[started by 2014.12.3]
mkdir ~/espresso
ssh tube50
tar -xzvf espresso-5.0.2.tar.gz mv espresso-5.0.2 00main cd 00main patch -p1 < espresso-5.0.2-5.0.3.diffYou will be asked for input file to be patched, neglect it ans press enter some times, then
./configure --with-scalapack=NO make all(note that we don't use scalapack in TUBE, therefore we set the option as "NO", otherwise the compilation will be failed)
&CONTROL / &SYSTEM / &ELECTRONS / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ]
calculates electronic structure, structural optimization, molecular dynamics, barriers with NEB.
calculates phonon frequencies and displacement patterns, dielectric tensors, effective charges (uses data produced by pw.x).
extracts the specified data from files produced by pw.x, preparedata for plotting by writing them into formats that can be read by several plotting programs.
extracts and reorders eigenvalues from files produced by pw.x for band structure plotting.
calculates projections of wavefunction over atomic orbitals,performs L?owdin population analysis and calculates projected density of states. These can be summed using auxiliary code sumpdos.x
produces PostScript 2-d contour plots.
reads the output of bands.x, produces band structure PostScript plots.
calculates electronic Density of States (DOS).
1 bohr = 0.529177249 angstrom 1 Rydberg (R ) = 13.6056981 eV 1 eV =1.60217733 x 10-19 Joules
&CONTROL calculation = 'scf', restart_mode = 'from_scratch', pseudo_dir = 'pseudo/', outdir = 'tmp/', prefix = 'graphene', / &SYSTEM ibrav = 4, a = 2.4623, c = 10 nat = 2, ntyp = 1, occupations = 'smearing', smearing = 'methfessel-paxton', degauss = 0.02, ecutwfc = 60, ecutrho = 720, nbnd = 8, / &ELECTRONS conv_thr = 1.0d-10, mixing_mode = 'plain', mixing_beta = 0.7, diagonalization = 'cg', / ATOMIC_SPECIES C 12.0107 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {crystal} C 0.333333333 0.666666666 0.500000000 C 0.666666666 0.333333333 0.500000000 K_POINTS {automatic} 42 42 1 0 0 0
declares the control block.
tells PWSCF that this will be a self-consistent field calculation.
declares that we will be generation a new structure.
defines the location of the directory where you store the pseudo-potentials
defines the location of the temporary files. This should always be a local scratch disk so that large I/O operations do not occur across the network.
declares the file name prefix to be used for temporary files.
denotes the end of a block.
declares the system block.
gives the crystal system. ibrav=4 : refers to the hexagonal lattice.
number of atoms (each individual unique atom). Note that graphene for graphene nat=2 because of quantum berry phase.
number of types of atoms
Energy cutoff for pseudo-potentials. This one is important; we change this to find stable structure.
these keywords are particular details for the Brillioun zone integration for metals. Since there is a discontinuity of the occupation number for the bands around the Fermi energy, total energy with respect to the number of k-points converges very slowly. Adding electronic temperature (degauss) smooth out the abrupt change of the occupation number and as a result total energy converges with fewer number of k-points.
number of electronic states (bands) to be calculated.Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled
atomic symbol atomic weight pseudo-potential
after the keyword ATOMIC_POSITIONS, for each nat enter atomic symbol x y z where x,y,z are given as fractional coordinates of the conventional cell.
after the keywork K_POINTS, 'automatic' tells PWSCF to automatically generate a k-point grid. The format of the next line is nkx nky nkz offx offy offz where nk* is the number of intervals in a direction and off* is the offset of the origin of the grid.
cd ~/espresso mkdir graphene
cd ~/espresso/graphene nohup ./pw.x < input.in > output.out &(we use "nohup" command for running the calculation as a background process)
grep iteration output.out
bravais-lattice index = 4 lattice parameter (alat) = 4.6090 a.u. unit-cell volume = 347.6569 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 480.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00
Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 264, 8) NL pseudopotentials 0.06 Mb ( 264, 16) Each V/rho on FFT grid 0.45 Mb ( 29808) Each G-vector array 0.08 Mb ( 10283) G-vector shells 0.02 Mb ( 2599) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each <psi_i|beta_j> matrix 0.00 Mb ( 16, 8)
/home/students/pourya/espresso/silicon
&control prefix='silicon', pseudo_dir='/home/pourya/Desktop/espresso/pseudo/' outdir = '/home/pourya/tmp/', / &system ibrav= 2, celldm(1) =10.2, nat= 2, ntyp= 1, ecutwfc = 12.0, / &electrons /
ATOMIC_SPECIES
Si 28.086 Si.pz-vbc.UPF
ATOMIC_POSITIONS
Si 0.00 0.00 0.00 Si 0.25 0.25 0.25
K_POINTS
2 0.25 0.25 0.75 3.0 0.25 0.25 0.25 1.0
/pw.x < si.scf.in > si.scf.out
/ pw.x < si.nscf.in> si.nscf.out
/ pw.x < si.bands.in> si.bands.out
/ bands.x < bands.in > bands.out
/ plotband.x input file > bands.dat Range: -5.6680 16.4950eV Emin, Emax > -6.0 10.0 output file (xmgr) > si.bands.xmgr output file (ps) > si.bands.ps Efermi > 6.337 deltaE, reference E (for tics) 1.0, 6.337
/evince si.bands.ps
/pp.x < si.pp_rho.in /plotrho.x input file > si.rho.dat output file > si.rho.ps Logarithmic scale (y/n)? > n /evince si.rho.ps
bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00
Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 200, 8) NL pseudopotentials 0.02 Mb ( 200, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 200, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each <psi_i|beta_j> matrix 0.00 Mb ( 8, 8)
#ref(): File not found: "si.charge001.png" at page "QuantumEspresso(Open)"