Here is a daily log for Jakob Grzesik from 2017.6.5 to 2017.8.5 in Saito Lab in Tohoku Univ.
Daily schedule (tentative) †
- 09:00-09:30 Begin climbing to campus
- 09:30-09:35 Succumb to burning feeling in calves and take a break
- 09:35-10:00 Resume climb to lab
- 10:00-11:00 Finishing/continuing any work from previous day
- 11:00-12:00 Discussion with Shoufie-san
- 12:00-13:00 Lunch
- 13:00-13:30 Prepare for daily report presentation
- 13:30-14:30 Meeting with Saito-sensei
- 14:30-18:30 Start working on work for tomorrow's presentation and updating Pukiwiki
Goal of the project †
- Synchronization of particle motion
Questions and Answers †
This section is for posting questions from Haihao-san and answers from other group members.
- Please list here with some simple reasons or details.
- For every problem, give a tag double asterisks (**) in the code so that it will appear in the table of contents.
- For the answer, give a tag triple asterisks (***) in the code below the problem in order to make a proper alignment.
- List from new to old.
Q: (Placeholder) †
A: (Placeholder) †
Report †
This part is basically written by Yakub-san. Any other people can add this. Here the information should be from new to old so that we do not need to scroll.
August 5 †
To do:
August 4 †
To do:
August 1-3 †
July 31 †
July 29 †
July 28 †
July 27 †
July 26 †
July 25 †
To do:
July 24 †
July 22 †
To do:
July 21 †
To do:
July 19-20 †
July 15-18 †
July 14 †
To do:
July 13 †
To do:
July 12 †
July 11 †
To do:
July 10 †
July 8 †
To do:
July 7 †
To do:
July 3-6 †
July 1 †
June 30 †
To do:
June 29 †
To do:
June 28 †
To do:
June 27 †
June 26 †
June 24 †
To do:
June 23 †
June 22 †
To do:
June 21 †
To do:
June 20 †
To do:
June 18 †
June 17 †
To do:
June 16 †
To do:
June 15 †
To do:
June 14 †
To do:
June 13 †
To do:
June 9 †
June 8 †
- Solved problem for HW and did some more exercises with Lagrangian mechanics and ODEs.
- Learned about an example of synchronization phenomenon with Saito-sensei. Involved first getting equations of motion using Lagrangian mechanics, then applying Linear Algebra and differential equations. Ended up with
- Worked on deriving Euler-Lagrange equation in systems with non-conservative forces.
To do:
- Begin learning how to plot equations effectively. JSXGraph looks very promising, but difficult to learn.
- Design programs to numerically solve differential equation systems. Start off with Euler's method, than build upon that to do the Runge Kutta method.
- Solidify understanding of EL in non-conservative situation to the extent that I can follow and present the derivation.
June 7 †
- Walked to campus, took the right path, so it only took about 25 mins to make it to the lab.
- Plotted results for last night's HW with varying parameters.
- Practiced getting equations of motion for more complicated systems using Lagrangian Mechanics.
- Considered systems with damping forces and modelled motion using differential equations.
To do:
- Apply linear algebra and ODEs to solve a general second order differential equations problem.
- Learn how to solve ODEs and linear algebra questions using python(Start with Euler's approximation method).
June 6 †
- Walked to campus, got lost at campus. Took about 45 mins.
- Finished working on HW about action and the Euler Lagrange equation
- Worked on learning about differential equations.
- Worked on applying Lagrangian mechanics to double pendulum.
- Had lunch with Nulli-san at Espace Ouvert
- First "experiment": synchronization of vegetable can movement within a box due to forces exerted while carrying it and walking at a certain pace.
To do:
- Solve equations of motion for a box on a spring with some initial external force over a fixed period of time, both before and after external force is removed.
- Numerically solve ODEs in Python(perhaps using numpy and scipy packages).
June 5 †
- Shoufie-san picked me up from Urban Castle Kawauchi, took me to campus by subway (International Center -> Aobayama, 250 yen ~20 mins total)
- Nugraha-sensei helped me set up lab server access, mail client, etc.
- Got a quick bento lunch on campus and ate with Saito-sensei who played his ukulele
- Learned about Lagrangian mechanics, specifically in the context of a simple pendulum.
- Learned a bit about the general solutions to second-order differential equations.
To do:
- Learn what "action" in physics is
- Derive the Euler-Lagrange Equation