、このうち、分子の重心の並進に三つ、回転に三つ (非直線分子) の自由度があり、振動の自由度は $3N-6$ 個 (非直線分子) ある。すなわち、一つの carbon-ring のクラスターに対して、$3N-6$ 個の振動モードが存在する。

図 6 は、横軸に carbon-ring における炭素原子の数、縦軸に $3N-6$ 個の振動数をとったものを表している。

振動数が $0 \sim 700 \text{cm}^{-1}$ くらいまでは、振動モードが密集している。これは振動モードが縦振動モード (ボンドと平行な方向の振動) と横振動モード (ボンドと垂直な方向の振動) に別れていて、この部分では、主に横振動モードによるものが集まっている。実際、このことは振動の様子を可視化のソフト (IRIS Explorer) で見ることにより得られ、また、後で述べるフィッティングの項からもわかる。振動数が $700 \sim 2500 \text{cm}^{-1}$ くらいでは、主に縦振動モードによるものが存在している。

また炭素原子の数 (NUMBER OF C) が増えていくに従って、各振動数が右下がりにだんだん下がっている。これも後で述べるフィッティングの項からわかる。さらに、炭素原子の数が増えしていくに従って、だんだん最低エネルギーの振動数が 0 (炭素原子の数が 18 くらいより上) に近づいているのがわかる。このことにより、炭素原子の数が 18 くらいより上では円環は非常にやわらかくなっていると考えられる。

次に振動数が 700cm^{-1} くらいと振動数が 2300cm^{-1} くらいで頭うつになっているのが見える。このことから振動数には上限があると考えられる。このことは後で述べるフィッティングの項からも得られる。
次にcarbon-chainの振動解析の計算の結果を示す。

![Graph showing the relationship between frequency and number of carbon atoms in a carbon chain.](graph.png)

図7: carbon-chain Cₙの振動数

carbon-ringと同様に、図7は、横軸にcarbon-chainにおける炭素原子の数、縦軸に3N-5個の振動数（直線分子の振動の自由度は3N-5個）をとったものを表している。

炭素原子の数が二つのときは、振動モードは縦振動モードの一つしかないので、それが約2000(cm⁻¹)のところに見られる。炭素原子の数が三つのときは、振動モードは縦振動モードが二つ、横振動モードが二つあるので、振動数が約410(cm⁻¹)のところに縦振動モードが二つ重複しており、約1450(cm⁻¹)のところと約2300(cm⁻¹)のところに縦振動モードが

\(^7\text{chain.fr.ps}\)
見られる。全体的には、ほぼ carbon-ring と同じ傾向が見られる。このことにより振動数の傾向はあまり形状にはよらないと考えられる。

ここで、carbon-ring の振動数でほんの一部、負の振動数が出たことについて述べる。
MOPAC93 における FORCE 計算というのは、Hessian 行列（系内の全原子対の XYZ 座標表現による差分に基づくエネルギーの二次微分行列）が計算され、これ対角化することによって分子の力の定数を得る。これを原子量で加重すると F 行列となり、これから分子の振動数が計算される。また、基底状態分子の最適化構造は本来、FORCE 計算で得られるすべての振動数が正の値をとらなければならな。ただし、比較的大きな分子を対象とした計算では、この振動数をすべて正にすることは容易ではなく、構造最適化計算と基準振動解析（FORCE 計算）を何度か繰り返して実行する必要が出てくる。また座標の固定などが、すべての振動数が正という条件を満たさない原因となることもある。[11]

すなわち、今回の計算では収束条件を少し甘く設定したため（収束条件を厳しくすると収束しない）、十分最適化されていないても最適化したとして MOPAC93 は判定し、結果を出す。このために負の振動数が出たと考えられる。ここで負の振動数が意味するものは、虚の振動数のことである。なお遷移状態の計算をする際は、ただ一つ負の振動数（虚の振動数）が現れ、他の振動数はすべて実数（正の数）であることがその必要条件となる。実際に負の振動数が現れた炭素数とそのときの振動数の値を以下に示す。

<table>
<thead>
<tr>
<th>炭素数</th>
<th>振動数 (cm⁻¹)</th>
<th>炭素数</th>
<th>振動数 (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>-274.9000</td>
<td>20</td>
<td>-85.6000</td>
</tr>
<tr>
<td>17</td>
<td>-142.5000</td>
<td>22</td>
<td>-215.9000</td>
</tr>
<tr>
<td>17</td>
<td>-387.0000</td>
<td>22</td>
<td>-106.6000</td>
</tr>
<tr>
<td>20</td>
<td>-821.7000</td>
<td>22</td>
<td>-43.0000</td>
</tr>
<tr>
<td>17</td>
<td>-233.4000</td>
<td>25</td>
<td>-15.4000</td>
</tr>
<tr>
<td>19</td>
<td>-980.0000</td>
<td>25</td>
<td>-15.4000</td>
</tr>
<tr>
<td>20</td>
<td>-71.5000</td>
<td>26</td>
<td>-424.7000</td>
</tr>
</tbody>
</table>
3.2 ポンド長

carbon-ring の構造最適化 (ポンド長) の計算の結果を示す。

図 8 は、横軸に carbon-ring における炭素原子の数、縦軸に N 個のポンド長をとったものを表している。結果は、炭素原子の数が 25 より下のものは、奇数と偶数のものにわかかる。
炭素原子の数 (NUMBER OF C) が偶数で 25 より下のものは、だいたい、三重結合の値 (1.20 Å) と単結合の値 (1.38 Å) の二つの値に別れる。これは、ポリジアセチレン (ポリエチレン) の構造に対応する。

8carbon-ring_C_n.png
炭素原子の数が奇数で 25 より下のものは、図9、図10（つながってる順番にそれぞれの carbon-ring でのボンド長を示したもの）のように、一つおきに上半分と下半分にわかれ、それぞれ \sin関数的な値を取る。また、両端の二つのボンド長（最も二重結合の値に近い）の部分が振動の様子を見た際（最小の振動数）、もっとも激しく振動する部分であった。

図9: carbon-ring C_{13} のボンド長
図10: carbon-ring C_{15} のボンド長

また炭素原子の数が 25 以上のものは、二重結合の値（1.28 A）にすべてのボンド長が収束する。これはカルビン（クムレン）の構造と考えられる。このことは炭素原子の数が大きくなるほどの、carbon-ring の内角は 180 度に近づいていくので局所的に carbon-chain（次の項で述べる）の構造に近くなるためと考えられる。

また図8 で奇数個のなかで carbon-ring C_{11} は特異なボンド長をとっている。このことは、carbon-ring C_{11} については他の carbon-ring C_n がほぼ円の構造をとったのに対して、図11のように構造が水滴型になっているため、特異な値を取ったと考えられる。

9. carbon-ring13.b.ps
10. carbon-ring15.b.ps
11. carbon-ring11.pse

図11: carbon-ring C_{11} の最適化構造
次にcarbon-chainの構造最適化（ボンド長）の計算の結果を示す。

図12: carbon-chain C_n のボンド長

構造最適化したcarbon-chainの構造は、全部ほぼ直線状の構造になった。

carbon-ringと同様に、図12は、横軸にcarbon-ringにおける炭素原子の数、縦軸にN個のボンド長をとったものを表している。図12を見ると、炭素原子の数が4と6では二つの値にわかれているように見えるが、だいたい二重結合の値（1.28Å）に集まっているのがわかる。

chain-b.ps
3.3 フィッティング

carbon-ring を図 13のように質量 m の N 個の粒子がパネ定数 k の N 本のパネでつながれ、輪になっているものとし
て考えてみる。
まず弾性振動（パネと平行な方向の振動）について考えると、粒子の番号を右回りに 1, 2, \ldots, N とし、n 番目の粒子の
変位をつり合いの静止位置から右回りを正に沿って測り、x_n とする。よって
運動方程式は

$$\frac{d^2 x_n}{dt^2} = -\frac{k}{m} (2x_n - x_{n-1} - x_{n+1})$$ (1)

となる。円状につながっているので

$$x_0 \equiv x_N, \quad x_{N+1} \equiv x_1$$ (2)

ここで

$$x_n = a_n \exp(i\omega t)$$ (3)

とおくと (2) 式から

$$a_0 = a_N, \quad a_{N+1} = a_1$$ (4)

でなければならない。 (3) 式を (1) 式に代入して得られる方程式

$$\omega^2 a_n = \frac{k}{m} (2a_n - a_{n-1} - a_{n+1})$$ (5)

\[\text{図 13: フィッティングモデル}\]
3 結果・考察

の一般解は

\[a_n = a \sin(n\alpha + \phi) \] \hspace{1cm} (6)

\[\omega = 2\sqrt{\frac{k}{m}} \sin\left(\frac{\alpha}{2}\right) \] \hspace{1cm} (7)

で与えられる。 (4) 式により、 \(\alpha \) は

\[\sin(\phi) = \sin(N\alpha + \phi), \quad \sin((N + 1)\alpha + \phi) = \sin(\alpha + \phi) \] \hspace{1cm} (8)

を満たす必要がある。そのためには

\[N\alpha = 2\pi p \quad (p \text{は整数}) \] \hspace{1cm} (9)

とならなければならない。 \(\phi \) は任意である。 \(p = 0 \) は一様な並進運動であって振動でない。

よって

\[a_n = a \sin\left(\frac{2\pi p}{N} + \phi\right) \] \hspace{1cm} (10)

\[\omega = 2\sqrt{\frac{k}{m}} \sin\left(\frac{\pi p}{N}\right) \] \hspace{1cm} (11)

\[p = 1, 2, \ldots, N - 1 \] \hspace{1cm} (12)

で与えられる。

次に横振動 (パネと垂直な方向の振動) について、 \(n \) 番目の粒子の変位を \(y_n \) として考える
と、この場合にはパネが斜めに傾くことによって生ずる張力の横方向の成分が復力として
働くわけであるが、隣合う粒子の間の変位の差 \(|y_{n+1} - y_n|\) は粒子間の距離 \(\ell \) に比べて遙かに
小さいとして、振動によるパネの伸び

\[\sqrt{l^2 + (y_{n+1} - y_n)^2} \sim \frac{1}{2\ell}(y_{n+1} - y_n)^2 \]

と、それに伴う張力 \(T \) の局所的な変化は無視できるとする。そうすると、求める運動方
程式は

\[\frac{d^2 y_n}{dt^2} = -\frac{T}{m}(2y_n - y_{n-1} - y_{n+1}) \] \hspace{1cm} (13)

となり、 (1) 式と同じ形になる。よって基準振動と固有角振動数は

\[y_n = b_n \exp(i\omega t) \] \hspace{1cm} (14)
\[
\begin{align*}
 b_n &= b \sin(\frac{2\pi p}{N} + \eta) \\
 \omega &= 2 \sqrt{\frac{T}{lm}} \sin(\frac{\pi p}{N}) \\
 p &= 1, 2, \ldots, N - 1
\end{align*}
\] (15) (16) (17)

で与えられる。 (\(\eta\) は任意)

さて、実際に MOPAC93 で計算して得られたものとフィッティングしてみる。それにはまず、パネ定数 \(k\)，もしくは張力 \(T\) がわからなければならぬ。そこで、carbon-chain \(C_2\) における振動からパネ定数 \(k\)，すなわち、振動モードのフィッティング、carbon-chain \(C_3\) における振動 (変角振動) から張力 \(T\)，すなわち、振動モードのフィッティングを MOPAC93 を用いて求めてみる。

MOPAC93 で計算して求めた carbon-chain \(C_2\) における振動モードの振動数は 1994.36 \((cm^{-1})\)。これを (11) 式に代入 (\(\omega = 2\pi f, N = 2, p = 1\)) して、

\[
\sqrt{\frac{k}{m}} = 6265.4667
\]

を得る。同様にして、MOPAC93 で計算して求めた carbon-chain \(C_3\) における振動 (変角振動) モードの振動数は 411.5\((cm^{-1})\) が縮重して、2 モード存在する。これを (16) 式に代入 (\(\omega = 2\pi f, N = 3, p = 1, 2\)) して、

\[
\sqrt{\frac{T}{lm}} = 1492.7569
\]

を得る。

よって、(18) 式、(19) 式をそれぞれ (11) 式、(16) 式に代入して、\(N = 7 \sim 32\) の結果は図 14 に示す。
図14において、○が縦振動モード、＋が横振動モードの振動数を表す。縦振動モード、横振動モードとも、振動数が頭うちになっているが、これは(11)、(16)式ともsin関数なので、このような結果になる。図6においても、炭素原子の数が25以上では、振動数が頭うちになっている。この部分では、ボンド長がほぼ一定（約1.28Å）であり、このような結果になると考えることができる。

図6と比べてみると、全体的な形はだいたい同じ傾向が見られ、振動モードも縦振動モードと横振動モードにわかかる。

fitting.png
振動数が頭打ちになる関係から、再度フィッティングをする。図6より、縦振動の頭打ちの部分の振動数 (偶数のとき) は約 2310.0（cm⁻¹）。式 (11) より sin(πN/8) = 1 のとき最大になるので (偶数のとき)、このとき振動数は 2307.1（cm⁻¹）の値をとらなければならない。よって、

$$\sqrt{\frac{k}{m}} = 7257.079$$ (20)

同様にして、横振動の頭打ちの部分の振動数 (偶数のとき) は約 670.0（cm⁻¹）なので、

$$\sqrt{\frac{T}{lm}} = 2104.867$$ (21)

となる。

よって、(20) 式、(21) 式をそれぞれ (11) 式、(16) 式に代入して、N=7 → 32 の結果と図6を重ね合わせたものを図15に示す。
図15において、+がMOPAC93で計算した振動数を表し、○と×がそれぞれフィッティングした縦振動モード、横振動モードの振動数を表す。今回のフィッティングではパネ定数を一定にしたので、一部ずれている部分も見られるが、ほぼフィッティングができたと思う。このことにより、carbon-ringの振動構造を図13のようなモデルにおきかえて議論することができると考えられる。

しかし、さらなるフィッティングをするならば、パネ定数とボンド長の関係を出す必要があると思われる。
3.4 トータルエネルギー

carbon-ring と carbon-chain のトータルエネルギーの計算結果を示す。

![CARBON-RING-CHAIN](image)

図16: carbon-ring C_n と carbon-chain C_n のエネルギー

図16は横軸に炭素原子の数、縦軸にcarbon-ring と carbon-chain 各々の炭素クラスターにおける炭素1原子当たりのエネルギーを表している。これは、炭素クラスターのトータルエネルギーは、炭素同士の結合エネルギーよりも炭素単体が持つ電子エネルギーが大きいので、炭素原子の数が多い方が全体で低いエネルギーをとる。よって構造の安定度を比べる場合には、炭素1原子当たりのエネルギーを比べた方が妥当であるといえる。

12ring-chain-t-energy.ps
図16を見ると、炭素原子の数が10個より下では、carbon-chainのほうがcarbon-ringと比べると、エネルギーが低く、エネルギー的に安定するのがわかる。しかし、炭素原子の数が10個以上になると、carbon-ringのほうがエネルギー的に安定になるのがわかる。このことは、炭素クラスターにおいて、炭素原子の数が10個くらいまでは鎖状のものが安定であり、10個から30個くらいまでは円状(環状)のものが安定であると言われていることと一致する。

carbon-ringだけに着目して見ると、炭素原子の数が25個より下では、だんだんエネルギーが下がっていく。また、炭素原子の数が偶数のときの方が奇数(その付近のもの)のときよりもエネルギーが低い。このことによりボンド長は単結合、三重結合を交互にとったほうが安定であると考えられる。炭素原子の数が25個以上では、24個のときと比べて一時的にエネルギーが高くなり、また炭素原子の数が25個より下のときと比べて緩やかに、エネルギーが下がっていく。以上のことより、carbon-ringにおいては、炭素原子の数が24個、もしくは22個のときが最もエネルギー的に安定になると考えられる。さらに、炭素原子の数が25個以上ではcarbon-ringの形状はとらず、他の形状をとると考えられる。

次に、carbon-chainだけに着目して見ると、これもだんだんエネルギーが下がっていくのがわかる。しかし、carbon-ringと違って、炭素原子の数が奇数のときの方が次の偶数のときよりもエネルギーが低いことがわかる。このcarbon-ringでは炭素原子の数が偶数のときが、carbon-chainでは奇数のときが安定と考えられる関係は、文献[5]に述べられていることとほぼ一致する。
4 結論

MOPAC93 を用いて炭素クラスター (carbon-ring, carbon-chian) の構造最適化と振動解析の計算を行なった結果、振動モードは横振動モードと縦振動モードにわかれることが確認された。そして横振動モードは縦振動モードに比べて低い振動数で確認された。このことは実際 IRIS Explorer で振動の様子を見た際にも確認された。carbon-ring においてはだんだん最低エネルギーの振動数が 0 に近づいていくことにより、炭素原子の数が 18 くらいより上では円環は非常にやわらかくなっていると考えられることを得た。またポンド長は炭素原子の数が 25 より下のものは、奇数と偶数のものにわられる。偶数のものはポンド長が二つの値に別れ、これはポリジアセチレンの構造に対応することを得た。炭素原子の数が 25 以上のものは、二重結合の値 (1.28Å) に基づつのポンド長がなることを得た。

またトータルエネルギーを求めるところにより、エネルギー的に炭素原子の数が 9 個までは carbon-cain が安定であり、10 個以上では carbon-ring が安定であることを得た。このことは文献 [5] などの結果と一致する。

本研究では中性炭素クラスターの計算しか行なわなかったが、よりフランジンの生成機構を解明するにはイオンの計算や、今回計算した炭素クラスターがさらにどのような反応を起こすかなどの計算、C_{30} 以上の中間体の実験的検証や計算などを行なう必要がある。
謝辞

本研究及び論文作成にあたり、終始御懸切なる御指導、御鞭撻を賜りました指導教官である齋藤理一郎助教授に衷心より御礼の言葉を申し上げます。
また、本研究を進めるにあたり、熱心な御指導をいただくとともに種々の御高配を賜りました木村忠政教授、湯郷成美助教授に深謝の意を表します。
そして、研究の過程で数々の御討論をいただいた矢田部広利氏、中平政男氏に深く感謝いたします。
最後に、堀口久和氏、横井照典氏はじめその他の木村・齋藤研究室の皆さん、1年間どうもありがとうございました。
参考文献

A 付録 carbon-ring C_{10} の出力データ例

以下に carbon-ring C_{10} の出力データ例を示す。

PM3 CALCULATION RESULTS

<table>
<thead>
<tr>
<th>ATOM</th>
<th>CHEMICAL SYMBOL</th>
<th>BOND LENGTH (ANGSTROMS)</th>
<th>BOND ANGLE (DEGREES)</th>
<th>TWIST ANGLE (DEGREES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XX</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>XX</td>
<td>3.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>2.07108</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
<tr>
<td>13</td>
<td>XX</td>
<td>1.0723</td>
<td>90.00000</td>
<td>36.00000</td>
</tr>
</tbody>
</table>

構造最適化を行なう分子の内部座標データ

XYZ座標データ

NO. ATOM X Y Z
1 C 3.0711 2.0711 0.0000
2 C 3.0711 1.6755 1.2174
3 C 3.0711 0.6400 1.9697
4 C 3.0711 -0.6400 1.9697
5 C 3.0711 -1.6755 1.2174
6 C 3.0711 -2.0711 0.0000
7 C 3.0711 -1.6755 -1.2174
8 C 3.0711 -0.6400 -1.9697
9 C 3.0711 0.6400 -1.9697
10 C 3.0711 1.6755 -1.2174

MOLECULAR POINT GROUP: D5d □ 構造の対称性の属する群
RHF CALCULATION, NO. OF DOUBLY OCCUPIED LEVELS = 20

HEAT OF FORMATION = 383.362639 KCALS/MOLE

INTERNAL COORDINATE DERIVATIVES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>ATOM</th>
<th>BOND</th>
<th>ANGLE</th>
<th>DIHEDRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-0.894667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>-3.236862</td>
<td>-3.525053</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>-6.131953</td>
<td>-9.227500</td>
<td>0.000002</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>-8.474108</td>
<td>-14.929904</td>
<td>0.000002</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>-9.368706</td>
<td>-18.454109</td>
<td>0.000001</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>-8.474043</td>
<td>-18.453965</td>
<td>0.000001</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>-6.131844</td>
<td>-14.929496</td>
<td>0.000000</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>-3.236756</td>
<td>-9.226901</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>-0.894600</td>
<td>-3.524354</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

GRADIENT NORM = 40.63461

** GRADIENT IS TOO LARGE TO ALLOW FORCE MATRIX TO BE CALCULATED, (LIMIT=10) **

GEOMETRY WILL BE OPTIMIZED FIRST USING PLEPO

CYCLE: 1 TIME: 6.25 TIME LEFT: 86389.3 GRAD.: 54.881 HEAT: 383.3602

(中略)

CYCLE: 44 TIME: 2.50 TIME LEFT: 86254.3 GRAD.: 0.104 HEAT: 376.0449

CYCLE: 45 TIME: 2.52 TIME LEFT: 86251.8 GRAD.: 0.106 HEAT: 376.0449

TEST ON GRADIENT SATISFIED

PETERS TEST SATISFIED

--
T=1.0D NOINTER GNORM=0.1 PM3 GEO-QK FORCE LARGE SHIFT=10
carbon-ring symmetry adopted MOPAC coordindates
neutral

PETERS TEST WAS SATISFIED IN BFGS OPTIMIZATION
SCF FIELD WAS ACHIEVED

PM3 CALCULATION

MOPAC 93.00
Mon Dec 5 10:17:04 1994

最終生成熱

FINAL HEAT OF FORMATION = 376.04489 KCAL = 1573.37183 KJ

最適化された分子の全エネルギー

TOTAL ENERGY = -1170.09725 EV
ELECTRONIC ENERGY = -4814.30107 EV POINT GROUP: D5h
CORE-CORE REPULSION = 3644.20382 EV 4 核間エネルギー
CARBON-RING C10 の出力データ例

IONIZATION POTENTIAL = 9.76688 □ イオン化ポテンシャル
NO. OF FILLED LEVELS = 20
MOLECULAR WEIGHT = 120.110 □ 分子量

SCF CALCULATIONS = 91
COMPUTATION TIME = 2 MINUTES AND 33.710 SECONDS

<table>
<thead>
<tr>
<th>ATOM NUMBER</th>
<th>CHEMICAL SYMBOL</th>
<th>BOND LENGTH (ANGSTROMS)</th>
<th>BOND ANGLE (DEGREES)</th>
<th>TWIST ANGLE (DEGREES)</th>
<th>NA:1</th>
<th>NB:NA:1</th>
<th>NC:NB:NA:1</th>
<th>NA</th>
<th>NB</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>1.22759 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1.35063 *</td>
<td>143.99589 *</td>
<td>0.00871 *</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.22759 *</td>
<td>144.00869 *</td>
<td>-0.00357 *</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1.35062 *</td>
<td>143.99499 *</td>
<td>-0.00873 *</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1.22759 *</td>
<td>143.99514 *</td>
<td>0.00247 *</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>1.22758 *</td>
<td>144.00126 *</td>
<td>0.00455 *</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>1.35061 *</td>
<td>144.00916 *</td>
<td>0.00268 *</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>1.22759 *</td>
<td>143.99696 *</td>
<td>-0.01129 *</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EIGENVALUES

-9.99878 -9.99875 -9.76690 -9.76688 -1.10345 -1.10316 -0.84128 -0.84124
-0.48904 -0.15247 -0.15200 2.14569 2.14576 3.06739 3.06756 3.18559

NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS

<table>
<thead>
<tr>
<th>ATOM NO.</th>
<th>TYPE</th>
<th>CHARGE</th>
<th>ATOM ELECTRON DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>0.000005</td>
<td>4.0000</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0.000000</td>
<td>4.0000</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>-0.000005</td>
<td>4.0000</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>-0.000005</td>
<td>4.0000</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>0.0000005</td>
<td>4.0000</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>0.0000000</td>
<td>4.0000</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>0.0000000</td>
<td>4.0000</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>-0.0000009</td>
<td>4.0000</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>0.0000003</td>
<td>4.0000</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>0.0000004</td>
<td>4.0000</td>
</tr>
</tbody>
</table>

DIPOLE

<table>
<thead>
<tr>
<th>POINT-CHG.</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

HYBRID

<table>
<thead>
<tr>
<th>NO.</th>
<th>ATOM</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1.2276</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2.3202</td>
<td>0.7940</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

CARTESIAN COORDINATES

□ 原子上の電荷

□ 電子密度

□ 双極子モーメント
ATOMIC ORBITAL ELECTRON POPULATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>-0.6139</td>
<td>-1.9938</td>
<td>-0.0001</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0.6137</td>
<td>-1.9938</td>
<td>-0.0001</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.7063</td>
<td>-1.1998</td>
<td>-0.0001</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>2.0858</td>
<td>-0.0323</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1.6685</td>
<td>1.2522</td>
<td>0.0001</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>0.6754</td>
<td>1.9738</td>
<td>0.0002</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>-0.6752</td>
<td>1.9737</td>
<td>0.0001</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>-1.6683</td>
<td>1.2521</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>-2.0858</td>
<td>-0.0323</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>-1.7065</td>
<td>-1.1999</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>

GRADIENT NORM

0.0671026

TIME FOR SCF CALCULATION

1.54

TIME FOR DERIVATIVES

1.08

MOLECULAR WEIGHT

120.11

PRINCIPAL MOMENTS OF INERTIA IN CM(-1)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.064510</td>
<td>0.064500</td>
<td>0.032252</td>
</tr>
</tbody>
</table>

PRINCIPAL MOMENTS OF INERTIA IN UNITS OF 10**(3.40) **GRAM-CM**2

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>433.930176</td>
<td>433.998836</td>
<td>867.929012</td>
</tr>
</tbody>
</table>

ORIENTATION OF MOLECULE IN FORCE CALCULATION

1. first derivatives will be used in the calculation of second derivatives
2. estimated time to complete calculation: 157.20 seconds
3. For point-group D5h, there are 20 unique symmetry functions.
STEP: 29 INTEGRAL = 15.46 TIME LEFT: 86233.74
STEP: 30 INTEGRAL = 15.46 TIME LEFT: 86233.74

FORCET MATRIX IN MILLIDYNE/ANGSTROM

0

<table>
<thead>
<tr>
<th></th>
<th>C 1</th>
<th>C 2</th>
<th>C 3</th>
<th>C 4</th>
<th>C 5</th>
<th>C 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>10.536323</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>6.382819</td>
<td>10.536323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1.397640</td>
<td>3.528276</td>
<td>10.536323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0.813387</td>
<td>1.399205</td>
<td>6.382819</td>
<td>10.536323</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0.659003</td>
<td>0.776756</td>
<td>1.397640</td>
<td>3.528276</td>
<td>10.536323</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>0.620230</td>
<td>0.659191</td>
<td>0.813387</td>
<td>1.399205</td>
<td>6.382819</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>0.659191</td>
<td>0.620230</td>
<td>0.659003</td>
<td>0.776756</td>
<td>1.397640</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>0.776756</td>
<td>0.699003</td>
<td>0.620230</td>
<td>0.659191</td>
<td>0.813387</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>1.399205</td>
<td>0.813387</td>
<td>0.659191</td>
<td>0.620230</td>
<td>0.659003</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>3.528276</td>
<td>1.397640</td>
<td>0.776756</td>
<td>0.659003</td>
<td>0.620230</td>
</tr>
</tbody>
</table>

HEAT OF FORMATION = 376.044891 KCALS/MOLE

TRIVIAL VIBRATIONS, SHOULD BE ZERO

-0.0004=TX 0.0004=TY 0.0000=TZ 0.0003=RX 0.0003=RY 0.0008=RZ

MOLECULAR POINT GROUP : D5h

EIGENVECTORS

Root No. 1 2 3 4 5 6 7 8
 1 E2' 1 E2' 1 E2" 1 E2" 2 E2" 2 E2' 2 E2'
 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8
 1 -0.1851 0.1007 0.0004 -0.0013 0.0044 0.0058 0.0720 -0.1468
 2 -0.0002 0.3952 0.0031 0.0002 0.0192 0.0045 -0.0785 -0.4071
 3 0.0035 0.0005 -0.0826 -0.4396 -0.0788 -0.4396 0.0174 -0.0122
 4 -0.1885 0.0941 0.0003 -0.0012 0.0038 0.0064 0.0854 -0.1397

FORCE CONSTANTS IN MILLIDYNE/ANGSTROM (= 10**5 DYNES/CM)

0.16861 0.1687 0.21070 0.21095 0.81874 0.81900 0.83148 0.83154
1.33033 1.35230 1.35232 1.41552 1.43043 1.43054 2.61063 4.75175
ASSOCIATED EIGENVECTORS

<table>
<thead>
<tr>
<th>ROOT NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.16861</td>
<td>0.16887</td>
<td>0.21070</td>
<td>0.21095</td>
<td>0.81874</td>
<td>0.81900</td>
</tr>
<tr>
<td>1</td>
<td>-0.18514</td>
<td>0.10067</td>
<td>0.00040</td>
<td>-0.00130</td>
<td>0.00443</td>
<td>0.00585</td>
</tr>
<tr>
<td>2</td>
<td>-0.00023</td>
<td>0.39525</td>
<td>0.00314</td>
<td>0.0023</td>
<td>0.01915</td>
<td>0.00449</td>
</tr>
<tr>
<td>3</td>
<td>0.00346</td>
<td>0.00045</td>
<td>-0.08265</td>
<td>-0.43958</td>
<td>-0.07882</td>
<td>-0.43962</td>
</tr>
</tbody>
</table>

(Zero Point Energy) 34.243 kcal/mol

THE LAST 6 VIBRATIONS ARE THE TRANSLATION AND ROTATION MODES
THE FIRST THREE OF THESE BEING TRANSLATIONS IN X, Y, AND Z, RESPECTIVELY

FREQUENCIES, REDUCED MASSES AND VIBRATIONAL DIPOLES

<table>
<thead>
<tr>
<th>I</th>
<th>FREQ(I)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18.3849</td>
<td>218.3849</td>
<td>244.0957</td>
<td>244.0957</td>
<td>481.0781</td>
<td>481.0781</td>
</tr>
<tr>
<td>MASS(I)</td>
<td>1.48089</td>
<td>1.48089</td>
<td>1.80165</td>
<td>1.80165</td>
<td>1.80170</td>
<td>1.80167</td>
<td></td>
</tr>
<tr>
<td>DIPX(I)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>DIPY(I)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>DIPZ(I)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>DIPT(I)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
</tr>
</tbody>
</table>

(Normal Coordinate Analysis)

<table>
<thead>
<tr>
<th>Root No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>218.4</td>
<td>218.4</td>
<td>244.1</td>
<td>244.1</td>
<td>481.1</td>
<td>481.1</td>
<td>484.8</td>
<td>484.8</td>
</tr>
</tbody>
</table>
A 付錄 CARBON-RING C_10 の出力データ例

X 成分 1 -0.0208 -0.0741 0.0000 0.0000 0.0000 0.0000 -0.0287 -0.0539
Y 成分 2 0.1034 -0.1004 0.0000 0.0000 0.0000 0.0000 -0.1402 -0.0658
Z 成分 3 0.0000 0.0000 -0.0625 -0.1590 -0.1334 0.1039 0.0000 0.0000

原子の相対的なエネルギーの
(中略)

28 -0.3091 0.0768 -0.3330 -0.1360 0.0941 0.1598 -0.0399 0.2172
29 0.1504 -0.2151 0.1922 0.2855 -0.0805 -0.3989 0.1290 -0.3669
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 DESCRIPTION OF VIBRATIONS

VIBRATION 1 1E2' ATOM PAIR ENERGY CONTRIBUTION RADIAL
FREQ. 218.38 C 6 -- C 7 17.1% (195.5%) 0.1%
T-DIPOLE 0.0000 C 4 -- C 5 16.8% 0.1%
TRAVEL 0.1603 C 1 -- C 2 11.3% 0.5%
RED. MASS 1.4809 C 9 -- C10 11.1% 0.4%
 C 8 -- C 9 10.0% 0.0%

(中略)

VIBRATION 24 3E1' ATOM PAIR ENERGY CONTRIBUTION RADIAL
FREQ. 2313.78 C 5 -- C 6 22.0% (57.0%) 100.0%
T-DIPOLE 0.4875 C 9 -- C10 17.3% 99.7%
TRAVEL 0.0493 C 1 -- C10 15.1% 99.9%
RED. MASS 1.7909 C 4 -- C 5 12.3% 97.8%
 C 1 -- C 2 11.9% 99.0%

1

TOTAL CPU TIME: 171.75 SECONDS

== MOPAC DONE ==

JOB FINISHED

出力されるデータは、構造最適化を行なう分子の内部座標データ、xyz 座標データ、構
造の対称性の属する群 (この場合は D5x)、及び最適化された分子の全エネルギー、電子エ
ネルギー、核間エネルギー、イオン化ポテンシャル、分子量、内部座標、構造の対称性の属
する群、分子軌道のエネルギー、原子上の電荷、双極子ベクトルのスカラー値、xyz 座標、
軌道の電子密度、重心を原点にとった xyz 座標、FORCE MATRIX、既約表現、振動数、
原子の相対的なエネルギーの X 、 Y 、 Z 成分を順番に表している。詳しくは、文献 [11] に
書かれている。
B 付録 クラスターの構造と構造データ

以下に今回構造最適化を行なったクラスターの構造 (carbon-ring のみ) とその構造の点群の表現と xyz 座標を示す。これらのデータを xmol で取り込むことにより、すべての原子間距離や二面角などを求めることができる。

図 17: carbon-ring C_7 (C_{2v})

図 18: carbon-ring C_8 (D_{4h})

図 19: carbon-ring C_9 (D_{3h})

図 20: carbon-ring C_{10} (D_{5h})
図 21: carbon-ring C_{11} (C_{2v})

図 22: carbon-ring C_{12} (D_{6h})

図 23: carbon-ring C_{13} (C_{2v})

図 24: carbon-ring C_{14} (D_{7d})

図 25: carbon-ring C_{15} (C_{2v})

図 26: carbon-ring C_{16} (D_{8h})

21 carbon-ring11.png
22 carbon-ring12.png
23 carbon-ring13.png
24 carbon-ring14.png
25 carbon-ring15.png
26 carbon-ring16.png
図 27: carbon-ring C_{17} (C_{2v})
図 28: carbon-ring C_{18} (D_{3h})
図 29: carbon-ring C_{19} (C_s)
図 30: carbon-ring C_{20} (C_1)
図 31: carbon-ring C_{21} (D_{7h})
図 32: carbon-ring C_{22} (D_{2h})

27 carbon-ring17.png
28 carbon-ring18.png
29 carbon-ring19.png
30 carbon-ring20.png
31 carbon-ring21.png
32 carbon-ring22.png
33 図 33: carbon-ring C_{23} (C_s)
34 図 34: carbon-ring C_{24} (D_{2h})
35 図 35: carbon-ring C_{25} (D_{5h})
36 図 36: carbon-ring C_{26} (D_{2h})
37 図 37: carbon-ring C_{27} (D_{3h})
38 図 38: carbon-ring C_{28} (D_{7h})
図39: carbon-ring C_{29} (C_s)

図40: carbon-ring C_{30} (D_{3d})

図41: carbon-ring C_{31} (C_s)

図42: carbon-ring C_{32} (D_{8h})
Carbon-Ring C7

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2488</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0955</td>
<td>1.0654</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.7425</td>
<td>2.2698</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4547</td>
<td>2.7096</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.5966</td>
<td>2.0355</td>
<td>0.0000</td>
</tr>
<tr>
<td>-1.2238</td>
<td>0.7465</td>
<td>-0.0001</td>
</tr>
</tbody>
</table>

Carbon-Ring C8

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2211</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.2066</td>
<td>0.9860</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.2063</td>
<td>2.2071</td>
<td>-0.0030</td>
</tr>
<tr>
<td>1.2203</td>
<td>3.1926</td>
<td>-0.0024</td>
</tr>
<tr>
<td>-0.0008</td>
<td>3.1924</td>
<td>-0.0027</td>
</tr>
<tr>
<td>-0.9864</td>
<td>2.2066</td>
<td>-0.0022</td>
</tr>
<tr>
<td>-0.9859</td>
<td>0.9855</td>
<td>-0.0011</td>
</tr>
</tbody>
</table>

Carbon-Ring C9

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.2105</td>
<td>0.9191</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.4713</td>
<td>2.1548</td>
<td>-0.0525</td>
</tr>
<tr>
<td>1.7377</td>
<td>3.2272</td>
<td>-0.0544</td>
</tr>
<tr>
<td>0.5278</td>
<td>3.7172</td>
<td>-0.1052</td>
</tr>
<tr>
<td>-0.6223</td>
<td>3.2076</td>
<td>-0.0786</td>
</tr>
<tr>
<td>-1.3114</td>
<td>2.0566</td>
<td>-0.0681</td>
</tr>
<tr>
<td>-1.0548</td>
<td>0.8463</td>
<td>-0.0297</td>
</tr>
</tbody>
</table>

Carbon-Ring C10

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2276</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.3202</td>
<td>0.7940</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.6997</td>
<td>1.9614</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.2824</td>
<td>3.2460</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2893</td>
<td>3.9676</td>
<td>0.0003</td>
</tr>
<tr>
<td>-0.0613</td>
<td>3.9675</td>
<td>0.0002</td>
</tr>
<tr>
<td>-1.0544</td>
<td>3.2459</td>
<td>0.0002</td>
</tr>
<tr>
<td>-1.4719</td>
<td>1.9614</td>
<td>0.0002</td>
</tr>
<tr>
<td>-1.0927</td>
<td>0.7939</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Carbon-Ring C11

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2183</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.4125</td>
<td>0.6454</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.0412</td>
<td>1.6932</td>
<td>-0.0015</td>
</tr>
<tr>
<td>3.4758</td>
<td>3.0220</td>
<td>0.0011</td>
</tr>
<tr>
<td>2.3114</td>
<td>3.7957</td>
<td>-0.0057</td>
</tr>
<tr>
<td>1.1696</td>
<td>4.2310</td>
<td>-0.0042</td>
</tr>
<tr>
<td>-0.1678</td>
<td>3.9984</td>
<td>-0.0044</td>
</tr>
<tr>
<td>-1.1247</td>
<td>3.2443</td>
<td>-0.0037</td>
</tr>
<tr>
<td>-1.5101</td>
<td>1.9390</td>
<td>-0.0025</td>
</tr>
<tr>
<td>-1.1107</td>
<td>0.7867</td>
<td>-0.0011</td>
</tr>
</tbody>
</table>

Carbon-Ring C12

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2101</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.3967</td>
<td>0.6850</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.0019</td>
<td>1.7328</td>
<td>-0.0008</td>
</tr>
<tr>
<td>3.0021</td>
<td>3.1029</td>
<td>-0.0027</td>
</tr>
<tr>
<td>2.3972</td>
<td>4.1508</td>
<td>-0.0046</td>
</tr>
<tr>
<td>1.2107</td>
<td>4.8361</td>
<td>-0.0055</td>
</tr>
<tr>
<td>0.0007</td>
<td>4.8364</td>
<td>-0.0094</td>
</tr>
<tr>
<td>-1.1860</td>
<td>4.1516</td>
<td>-0.0079</td>
</tr>
<tr>
<td>-1.7912</td>
<td>3.1037</td>
<td>-0.0044</td>
</tr>
<tr>
<td>-1.7913</td>
<td>1.7335</td>
<td>-0.0023</td>
</tr>
<tr>
<td>-1.1864</td>
<td>0.6855</td>
<td>-0.0012</td>
</tr>
</tbody>
</table>

Carbon-Ring C13

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.3585</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.4439</td>
<td>0.5498</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.2021</td>
<td>1.6637</td>
<td>0.0128</td>
</tr>
<tr>
<td>3.3985</td>
<td>2.8808</td>
<td>0.0186</td>
</tr>
<tr>
<td>2.9234</td>
<td>4.1079</td>
<td>0.0436</td>
</tr>
<tr>
<td>2.0102</td>
<td>4.9951</td>
<td>0.0397</td>
</tr>
</tbody>
</table>

Carbon-Ring C14

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.3612</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.4520</td>
<td>0.5248</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.3011</td>
<td>1.5887</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.5707</td>
<td>2.7687</td>
<td>0.0002</td>
</tr>
<tr>
<td>3.2682</td>
<td>4.0959</td>
<td>0.0003</td>
</tr>
<tr>
<td>2.5138</td>
<td>5.0425</td>
<td>0.0003</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2095</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.4468</td>
<td>0.5613</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.2749</td>
<td>1.4477</td>
<td>0.0128</td>
</tr>
<tr>
<td>3.6967</td>
<td>2.7294</td>
<td>0.0411</td>
</tr>
<tr>
<td>3.6138</td>
<td>3.9534</td>
<td>0.0677</td>
</tr>
<tr>
<td>2.9628</td>
<td>5.1009</td>
<td>0.0902</td>
</tr>
<tr>
<td>1.9644</td>
<td>5.8810</td>
<td>0.1003</td>
</tr>
<tr>
<td>0.7232</td>
<td>6.1341</td>
<td>0.0979</td>
</tr>
<tr>
<td>-0.5728</td>
<td>5.8845</td>
<td>0.0838</td>
</tr>
<tr>
<td>-1.5582</td>
<td>5.1534</td>
<td>0.0653</td>
</tr>
<tr>
<td>-2.2601</td>
<td>4.0007</td>
<td>0.0432</td>
</tr>
<tr>
<td>-2.3971</td>
<td>2.7957</td>
<td>0.0285</td>
</tr>
<tr>
<td>-2.0212</td>
<td>1.4895</td>
<td>0.0174</td>
</tr>
<tr>
<td>-1.2357</td>
<td>0.5695</td>
<td>0.0044</td>
</tr>
<tr>
<td>-1.2610</td>
<td>0.5221</td>
<td>0.0000</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.3620</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5027</td>
<td>0.3903</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.5775</td>
<td>1.2249</td>
<td>0.0031</td>
</tr>
<tr>
<td>4.2408</td>
<td>2.2349</td>
<td>0.0109</td>
</tr>
<tr>
<td>4.5763</td>
<td>3.5458</td>
<td>0.0270</td>
</tr>
<tr>
<td>4.4800</td>
<td>4.7617</td>
<td>0.0454</td>
</tr>
<tr>
<td>3.9507</td>
<td>5.9784</td>
<td>0.0660</td>
</tr>
<tr>
<td>3.1040</td>
<td>6.9056</td>
<td>0.0818</td>
</tr>
<tr>
<td>1.9859</td>
<td>7.5145</td>
<td>0.0932</td>
</tr>
<tr>
<td>0.6923</td>
<td>7.7351</td>
<td>0.0986</td>
</tr>
<tr>
<td>-0.5192</td>
<td>7.5362</td>
<td>0.0965</td>
</tr>
<tr>
<td>-1.7072</td>
<td>6.8994</td>
<td>0.0826</td>
</tr>
<tr>
<td>-2.5302</td>
<td>6.0122</td>
<td>0.0635</td>
</tr>
<tr>
<td>-3.0825</td>
<td>4.7704</td>
<td>0.0371</td>
</tr>
<tr>
<td>-3.1885</td>
<td>3.5691</td>
<td>0.0228</td>
</tr>
<tr>
<td>-2.8634</td>
<td>2.2468</td>
<td>0.0158</td>
</tr>
<tr>
<td>-2.2107</td>
<td>1.2337</td>
<td>0.0017</td>
</tr>
<tr>
<td>-1.1394</td>
<td>0.3931</td>
<td>-0.0045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

carbon-ring C_{21} carbon-ring C_{22}

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2800</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.3627</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5031</td>
<td>0.3773</td>
<td>0.0000</td>
<td>2.5176</td>
<td>0.3392</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.5607</td>
<td>1.0983</td>
<td>0.0000</td>
<td>3.6639</td>
<td>1.0762</td>
<td>0.0002</td>
</tr>
<tr>
<td>4.3588</td>
<td>2.0991</td>
<td>0.0000</td>
<td>4.4519</td>
<td>1.9860</td>
<td>0.0006</td>
</tr>
<tr>
<td>4.8264</td>
<td>3.2906</td>
<td>0.0000</td>
<td>5.0177</td>
<td>3.2257</td>
<td>0.0014</td>
</tr>
<tr>
<td>4.9221</td>
<td>4.5670</td>
<td>0.0000</td>
<td>5.1887</td>
<td>4.1722</td>
<td>0.0024</td>
</tr>
<tr>
<td>4.6372</td>
<td>5.8149</td>
<td>0.0000</td>
<td>4.9944</td>
<td>5.7660</td>
<td>0.0036</td>
</tr>
<tr>
<td>3.9972</td>
<td>6.9234</td>
<td>0.0000</td>
<td>4.4941</td>
<td>6.8608</td>
<td>0.0047</td>
</tr>
<tr>
<td>3.0589</td>
<td>7.7941</td>
<td>0.0000</td>
<td>3.6015</td>
<td>7.8905</td>
<td>0.0058</td>
</tr>
<tr>
<td>1.9057</td>
<td>8.3494</td>
<td>0.0000</td>
<td>2.5887</td>
<td>8.5411</td>
<td>0.0066</td>
</tr>
<tr>
<td>0.6400</td>
<td>8.5402</td>
<td>0.0000</td>
<td>1.2812</td>
<td>8.9248</td>
<td>0.0071</td>
</tr>
<tr>
<td>-0.6257</td>
<td>8.3494</td>
<td>0.0000</td>
<td>0.0775</td>
<td>8.9246</td>
<td>0.0073</td>
</tr>
<tr>
<td>-1.7789</td>
<td>7.7941</td>
<td>0.0000</td>
<td>-1.2300</td>
<td>8.5405</td>
<td>0.0071</td>
</tr>
<tr>
<td>-2.7172</td>
<td>6.9234</td>
<td>0.0000</td>
<td>-2.2426</td>
<td>7.8896</td>
<td>0.0067</td>
</tr>
<tr>
<td>-3.3572</td>
<td>5.8149</td>
<td>0.0000</td>
<td>-3.1348</td>
<td>6.8596</td>
<td>0.0059</td>
</tr>
<tr>
<td>-3.6421</td>
<td>4.5670</td>
<td>0.0000</td>
<td>-3.6346</td>
<td>5.7646</td>
<td>0.0050</td>
</tr>
<tr>
<td>-3.5464</td>
<td>3.2906</td>
<td>0.0000</td>
<td>-3.8283</td>
<td>4.4157</td>
<td>0.0037</td>
</tr>
<tr>
<td>-3.0788</td>
<td>2.0991</td>
<td>0.0000</td>
<td>-3.6566</td>
<td>3.2243</td>
<td>0.0025</td>
</tr>
<tr>
<td>-2.2807</td>
<td>1.0983</td>
<td>0.0000</td>
<td>-3.0900</td>
<td>1.9850</td>
<td>0.0013</td>
</tr>
<tr>
<td>-1.2231</td>
<td>0.3773</td>
<td>0.0000</td>
<td>-2.3015</td>
<td>1.0755</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.1550</td>
<td>0.3390</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

carbon-ring C_{23} carbon-ring C_{24}

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2800</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.2326</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5125</td>
<td>0.3453</td>
<td>0.0000</td>
<td>2.5320</td>
<td>0.3463</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.6062</td>
<td>1.0104</td>
<td>0.0000</td>
<td>3.5974</td>
<td>0.9575</td>
<td>-0.0027</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>4.4799</td>
<td>1.9459</td>
<td>0.0000</td>
<td>4.5545</td>
<td>1.9064</td>
<td>-0.0096</td>
</tr>
<tr>
<td>5.0687</td>
<td>3.0824</td>
<td>0.0000</td>
<td>5.1605</td>
<td>2.9416</td>
<td>-0.0201</td>
</tr>
<tr>
<td>5.3292</td>
<td>4.3356</td>
<td>0.0000</td>
<td>5.5258</td>
<td>4.2632</td>
<td>-0.0378</td>
</tr>
<tr>
<td>5.2418</td>
<td>5.6126</td>
<td>0.0000</td>
<td>5.5374</td>
<td>5.4719</td>
<td>-0.0584</td>
</tr>
<tr>
<td>4.8132</td>
<td>6.8187</td>
<td>0.0000</td>
<td>5.2080</td>
<td>6.7603</td>
<td>-0.0865</td>
</tr>
<tr>
<td>4.0750</td>
<td>7.8644</td>
<td>0.0000</td>
<td>4.6147</td>
<td>7.8204</td>
<td>-0.1161</td>
</tr>
<tr>
<td>3.0821</td>
<td>8.6722</td>
<td>0.0000</td>
<td>3.7026</td>
<td>8.7607</td>
<td>-0.1513</td>
</tr>
<tr>
<td>1.9081</td>
<td>9.1822</td>
<td>0.0000</td>
<td>2.6600</td>
<td>9.3865</td>
<td>-0.1859</td>
</tr>
<tr>
<td>0.6400</td>
<td>9.3565</td>
<td>0.0000</td>
<td>1.4043</td>
<td>9.7485</td>
<td>-0.2238</td>
</tr>
<tr>
<td>-0.6281</td>
<td>9.1822</td>
<td>0.0000</td>
<td>0.1887</td>
<td>9.7736</td>
<td>-0.2587</td>
</tr>
<tr>
<td>-1.8021</td>
<td>8.6722</td>
<td>0.0000</td>
<td>-1.0845</td>
<td>9.4638</td>
<td>-0.2745</td>
</tr>
<tr>
<td>-2.7950</td>
<td>7.8644</td>
<td>0.0000</td>
<td>-2.1518</td>
<td>8.8830</td>
<td>-0.2757</td>
</tr>
<tr>
<td>-3.5332</td>
<td>6.8187</td>
<td>0.0000</td>
<td>-3.1179</td>
<td>7.9686</td>
<td>-0.2610</td>
</tr>
<tr>
<td>-3.9618</td>
<td>5.6126</td>
<td>0.0000</td>
<td>-3.7527</td>
<td>6.9403</td>
<td>-0.2359</td>
</tr>
<tr>
<td>-4.0492</td>
<td>4.3356</td>
<td>0.0000</td>
<td>-4.1486</td>
<td>5.6284</td>
<td>-0.1970</td>
</tr>
<tr>
<td>-3.7887</td>
<td>3.0824</td>
<td>0.0000</td>
<td>-4.1882</td>
<td>4.4302</td>
<td>-0.1573</td>
</tr>
<tr>
<td>-3.1999</td>
<td>1.9459</td>
<td>0.0000</td>
<td>-3.8848</td>
<td>3.1179</td>
<td>-0.1109</td>
</tr>
<tr>
<td>-2.3262</td>
<td>1.0194</td>
<td>0.0000</td>
<td>-3.3096</td>
<td>2.0334</td>
<td>-0.0714</td>
</tr>
<tr>
<td>-1.2325</td>
<td>0.3453</td>
<td>0.0000</td>
<td>-2.3951</td>
<td>1.0480</td>
<td>-0.0360</td>
</tr>
</tbody>
</table>

carbon-ring C_{25} carbon-ring C_{26}

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2800</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.2800</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5198</td>
<td>0.3183</td>
<td>0.0000</td>
<td>2.5228</td>
<td>0.3063</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.6415</td>
<td>0.9350</td>
<td>0.0000</td>
<td>3.6562</td>
<td>0.9012</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.5745</td>
<td>1.8112</td>
<td>0.0000</td>
<td>4.6143</td>
<td>1.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.2604</td>
<td>2.8919</td>
<td>0.0000</td>
<td>5.3414</td>
<td>2.8034</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.6559</td>
<td>4.1093</td>
<td>0.0000</td>
<td>5.7953</td>
<td>4.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.7363</td>
<td>5.3868</td>
<td>0.0000</td>
<td>5.9496</td>
<td>5.2709</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.4965</td>
<td>6.6441</td>
<td>0.0000</td>
<td>5.7953</td>
<td>6.5415</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.9515</td>
<td>7.8023</td>
<td>0.0000</td>
<td>5.3414</td>
<td>7.7384</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.1356</td>
<td>8.7885</td>
<td>0.0000</td>
<td>4.6143</td>
<td>8.7918</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.1000</td>
<td>9.5409</td>
<td>0.0000</td>
<td>3.6562</td>
<td>9.6406</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.9099</td>
<td>10.121</td>
<td>0.0000</td>
<td>2.5228</td>
<td>10.2354</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6400</td>
<td>10.1725</td>
<td>0.0000</td>
<td>1.2800</td>
<td>10.5418</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.6299</td>
<td>10.121</td>
<td>0.0000</td>
<td>0.0000</td>
<td>10.5418</td>
<td>0.0000</td>
</tr>
<tr>
<td>-1.8200</td>
<td>9.5409</td>
<td>0.0000</td>
<td>-1.2428</td>
<td>10.2354</td>
<td>0.0000</td>
</tr>
<tr>
<td>-2.8556</td>
<td>8.7885</td>
<td>0.0000</td>
<td>-2.3762</td>
<td>9.6406</td>
<td>0.0000</td>
</tr>
<tr>
<td>-3.6715</td>
<td>7.8023</td>
<td>0.0000</td>
<td>-3.3343</td>
<td>8.7918</td>
<td>0.0000</td>
</tr>
<tr>
<td>-4.2165</td>
<td>6.6441</td>
<td>0.0000</td>
<td>-4.0614</td>
<td>7.7384</td>
<td>0.0000</td>
</tr>
<tr>
<td>-4.4563</td>
<td>5.3868</td>
<td>0.0000</td>
<td>-4.5153</td>
<td>6.5416</td>
<td>0.0000</td>
</tr>
<tr>
<td>-4.3759</td>
<td>4.1093</td>
<td>0.0000</td>
<td>-4.6696</td>
<td>5.2709</td>
<td>0.0000</td>
</tr>
<tr>
<td>-3.9804</td>
<td>2.8919</td>
<td>0.0000</td>
<td>-4.5153</td>
<td>4.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>-3.2945</td>
<td>1.8112</td>
<td>0.0000</td>
<td>-4.0614</td>
<td>2.8034</td>
<td>0.0000</td>
</tr>
<tr>
<td>-2.3615</td>
<td>0.9350</td>
<td>0.0000</td>
<td>-3.3343</td>
<td>1.7500</td>
<td>0.0000</td>
</tr>
<tr>
<td>-1.2398</td>
<td>0.3183</td>
<td>0.0000</td>
<td>-2.3762</td>
<td>0.9012</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

carbon-ring C_{27} carbon-ring C_{28}

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
</table>

B 付録 クラスターの構造と構造データ
B 付録 クラスターの構造と構造データ

0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.2800	0.0000	0.0000	1.2800	0.0000	0.0000
2.5255	0.2952	0.0000	2.5279	0.2948	0.0000
3.6693	0.8697	0.0000	3.6811	0.8402	0.0000
4.6499	1.6924	0.0000	4.6819	1.6383	0.0000
5.4143	2.7191	0.0000	5.4800	2.6390	0.0000
5.9212	3.8945	0.0000	6.0353	3.7922	0.0000
6.1435	5.1550	0.0000	6.3202	5.0402	0.0000
6.0691	6.4328	0.0000	6.3202	6.3202	0.0000
5.7020	7.6591	0.0000	6.0353	7.5681	0.0000
5.0620	8.7676	0.0000	5.4800	8.7213	0.0000
4.1836	9.6986	0.0000	4.6819	9.7220	0.0000
3.1142	10.4020	0.0000	3.6812	10.5201	0.0000
1.9114	10.8398	0.0000	2.5279	11.0755	0.0000
0.6400	10.9884	0.0000	1.2800	11.3603	0.0000
-0.6313	10.8398	0.0000	-1.2479	11.0755	0.0000
-2.9036	9.6986	0.0000	-2.4011	10.5201	0.0000
-3.7820	8.7676	0.0000	-3.4019	9.7221	0.0000
-4.4220	7.6591	0.0000	-4.2000	8.7213	0.0000
-4.7891	6.4329	0.0000	-4.7553	7.5681	0.0000
-4.8635	5.1550	0.0000	-5.0402	6.3202	0.0000
-4.6412	3.8945	0.0000	-5.0402	5.0402	0.0000
-4.1343	2.7191	0.0000	-4.7553	3.7923	0.0000
-3.3699	1.6924	0.0000	-4.2000	2.6390	0.0000
-2.3894	0.8697	0.0000	-3.4019	1.6383	0.0000
-1.2455	0.2952	0.0000	-2.4011	0.8402	0.0000

| carbon-ring C_{29} | carbon-ring C_{30} |

| x | y | z | x | y | z |

<p>| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1.2800 | 0.0000 | 0.0000 | 1.2812 | 0.0000 | 0.0000 |
| 2.5301 | 0.2752 | 0.0000 | 2.5319 | 0.2660 | 0.0000 |
| 3.6919 | 0.8126 | 0.0000 | 3.6999 | 0.7862 | 0.0000 |
| 4.7109 | 1.5872 | -0.0001 | 4.7342 | 1.5380 | 0.0001 |
| 5.5397 | 2.5628 | -0.0002 | 5.5896 | 2.4885 | 0.0003 |
| 6.1393 | 3.6937 | -0.0005 | 6.2286 | 3.5960 | 0.0006 |
| 6.4818 | 4.9271 | -0.0008 | 6.6230 | 4.8113 | 0.0010 |
| 6.5513 | 6.2052 | -0.0012 | 6.7563 | 6.0842 | 0.0015 |
| 6.3443 | 7.4685 | -0.0017 | 6.6220 | 7.3570 | 0.0022 |
| 5.8706 | 8.6577 | -0.0023 | 6.2260 | 8.5742 | 0.0030 |
| 5.1524 | 9.7172 | -0.0030 | 5.5855 | 9.6823 | 0.0039 |
| 4.2232 | 10.5976 | -0.0038 | 4.7286 | 10.6331 | 0.0050 |
| 3.1265 | 11.2577 | -0.0047 | 3.6927 | 11.3949 | 0.0061 |
| 1.9136 | 11.6665 | -0.0056 | 2.5232 | 11.9049 | 0.0073 |
| 0.6411 | 11.8051 | -0.0065 | 1.2710 | 12.1703 | 0.0085 |
| -0.6315 | 11.6669 | -0.0074 | -0.0089 | 12.1696 | 0.0098 |
| -1.8445 | 11.2584 | -0.0083 | -1.2608 | 11.9027 | 0.0111 |
| -2.9414 | 10.5987 | -0.0092 | -2.4297 | 11.3813 | 0.0123 |
| -3.8708 | 9.7186 | -0.0100 | -3.4647 | 10.6283 | 0.0134 |
| -4.5894 | 8.6592 | -0.0108 | -4.3205 | 9.6765 | 0.0145 |
| -5.0634 | 7.4702 | -0.0114 | -4.9597 | 8.5676 | 0.0152 |</p>
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2814</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.2800</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.5340</td>
<td>0.2575</td>
<td>0.0000</td>
<td>2.5354</td>
<td>0.2497</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.7091</td>
<td>0.7619</td>
<td>0.0000</td>
<td>3.7180</td>
<td>0.7396</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.7586</td>
<td>1.4926</td>
<td>-0.0001</td>
<td>4.7823</td>
<td>1.4507</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.6395</td>
<td>2.4195</td>
<td>-0.0001</td>
<td>5.6873</td>
<td>2.3558</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.3157</td>
<td>3.5048</td>
<td>-0.0003</td>
<td>6.3985</td>
<td>3.4201</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.7590</td>
<td>4.7027</td>
<td>-0.0005</td>
<td>6.8883</td>
<td>4.6026</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.9525</td>
<td>5.9678</td>
<td>-0.0007</td>
<td>7.1380</td>
<td>5.8580</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.8874</td>
<td>7.2460</td>
<td>-0.0010</td>
<td>7.1380</td>
<td>7.1380</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.5662</td>
<td>8.4850</td>
<td>-0.0014</td>
<td>6.8883</td>
<td>8.3934</td>
<td>0.0000</td>
</tr>
<tr>
<td>6.0022</td>
<td>9.6340</td>
<td>-0.0018</td>
<td>6.3985</td>
<td>9.5760</td>
<td>0.0000</td>
</tr>
<tr>
<td>5.2184</td>
<td>10.6459</td>
<td>-0.0023</td>
<td>5.6873</td>
<td>10.6403</td>
<td>0.0000</td>
</tr>
<tr>
<td>4.2469</td>
<td>11.4793</td>
<td>-0.0028</td>
<td>4.7823</td>
<td>11.5454</td>
<td>0.0000</td>
</tr>
<tr>
<td>3.1276</td>
<td>12.1001</td>
<td>-0.0033</td>
<td>3.7180</td>
<td>12.2565</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.9062</td>
<td>12.4828</td>
<td>-0.0039</td>
<td>2.5354</td>
<td>12.7463</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6327</td>
<td>12.6118</td>
<td>-0.0045</td>
<td>1.2800</td>
<td>12.9961</td>
<td>0.0000</td>
</tr>
<tr>
<td>-0.6406</td>
<td>12.4817</td>
<td>-0.0051</td>
<td>0.0000</td>
<td>12.9961</td>
<td>0.0000</td>
</tr>
<tr>
<td>-1.8617</td>
<td>12.0980</td>
<td>-0.0057</td>
<td>-1.2554</td>
<td>12.7463</td>
<td>0.0000</td>
</tr>
<tr>
<td>-2.9806</td>
<td>11.4763</td>
<td>-0.0063</td>
<td>-2.4380</td>
<td>12.2565</td>
<td>0.0000</td>
</tr>
<tr>
<td>-3.9513</td>
<td>10.6421</td>
<td>-0.0069</td>
<td>-3.5023</td>
<td>11.5454</td>
<td>0.0000</td>
</tr>
<tr>
<td>-4.7342</td>
<td>9.6295</td>
<td>-0.0074</td>
<td>-4.4073</td>
<td>10.6403</td>
<td>0.0000</td>
</tr>
<tr>
<td>-5.2973</td>
<td>8.4800</td>
<td>-0.0078</td>
<td>-5.1185</td>
<td>9.5760</td>
<td>0.0000</td>
</tr>
<tr>
<td>-5.6174</td>
<td>7.2408</td>
<td>-0.0085</td>
<td>-5.6083</td>
<td>8.3934</td>
<td>0.0000</td>
</tr>
<tr>
<td>-5.6813</td>
<td>5.9651</td>
<td>-0.0097</td>
<td>-5.8580</td>
<td>7.1380</td>
<td>0.0000</td>
</tr>
<tr>
<td>-5.4869</td>
<td>4.7013</td>
<td>-0.0115</td>
<td>-5.8580</td>
<td>5.8580</td>
<td>0.0000</td>
</tr>
<tr>
<td>-5.0420</td>
<td>3.5025</td>
<td>-0.0141</td>
<td>-5.6083</td>
<td>4.6026</td>
<td>0.0000</td>
</tr>
<tr>
<td>-4.3648</td>
<td>2.4177</td>
<td>-0.0176</td>
<td>-5.1185</td>
<td>3.4201</td>
<td>0.0000</td>
</tr>
<tr>
<td>-3.4832</td>
<td>1.4914</td>
<td>-0.0223</td>
<td>-4.4073</td>
<td>2.3558</td>
<td>0.0000</td>
</tr>
<tr>
<td>-2.4330</td>
<td>0.7617</td>
<td>-0.0280</td>
<td>-3.5023</td>
<td>1.4507</td>
<td>0.0000</td>
</tr>
<tr>
<td>-1.2551</td>
<td>0.2573</td>
<td>-0.0349</td>
<td>-2.4380</td>
<td>0.7396</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.2554</td>
<td>0.2497</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

carbon-ring C₃₁
carbon-ring C₃₂