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Chapter 1

Introduction

1.1 Purpose of this thesis

A carbon nanotube is a quasi one-dimensional (1D) solid with a diameter of about 1nm and a
macroscopic length of up to Imm. Carbon nanotubes were discovered by Iijima in multi wall form
in 1991 [1] and two years later in single wall form [2]. Single wall carbon nanotubes (SWNTs) can
be imagined as a rolled—up graphene sheet into a cylinder. The physical properties of SWNTs
are determined by the diameter and the angle of rolling up relative to the graphite lattice (also
known as chirality). One third of SWNTs are metallic and two thirds are semiconducting with
an energy gap, that is inversely proportional to the tube diameter [3, 4]. If the number of
carbon atoms around the circumference of the SWNT changes by one, the SWNT can change
from semiconductor to metal or vice versa. Such a behaviour does not occur in bulk solid
materials and is characteristic for nanomaterials in which quantum mechanics plays an important
role. Carbon nanotubes are candidates for many applications in electronic devices such as field
emitters [5, 6], field effect transistors [7, 8] or molecular wires [9].

Optical spectroscopy has been proven to be a powerful way to characterize SWNTs. Many
experimental results of Raman measurements for bundles [10, 11] and individual tubes [12, 13]
are available in the literature. Recently photo-luminescence (PL) spectra of isolated SWNTs
have been measured by several groups [14, 15, 16]. Their optical properties are observed at
the maxima in the electronic joint density of states (JDOS), known as van Hove singularities
(VHSs) [17]. The VHSs are a characteristic of 1D systems and are very important to the optical
properties. Optical absorption and the Raman cross section are strongly enhanced (resonance
effect) if the laser energy matches the energy separation between the VHSs in the valence and
conduction energy bands. Such a strict resonance condition selects only a few SWNTs in the
mixed sample that contribute to the spectrum. Although the spectral position has been studied,
no detailed investigation on the dependence of the intensity of this optical process on the chiral
angle and diameter has been discussed. To explain optical or Raman spectra, a calculation of the
scattering processes is needed. The understanding of the efficiency of the optical absorption and
emission processes in SWNTSs is important for the use of spectroscopy to study and characterize
these systems. The purpose of the present thesis is to calculate optical absorption and Raman
intensities of graphene and SWNTs. Especially we have calculated electron photon and electron
phonon matrix elements. We have developed a set of computer programs for calculating the
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2 CHAPTER 1. INTRODUCTION

matrix elements. Such a calculation involves calculating the electronic and phonon dispersions
and the matrix elements for electron photon and electron phonon scattering. The interaction
between an electron and a photon is formulated for the solutions to the tight binding equations
for electrons in a SWNT. In a similar manner we treat the problem of electron phonon interac-
tion, where we employ a force constant approach for the phonons. Using electron photon and
electron phonon matrix elements, many experimental results can be explained as a function of
SWNT geometry, such as resonance Raman intensity, photoluminescence spectra, fast optics,
relaxation of electron, photoconductivity and IR absorption spectra. In this thesis, we present
the calculated optical absorption and resonance Raman spectra.

1.1.1 Organization

The present thesis is organized as follows: In the remaining part of Chapter 1, the backgound
for understanding this thesis is given. In Chapter 2, the structure of SWNTs is reviewed and
basic definitions of the lattice are given. In Chapter 3, we review the electronic structure of
graphene and SWNTs. In Chapter 4, the status of the current research in the field of Raman
spectroscopy of single wall carbon nanotubes is reviewed.

From Chapter 4, we will show our original results. In Chapter 5, the formulation of the
electron—photon interaction matrix elements for graphite and SWNTs is given, which is one of
the main results of this thesis. When we calculate the optical absorption of graphite as a function
of the electron wavevector k, we find that a node exists in the optical absorption for special k.
The origin of these nodes is investigated and a simple formula for the optical absorption in
graphite is derived. These results are extended to SWNTs by adjusting the definition of dipole
vector considering the curvature of the SWNT. In SWNTSs, the main results of the calculation
of electron photon matrix elements are the selection rules for optical transitions in different
scattering geometries and the chirality dependence of optical absorption matrix elements. Based
on the matrix element, we suggest a possibility for separating different types of semiconducting
SWNTs in Sec. 5.7. The selection rules determine the resonance energies for light polarization
parallel or perpendicular to the SWNT axis. The new resonance condition for perpendicular
polarization works well for explaining experimental Raman spectra that have not been explained
previously since they appear in the gap region of the resonance energy for parallel polarization.

In Chapter 6, we calculate the electron phonon interaction matrix elements for graphite and
SWNTs, which is also one of the main results. The electron phonon interaction matrix element
is strongly anisotropic in k space, which is responsible for the chirality dependence of Raman
intensities.

In Chapter 7, we use the electron phonon matrix elements to assign the experimentally
observed double resonance Raman spectra (G’-band) to the phonon branches identified by com-
paring the electron phonon matrix element to the intensity of Raman peaks. A fitting program is
developed to determine the phonon dispersion relations of graphene by double resonance Raman
spectroscopy. Analytical expressions for eigenvalues and eigenfunctions of the dynamical matrix
are derived. In Chapter 8, a summary and conclusions of the present thesis are given.
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1.2 Background

Hereafter in the introduction, we briefly introduce some basic knowledge that is needed for the
following chapters.

1.2.1 Hybridization of carbon

The electronic configuration of a free carbon atom is 1s%2s?2p2. When a solid is formed from
carbon atoms, the electrons in the 2s and 2p orbitals form so—called hybrid orbitals that point
along the chemical bonds. Depending on the crystal that we have, a different number of the
hybrid orbitals is required to point from two to four nearest neighbour atoms. Thus carbon
forms sp™ hybrid orbitals with n = 1 (acetylene), n = 2 (graphite and SWNTs) and n = 3
(diamond). In this thesis we study sp? systems, which crystalize in a planar hexagonal lattice.
That is, two 2s electrons and one 2p electron (2p, or 2p, in the graphene plane) form three
sp? hybrid orbitals and one 2p, electron which is oriented perpendicular to the graphene plane.
The in-plane sp? orbitals make strong o bonds which are for covalent bonding between carbon
atoms. The 2p, electron makes a valence = bond, that is relevant to optical experiments with
visible light (1eV-3eV). Hereafter we will consider mainly physical properties of 7 electrons of
sp>—carbon materials.

1.2.2 Synthesis and sample quality of SWNT's

Next, we mention the synthesis of SWNTs. SWNTs can be produced by (1) arc discharge
[18], (2) laser ablation [19], (3) chemical vapour deposition (CVD) [20] or (4) the relatively
new high pressure carbon mono—-oxide (HipCo) process [21]. All methods have in common that
production of SWNTSs requires small amount of metal catalyst particles such as Co, Ni, Fe, Pd,
Y etc. whereas synthesis of multi-wall carbon nanotubes does not require catalysts.

In the arc method, a DC voltage (about 20 V) is applied between two graphite rods placed
in a reactor chamber at a helium atmosphere (500 Torr). The negative electrode rod contains
the catalyst material from which the SWNTs grow in the chamber.

In the laser ablation process, a graphite target and a water cooled copper collector are put in
a heated glass tube (about 1000°) under Ar gas flow at 30 Torr. A pulsed laser beam is irradiated
on the graphite target, in which metal catalysts have been implanted. The irradiation causes the
graphite and catalyst particles to evaporate. Due to the Ar gas flow, the evaporated particles
are swept to the copper collector where they condensate and the SWNTs are formed.

In the CVD process, SWNTs grow from thermally decomposed hydrocarbons such as CHy
(methane), CoH50H (ethanol), CH3OH (methanol) and so on. Catalyst particles such as iron
are deposited on a Si wafer. This wafer is put into the CVD reactor for nanotube growth.

We now describe in more detail the production process by bias—enhanced CVD [22], since
it is a typical and easy—to—use CVD method. A wafer with catalyst particles is put inside the
CVD reactor. The experimentalist can let gas and microwave radiation enter the CVD reactor.
Furthermore, a potential between the wafer and a metal electrode can be applied. The metal
electrode serves as a source of catalyst particles. Microwave radiation is used to decompose the
gas into charged fractions of the original molecule. The gas contains carbon atoms and we used
methane (CHy4). The charged fractions of the gas are then accelerated in the electric field and
deposited on the wafer. Sample preparation is done in three steps: (1) Hydrogen cleaning of
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the wafer. Hydrogen gas is inserted to the CVD reactor for 5 minutes and under a pressure of
30 torr. A microwave output power of 400W is used. The bias voltage is zero and the metal
electrode is not inside the reactor. (2) Catalyst adhesion. A catalyst bulk material (such as
a wire a few cm long) is inserted to the CVD reactor and a bias voltage of —100V is applied
between the wire and the wafer. The gas now contains about 0.5% methane (CH4). A microwave
output power of 400W and a pressure of 30 torr is used for 60 seconds. (3) Nanotube growth. A
microwave output power of 400W and a pressure of 15 torr is applied for 60 seconds. In Fig.1.1
we show a scanning electron microscope (SEM) image of a sample produced by the procedure
just described. It should be noted that the above procedure is not optimized in any direction.
The nanotube growth was found to be very stable and in fact, we can already grow carbon
nanotubes by using only step 2 for a sufficiently long time. The sample shown in Fig.1.1 is raw
material. Further treatment, also known as purification such as removal of the catalyst particles
is necessary. This can be done by centrifugation [23].

- WK

-

Figure 1.1: SEM image of a bias—enhanced CVD grown nanotube sample. The white particles
are catalysts. Nanotube ropes are entangled with one another [22].

In the HipCo process, carbon monoxide mixed with a small amount of iron pentacarbonyl
Fe(CO)s5 is heated to produce SWNT. The products of thermal decomposition of Fe(CO)5 react
to produce iron clusters and CO in gas phase. These metal clusters serve as catalysts on which
SWNTSs nucleate and grow.

For all methods, we generally get a mixed SWNT sample with different diameter and chi-
rality. Individual SWNTs stick together in the sample by van der Waals forces to form bundles
consisting of several tens of individual SWNTs that are in general a mix of metallic and semi-
conducting SWNTs. Caps close the SWNTs on one end and growth of a SWNT occurs at the
surface of the catalyst particle. This model of growth is known as “root growth mode”.

Up to now, synthesis of a single geometry (so—called unichiral) sample of SWNTs is not
possible and thus the experimentalists try to make samples with a sharp diameter distribution.
The mean diameter of SWNTs depends on the metal catalyst and the temperature that is
used in the reaction chamber. Generally, in a SWNT sample all tubes have a cap at one end
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Figure 1.2: Optical absorption spectra of SWNT bundles. The three energetically lowest tran-
sitions are labelled [24].

of the SWNT. For a given SWNT, we expect many possible shapes of the closing cap. The
number of possible caps and their formation energy varies as a function of chirality. Thus, the
chiral distribution of the number of SWNTs is affected by the stability of the cap for a certain
chirality and the temperature of the synthesis process. Thus, by changing the temperature for
the synthesis, the chiral- or diameter distribution can be controlled.

Another more selective way of controlling the diameter distribution is irradiation of the
SWNT sample during growth process by a laser [25]. When the resulting SWNT sample is
analyzed after the growth, it was found that a specific diameter, which has a VHS equal to the
laser energy used during growth, is missing in the Raman spectra. The reason is due to a strong
heating of a SWNT by photo—excited electrons that avoid the crystal growth. Only specific
SWNTs, that are resonant are heated and thus, the experimentalist also can selectively avoid
growth of certain diameters.

SWNT diameter control is important for making a semiconducting device and other applica-
tions. Therefore, in general, SWNT samples must be first evaluated for determining its diameter
by Raman spectroscopy. For a single SWNT device, we need to identify chirality which is now
possible by single molecule Raman spectroscopy. One way to make isolated SWNT samples, is
to dissolve SWNT bundles in a solvent with surfactants such as sodium dodecile sulfate (SDS),
ultrasonicate and centrifugate (24 hrs, 20000 G) and then disperse them onto a Si substrate by
so—called spinning surface.

Another way is to directly grow SWNTs on a Si substrate from nanometer—sized catalyst
particles with a low density. The resulting sample contains a low density of a single or a few
SWNTs per square pym and individual tubes can be probed by AFM or Raman spectroscopy.
Such a SWNT is called isolated SWNT. As discussed, the synthesis of SWNT samples is still
under development and optical spectroscopy has been the most important tool sample charac-
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Figure 1.3: Photoluminescene spectra of SWNTs synthesized by a CVD process. The bright
areas correspond to absorption of light at E5, and emission of light at E7; [26].

terization.

1.2.3 Optical absorption experiments

Optical measurements for isolated SWNT's have been widely observed by resonance Raman spec-
troscopy (in fact, most samples for isolated SWNT Raman spectra have been made from SWNTs
grown by CVD on the substrate directly), photoluminescence and optical absorption. Early ex-
periments were measurements of the optical absorption of bundled SWNTs in transmission or
reflection geometry as a function of laser energy.

In Fig.1.2 we show the measured optical absorption of a SWNT bundle as a function of
excitation energy. The low energy spectrum of the absorption curves consists of three distinct
peaks [24]. These peaks are attributed to the VHS in the joint density of electronic states (see
Chapter 5 for detail). Tight binding calculations suggests, that from the three experimentally
observed peaks, two lower peaks come from semiconducting SWNTs (with energies Ey) and Ej,)
and the third peak originates from metallic SWNTs with energy E} (see Chapter 3). Thus,
metallic and semiconducting SWNTs in the mixed sample can be separately seen in the optical
absorption spectra.

In the mixed sample, however, it is not possible to measure PL since an excited electron
in a semiconducting SWNT relaxes to a nearby metallic SWNT and recombines with the hole
without emitting a photon in the metallic SWNTs. Nevertheless, in the SDS wrapped SWNTs,
we observe PL spectra for isolated semiconducting SWNTs. In Fig. 1.3 we show an example of a
PL spectra. On the vertical and horizontal axes we plot the energies for the excitation at E5, and
the emission at E7|, respectively. The bright dots in Fig. 1.3 correspond to absorption of light
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Figure 1.4: Experimental raman spectrum of a SWNT bundle sample with a laser wavelength
of 1024 nm. The strongest peaks are indicated by their labels [11].

at ES, and emission of light at Ey. In an isolated semiconducting SWNT, the excited electron
relaxes to the bottom of the conduction band by emitting phonons and then recombines with a
hole at the top of the valence band. This is because the electron—phonon relaxation time (0.1 ps)
is much less than electron—photon relaxation time (1 ns) and hot electron emission (PL emission
before relaxation to the conduction band bottom) is therefore weak. The different intensities in
Fig. 1.3 come from chiral and diameter dependence of the optical absorption or electron phonon
interaction strengths or a chiral and diameter dependent distribution of SWNTs. Thus we
cannot determine the diameter distribution of the abundance of SWNTs without knowing the
matrix elements. The distribution of SWNT diameters and chiralities is thought to be a stronger
influence on the PL intensity than the matrix elements.

1.2.4 Raman experiments

Raman spectroscopy is to observe an inelastic scattering of light and probes the vibrational
properties by measurement of the energy shift from the incident light. The first (1st) and
second (2nd) order Raman scattering are defined by one and two scattering events, respectively.
The shift of energy can be either positive or negative, respectively by absorbing or emitting a
phonon, which we call anti-Stokes or Stokes Raman processes. One and two phonon Raman
spectra are defined, respectively, by one and two phonon emission during a scattering event.
Here in this thesis, we will use the other definition, too; that is, the first order and second order
Stokes Raman processes. The 1st order Raman spectroscopy always means one phonon Raman
spectra.

The 2nd order Raman spectroscopy consists of either (1) two phonon scattering processes
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or (2) one phonon and one elastic scattering processes. In all Raman processes, electron pho-
ton interactions appear two times in the absorption of a photon and the recombination of the
electron—hole pair by emission of a photon. Furthermore, we have one electron phonon inter-
action in 1st order Raman process and two electron phonon interaction processes in the two
phonon Raman process.

The first order (one phonon emission) spectra of a SWNT consist of only two strong bands,
the radial breathing mode (RBM) at about 200 cm™~! and the graphite derived tangential mode
or G band at about 1580 cm ! as shown in Fig. 1.4.

Although group theory predicts 15 or 16 one phonon modes, experimentally only the G
band and the RBM are observed [27, 28]. The first order Raman spectrum comes from phonon
modes with wavevector ¢ =~ 0. Details of Raman experiments will be given in Chapter 4 after
introducing the lattice in Chapter 2 and electronic properties of graphite and SWNT in Chapter
3. 2nd order, one phonon Raman spectra can originate from phonons with a non zone—center
wavevector (q # 0). A typical 2nd order, one phonon Raman signal is the D band at about 1350
cm~! for 2.41 eV laser energy. A characteristic of the D band spectra is that (1) the intensity
of the D band depends on the defect concentration in SWNTs and (2) the D band frequency
increases with increasing laser energy. A strong 2nd order, two phonon Raman mode is the G’
band at 2700 cm ! which is independent from the presence of defects. The intensity of the G
band is comparable to the G band intensity. We will calculate the intensity of the G’ band in
Chapter 7. Combined with resonance conditions, the phonon dispersion relations can be known
in the interior of the BZ by this mode (see details in Chapter 7).



Chapter 2

Geometry of single—wall carbon
nanotubes

In this chapter we define the geometry of a single wall carbon nanotube and the
Brillouin zone for calculating the electron and the phonon energy dispersion relations.

2.1 The unit cell

Graphene is a sheet of graphite with a hexagonal 2D lattice (Fig.2.1) and the unit cell is
a rhombus that contains two atoms as shown in the top-left of Fig.2.1. Graphene has two
inequivalent atoms (A and B) in the unit cell. Here “inequivalent atoms” means that A and B
in the unit cell cannot be connected by unit vectors a; and as. A single-wall carbon nanotube
(SWNT) is a graphene sheet that is rolled up into a cylinder with a diameter of a few nanometers
(nm) and a macroscopic length of several micrometers (m) or even up to 1 mm. The unit vectors
of graphene have length a = v/3ag = |a;| = |ag| = 0.246A, where ag = 1.42A is the C-C bond

distance and are given by a; = (%, ﬁ) a and ag = (%, —ﬁ) a. We specify a SWNT by a pair
of integers or chiral indices (n,m) which are coefficients of the unit vectors a; and ag (Fig.2.1).
The resulting chiral vector Cy, is written as

C, = na; + mas = (n,m). (2.1)

The diameter d; is given by d; = L/m where L is the length of Cj; and the length around the
circumference L = /Cp - Cp,. The chiral angle 6 of a SWNT is the angle between a; and Cy
and can be written as

Ch-ag 2n 4+ m
= arccos

|Chllai] 2V/nZ+m2 +nm

To get the Eq.(2.2), we used the definition of Cp in Eq.(2.1). The two special cases § = 0
and § = 7/6 are refered to as zigzag and armchair, respectively. Since zigzag and armchair
SWNTs have a mirror symmetry along the tube axis, they are so—called achiral SWNTs. All
other possible SWNT's are called chiral nanotubes. A chiral nanotube does not have an inversion
center. The chiral indices for zigzag SWNTs are given by (n,0) and armchair SWNTs have

0 = arccos (2.2)

9
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Figure 2.1: Geometry of a (6,2) SWNT. The origin is labelled 0. The small shaded rhombus
with two atoms (A and B) is the unit cell of graphene. It is defined by the graphene unit vectors
a; and as. The large shaded rectangle, defined by the chiral vector Cj and the translation
vector T is the SWNT unit cell. It contains N = 52 atoms of type A (B). The symmetry vector
R generates coordinates of all A (B) atoms in the unit cell when shifting an initial A (B) atom
N times by the vector R and translating back to the first unit cell. The chiral angle @ is the
angle between a; and Cp. All vectors are expressed in multiples of a; and as.

chiral indices (n,n). Zigzag and armchair SWNTs have small unit cells compared to those of
chiral SWNTs with the same diameter. In fact, the (n,0) SWNT and the (n,n) SWNT have 4n
atoms in the unit cell.

In Fig.2.1 we show the unit cell of an (6, 2) SWNT, which is specified by Cp, around the
circumference and by the translational vector T which is parallel to the axial direction. The
direction and length of T are also determined by (n,m), since we take a vector perpendicular to
Cp, from an origin O. We go along direction perpendicular to Cp until we cross a lattice point.
The length of T is determined by the first lattice point we cross. T is given by

T = t1a; + tqao. (2.3)

The integer coefficients #; and 9 are calculated by Cp - T = 0 and dividing the solution pair
(t1,t2) of this equation by its greatest common divisor (gcd) to ensure that we take the shortest
lattice vector. The solution is given by

2m+n 2n+m

t = ) =
1 in 2 n

with  dr = ged(2n + m, 2m + n). (2.4)

The expression for dg in Eq. (2.4) can be simplified by repeatedly using Euclid’s law that states
ged(7, j) = ged(i — 7,7). We can define d as d = gcd(n,m) and by applying Euclid’s law to dg
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in Eq. (2.4) we obtain

drp=d if mod(n—m,3d)#0

dp=3d if mod(n—m,3d) =0 (2:5)

Here the function mod gives the remainder of an integer division. The area of the SWNT unit
cell is the shaded rectangle in Fig.2.1 and it is equal to |T x Cp| = |(t1m — tan)(a; X az)].
The number of graphene unit cells per SWNT unit cell, N is given by dividing the SWNT unit
cell area by that of the graphene unit cell, which is |a; x ag|. We thus get N = t;m — ton.
Substituting ¢; and ¢, from Eq. (2.4) yields

2(n? +m? +nm)

N =
dr

(2.6)

Note that N is an even number. We can now write the circumference L and the length of the
unit cell T'=+T - T by N and dg as

/dRN /3N \/_L
= T = 2.7
— and a 2dR (2.7)

If we want to generate coordinates of SWNTs, it is useful to define a symmetry vector R. The
symmetry vector R satisfies the following conditions: (a) it is a lattice vector, (b) its component
along Cj, is equal to L/N and (c) it is inside the unit cell. These three conditions are satisfied
by the following equations:
R-C L 1
(a) R = pai +qaz, (b) — 2= yo ad() &<
Substituting Eq. (2.1) and Eq. 2.8(a) into Eq. 2.8(b), and Eq. (2.3) and Eq. 2.8(a) into Eq. 2.8(c)
we have

&
=

<

<1 (2.8)

J

gty —pto=1 and 1<pm+qgn < N. (2.9)

for determining the two integers p and ¢. Translation of a graphene unit cell by ‘R for ¢ =
0...N —1 goes over all graphene unit cells in the SWNT unit cell. When we imagine a rolled up
SWNT, the application of R means that we move along the SWNT axis in a spiral-like fashion.
The projection of R to T is 7, which corresponds to a pitch of the spiral translation and is given
by

T-R |CpxR| (mp—ng)la; xas] (mp—ng)T

Thus, if we apply R for N times, we come back to the equivalent atom position that we started
from. N times R can also be described by shifting T for M times.

NR=MT+C;, and M =mp—ng. (2.11)

The angle of R around the SWNT axis is 2r/N which can be obtained by Eq. 2.8(b). Since N
is an even number, we can always find two corresponding A (or B) atoms separated by an angle
m if we apply R for N/2 times. Although the two atoms are generally shifted by 7/N/2 with
respect to each other along the SWNT axis, they are on opposite sides, when projected to Cy,.
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Figure 2.2: (a) The unit cell and (b) the first Brillouin zone (BZ) of graphene. The BZ is given
by the reciprocal lattice vectors by and by with |bi| = |bg| = . The center of the BZ is the

I' point and the corners of the BZ are K and K’ points. Between two nearest K and K’ points,
there are M points. Equivalent K (M) points are connected to each other by reciprocal lattice
vectors.

2.2 Brillouin zone

The unit cell of graphene is shown again in Fig.2.2(a). The first BZ of graphene is a hexagon as
shown in Fig. 2.2(b). The symmetry points in the graphene BZ are BZ center T' = (0, 0), a hexag-
onal corner K = 1/a(2m/+/3,2n/3) and the center of the hexagonal edge M = 1/a(27/+/3,0),
which are shown in Fig.2.2. An important fact to notice is that there are two inequivalent ! K
points, with coordinates K and K’ in the 2D BZ. As we will show in the next section, K and
K' correspond the Fermi surface points of graphene. The reciprocal lattice vectors b; and bo
for the first Brillouin zone (BZ) of graphene are given by the condition a; - b; = 274;;, where
6ij is the Kronecker delta. The reciprocal lattice vectors are given by by = 1/a(27/+/3,27) and
by = 1/a(2w/+/3,—27). The reciprocal lattice vectors of SWNT along the circumference and
the nanotube axis, K; and Ko, respectively, are defined by

Kl-TZO, K1'Ch:27'(', KQ'T:27T, and KQ-ChZO. (2.12)
We substitute vectors K; and Ko that are perpendicular to C, and T, respectively. Using
definitions of Eq. (2.1) and Eq. (2.3),

1
K, = —toby + tlbg) and K, = ﬁ(mbl — nbg) (213)

1

N
Since K is perpendicular to T, and T is perpendicular to Cj, K; is parallel to Cj, when we
use parallel axes for real and reciprocal space z, ¥y and k, ky. A similar argument can be used

We use “inequivalent K points” to express that K and K’ points are not connected by reciprocal lattice
vectors.
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Figure 2.3: The first Brillouin zone (BZ) of (6,2) SWNT is given by the set of N = 52 parallel
lines called cutting lines. The origin at the I' point is marked by a dot. The distances between
two adjacent cutting lines and the length of a cutting line are shown. The borders of the SWNT
BZ are the cutting lines with indices p = —26 and p = 25.

for Ko, which is parallel to T. The lengths of K1 and Ky are given by

27 2 27

K. |="_2 d Ko = 2=, 2.14
Kil =+ g o Kol = 7 (2.14)

The BZ of a SWNT is given by a set of N parallel cutting lines with length |K2| and the

separation between adjacent SWNTs is given by |K;|. The possible k values of a SWNT is then

given by

K> N N T T

with p=-—,...,——1 and —= <k< —. (2.15)

k = uK
T 2772 T="ST

In Fig.2.3 an example of the allowed 1D BZ for a (6,2) SWNT is shown in which N = 52,
d¢ = 0.565 nm and 7" = 1.536 nm. Each cutting line corresponds to a 1D BZ and N cutting
lines give different electron and phonon subbands. Due to the symmetry of the Hamiltonian,
we have for all energy bands E(k) = F(—k) and thus all subbands with y =1...N/2 — 1 are
doubly degenerate with subbands 4 = —1... — N/2 + 1. The subbands with indices y = 0 and
= —N/2 are not degenerate. The degenerate subbands are hereafter labelled by E,, and the
non—degenerate subbands are labelled A; (z = 0) and Ay (4 = —N/2). The A; band occurs
at a high energy for all (n,m) SWNTSs because it crosses I' point of the graphene BZ. The A,
band location can occur at an electron energy that is accesible by optical spectroscopy, as we
will show in the next Chapter. In armchair SWNTs the As band crosses both the K and K’
point and is hereafter referred to as “metallic band”.



Chapter 3

Electronic structure of carbon
nanotubes

The tight binding method is used for calculating the electronic dispersion of a
graphene sheet and SWNTs. Analytical expressions of the tight binding method for
the 7 electrons are given.

3.1 Electronic structure of graphene

A simple tight binding method (or linear combination of atomic orbitals, LCAQ) is used to cal-
culate the electronic energy dispersion relation, that is the energy E as a function of wavevector
k. In the tight binding approximation of a crystal, the eigenfunctions of electrons are made up
from corresponding atomic orbitals. Per one unit cell of graphene, we have 5 atomic orbitals
(1s, 2s and three 2p) from each A and B atom, which give 10 atomic orbitals all together. Here-
after we consider only 4 valence electrons (2s and 2p) and neglect 1s electrons. In fact, the 1s
orbital of a carbon atom is 258 eV below the vacuum level and thus the 1s energy bands are
considered to be the same as atomic levels. The orbitals are labelled by their wavefunction (2s,
2p,, 2Py, 2p,) and atom index (A or B) as: 254, 2pa, 2pf}, 2p2 and 2sB, 2pB, 2p5, 2p2. These
8 orbitals from the atoms make 8 electronic bands in the solid. The electron wavefunction for
band with index 7 is given by given by

Wkr)= Y  dkd(kr), ()=1...8). (3.1)

s=2sA..2pP

Here y = 1...8 is the electronic energy band index and s in the sum is taken over all 8 atomic
orbitals as described earlier. The c}(k) are wavefunction coefficients for the Bloch functions
®,(k,r). The Bloch wavefunctions are given by a sum over the atomic wavefunctions ¢, for
each orbital at the u—th crystal site multiplied by a phase factor. There are U sites in the
crystal, the atomic wavefunctions of orbital s are ¢;. The atomic orbital ¢ in the w unit cell is
centered at RY.

U—-1
®,(k,r) = % 3 ekREG (r —RY), (s =25 ... 2pF). (3.2)

u=0

14



3.1. ELECTRONIC STRUCTURE OF GRAPHENE 15

We then minimize the ground state energy

(W7 H|w7)

E’ =
(WI]w)

, (1=1...8), (3.3)

as a function of the wavefunction coefficients. The variational condition for finding the minimum
is

o
ack

The resulting equations for ci(k) after minimization are

~0. (3.4)

> Hycl (k) + B Swdl(k) (s,s' =2s*...2pP). (3.5)

Eq. (3.5) is the equation with index s. There are 8 equations (for s = 2sM .. 2p2) for one energy
eigenvalue EJ(k) because the coefficients for eight atomic orbitals have to be determined. In
matrix form, Eq. (3.5) becomes

CZZSA) (k)
H(k)d (k) = E’(k)S(k)c/(k) with a 8 component vector ¢/(k) = : . (3.6)
Cz2p?)(k)

Here H(k) and S(k) are Hamiltonian and overlap matrices, respectively. The eigenvalues of
H(k) are calculated by solving the so—called secular equation for each k

det {H(k) — S(k)E’(k)} = 0. (3.7)

When we solve Eq. (3.7) for E’(k) we obtain eight values for 7 = 1...8 which are the energies
of the bands with index j at wavevector k. The 8 x 8 Hamiltonian and overlap matrices can be
divided into four 4 x 4 submatrices

_( Haa(k) Hap(k) _ [ Saa(k) Sas(k)
H<k)—( Ha (k) HBB<k)) and 5(k) = ( Snalk)  Snn(k) ) -

In Eq. (3.8) Haa(k) is the matrix for A atom Bloch orbitals and Hap(k) is the matrix for A and
B Bloch orbitals and so on. The corresponding matrices for BA interaction are given by taking
the transpose and complex conjugate of matrix elements for AB interaction. They are given by

Hgpa(k) ="Hig(k), Spa(k)="'Sip(k). (3.9)

We now show how to calculate the matrix elements H g that appear in Eq. (3.8) by taking all
combinations with s and s’ going from 2s* ... 2pB.

QALH[2)  (sAH|20R) (25" |2 0
| (2pf|H|2sB) (2p2|H|2pB) (2p2|H|2pg) 0
Han() = | o0M mjosB)  (2ph H|2pP) (20 |H|2pF) 0 (3.10)

0 0 0 (2p5 |H|2pB)
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H=( e
T

Figure 3.1: Form of the Hamiltonian for graphene. Non—zero elements are shaded grey. The 6 X6
and 2 x 2 Hamiltonian submatrices for o and 7 electrons are decoupled because of orthogonality
of the wavefunctions.

In Eq.(3.10), the |2s)...|2pE) are the Bloch functions from Eq.(3.2) for the orbital s =
|25%)...|2pB). Note that the matrix elements between 2p, orbitals and 2s, 2p, and 2p, are
zero because of the odd function of z. For the corresponding BA interaction we will take the
complex conjugate and transpose to Eq.(3.10). The tight binding Hamiltonian H44(k) for
nearest neighbour interactions between for A atoms is

(257 H|2s) 0 0 0
_ 0 (2p; | H|2p3) 0 0
Haalk) = 0 0 (plHERY) 0 310
0 0 0 (2p2|H|2p)

The shape of H (k) is shown in Fig. 3.1 and it can be seen that the ¢ and m submatrices can be
solved independently. In Eq.(3.11), we consider only on-site interaction with the same A atom
and neglect the interaction between the A atom and the nearest A atom. We now give formulae
for the matrix elements in Eq. (3.10). Since we only consider nearest neighbour interactions,
Eq. (3.11) has no k dependence. We define the vectors r, starting from one A atom to the three
nearest neighbour B atoms with £ = 1,2, 3. Similarly we define réB by réB = —rﬁ. The rf;l and

reB are given by

1 1 1 1 1
1 2 3
h=(=00  Th=(—smpe th=(—— e
. V3 ) Ve g , Vs, 2 (3.12)
p = (_%ao)aa I'p = (ﬁa —5)6% Ip = (Wga 5)6%

where ¢ is the lattice constant of graphene and given in Sec. 2.1. In Fig. 3.2 we show the vectors
defined in Eq. (3.12) connecting an A (B) atom with its three nearest neighbour atoms. We
calculate the matrices in Eq. (3.10) and Eq. (3.11). The phase factors for Hag(k), which come
from the k dependence of the Bloch functions in Eq. (3.2) are

p1 = exp(ik -rYy), po =exp(ik-r%), p3 = exp(ik-r?). (3.13)

The unit of k in Eq. (3.13) and hereafter is [1/a]. We now explain in detail how to calculate
(2p; |H|2pY) as an example. The atomic wavefunctions 2p5 and 2pg in (2p2|H|2pP) are shown
in Fig. 3.3(a). There are three nearest A atoms for the B atom in the center of Fig. 3.3(a). We
put the origin to the B atom and calculate the transfer and overlap integrals. The A atom at rk
has an odd integrand in y and thus is equal to zero while the A atoms at r% and r% give non—zero
integrals. To evaluate a large number of matrix elements it is useful to parameterize the integrals
in 7 and o overlap and transfer integrals. This is done by projecting the 2p wavefunctions to
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Figure 3.2: Vectors connecting nearest neighbour atoms in graphene for (a) the A atom and (b)
the B atom. The vectors are given in Eq. (3.12)

(a) y

(b) P
ffffffffffffff OB

(2pd H 2P5’> = —@ ( Hopr + Hppo )

Figure 3.3: (a) The wavefunctions of 2p, orbital at the B atom and of 2p, orbital at A atom
are shown. (b) As an example the calculation of the coupling between the center B atom with
the A atom at r% is shown. The integration can be decomposed into a m overlap with orbital
perpendicular to the bond and a ¢ overlap with orbital parallel to the bond.
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Table 3.1: Tight binding parameters of graphene obtained from a fit to first principles calcula-
tions [4]. ey is defined relative to the setting ez, = 0.

bond H value (eV) S value

sso Hogog —6.769 Sog2s 0.212

Spo stgp —5.580 SQSQP 0.102

ppo  Hppo —5.037 Sppo 0.146

ppr  Hppr =t —3.033 Sppr =8 0.129
€25 —8.868

the components perpendicular (7) or parallel (o) to the bond as shown in Fig. 3.3(b). We thus
get (2p£|H|2pyB) = —/3/4(Hypr + Hppo). The coefficient is —/3/4 given by the cosine of the
angle between the orbital and the bond. Using the positive orbital we get cos(30°) = v/3/2
for the B atom at the center and cos(120°) = —1/2 for the A atom at r%. Multiplying the two

cosines give —/3/4 and this holds for both 7 and ¢ in this case. The other matrix elements in
Eq. (3.10) are given by

(25A|H|QSB> = Hags(p1 + p2 + p3)

(202 (H|25") = Hosoy (1 = 5 =)

V3
<2p5|H|25B) = 7H282p (—p2 + p3)

V3 p2+p
(25A|H|2sz) = —Hagop(—p1 + 2T 3)

2
—pL—ps — 3
20z |H|207) = H, (W; + JHx(p2 + p3)
V3
(2p) | H|2p%) = 77 (Hy + Hx) (p2 — p3) (3.14)

V3
(2s*|H|2py) = 7H282p(_p2 + p3)
(Ha + Hﬂ') (p2 —P3)

V3
(2p;|H|2py)
3 +
—ZHo@z +ps) + Hy (pl + B2 p3)

A B
(2py |H|2py)

4
4

(2p2|H|2pB) = H, (p1 + p2 + p3).-

For the on-site elements in H 44 and Hgpg, we define
(25N H|2s") = (25P|H|25P) = e, (2 [H[2p") = (2P [H2®) =0.  (3.15)

Here tight binding parameters for Hamiltonian matrix elements are denoted by H and the
orbital overlap in the subscript. The numerical values are listed in Table 3.1 and these values
correspond to the energy of the bonding state. Their values can be determined by a fit to an
ab—initio calculation or to experimental data. The values tabulated in Table3.1 are from a fit
to an ab-initio calculation [4]. The formulas for the wavefunction overlap are not given here
but they are obtained by replacing the transfer integral constants in Eq. (3.14) by the constants
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Figure 3.4: Electron energy dispersion relations in graphene. In (a) we solve the Schrodinger
equation along the K-I'-M—K lines and in (b) a plot over the whole 2D BZ is shown. The tight
binding parameters in Table 3.1 have been used to calculate the matrix elements in Eq. (3.14).

for wavefunction overlap. The 1s overlap is not listed in Table 3.1 because it will be considered
equal to zero.

3.2 Calculated results

In Fig.3.4(a) we solve Eq. (3.6) for E(k) along the high symmetry direction K —T' — M — K
and in Fig. 3.4(b) the plot of E(k) over the whole 2D BZ is shown. The subscripts “g” and “u”
indicate even and odd mirror symmetries of the wavefunction of the two atoms that make one
bond with respect to the plane perpendicular to the bond center. The superscript “*” indicates
anti-bonding states, which have “u” symmetry. Program (3) in the appendix has been used to
calculate electron energy dispersion shown in Fig.3.4.

The corresponding wavefunctions at the I' point are shown in Fig.3.5. It is clear that the
anti-bonding combination of orbitals shown in Fig.3.5(a) has a node in the charge density of
electrons in between the two atoms. On the other hand, the bonding orbitals shown in Fig. 3.5(b)
have a maximum value of charge density at the bond center. This is because the wavefunction
sign is the same with respect to the mirror plane for o bonds and for 7 bonds (“g” symmetry)
for the bonding orbitals. At the K points valence and conduction 7 bands touch each other.
This energy corresponds to the Fermi energy E;. Since we set the on-site 2p energy equal to
zero in this calculation, Ey appears at zero energy. With respect to the vacuum level, we have
E; = —5.18 eV. Since 7 electrons are important in graphene and SWNTs, we will derive analytic
expressions for eigenvalues and eigenvectors of the 7 Hamiltonian in the following section.

3.3 m electrons in graphite and SWNTs

The total 8 x 8 Hamiltonian in Eq. (3.6) can be decomposed into a 6 x 6 Hamiltonian for o and
a 2 x 2 Hamiltonian for 7 electron bands since the wavefunctions of 2s, 2p, and 2p, are even
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(a) Sﬁoﬁ (b)  ssq
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Figure 3.5: (a) Anti-bonding o}, and 7, orbitals and (b) bonding o, and 7, orbitals at I" point
are shown. ss and pp refer to overlap of two 2s orbitals and two 2p orbitals, respectively.
The index “*” refers to anti-bonding orbitals. The indices “g” and “u” refer to even and odd
mirror symmetry, respectively. The shaded and white parts correspond to opposite sign of the

wavefunction. The mirror symmetry plane through the bond centers is indicated by a dashed
line.

functions of z (parallel to the graphene plane) while the 2p, orbital is an odd function of z. As
seen in Eq.(3.10) the sub-matrix is already decomposed into 3 x 3 and 1 x 1 matrices. The
graphene Hamiltonian has such a form, that the 7 Hamiltonian can be decoupled from the o
Hamiltonian. Here, we consider the 2 x 2 7 Hamiltonian with the shape of Eq. (3.8) and matrix
elements

Hap = (2p2|H|2p5) = ¢ {exp(ik - r}) + exp(ik - r%) + exp(ik - ri)} = tf(k), (3.16)
and
Hpa = (2pB|H|2p2) = k- rl k - 12 k-r3)) =tf*(k 17
Ba = (2p;|H|2p;) = t {exp(ik - r}5) +exp(ik - rg) + exp(ik - ri) } = tf*(k).  (3.17)
In Eq. (3.16) and in Eq. (3.17) we use r%y and r% that are given in Fig. 3.2 and ¢ from Table 3.1.
The sum of the three phase factors f(k) is defined by starting from an A atom and going to the
three nearest neighbour B atoms. It can be simplified to
k
F(k) = exp(s -

@) + 2exp(—m—$a) cos( 5

V3 2v/3
Since in graphene the two atoms are the same type, we can put Haga = Hpp = €, (note this is
not the case for 3D graphite). The solution to the secular equation at a general k is then given
by

). (3.18)

ot ( - Bk)  f{t—sBk)} )
F{t—sBR)} e - BK)
= e - B®))? — (k) {t - sE(K)}? (3.19)
{&p — B(k) — w(k)(t — sE(K)} { — B(k) + w(i)(t — sE(k))}
0.
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(a)

Figure 3.6: Energy difference between 7 and 7* electrons in graphene. In (a) we plot the contour
lines over the whole BZ in steps of 2eV. The bright (dark) shaded areas correspond low (high)
electron energy. (b) The area around K point is magnified with contour lines in steps of 1eV.
Some of the countour lines are labeled by their energy value in eV. The tight binding parameter
in Table 3.1 have been used.

Here we used w?(k) = f*(k)f(k). The two solutions of Eq. (3.19) are the valence band energy
E"(k) and conduction band energy E°(k), respectively, and are given by

e t+iw(k)

_ g —tw(k)
1+ sw(k)’

E" (k) = 1wk

and E°(k) (3.20)
Note that ¢ is negative and s is positive. The parameter s is responsible for the asymmetry
between valence and conduction bands. A larger value of s corresponds to a higher asymmetry.
s = 0 corresponds to completely symmetric valence and conduction bands with respect to the
Fermi energy. An almost perfect electron—hole symmetry was reported recently from transport
measurements [29]. However, these measurements are valid only in the region close to the Fermi
energy. Optical spectroscopy can probe a wider region of the BZ. In Fig. 3.6, we plot the optical
transition energy E°(k) — EY (k) and it is clear that for visible light, we probe electrons on circles
around K points.

In graphene, there are two carbon atoms in the unit cell and we now show why this property
gives rise to special electronic structure at K point. To understand the special behaviour at K
points, we solve the secular equation given in Eq. (3.7). The K points have coordinates K and
at k =K, we get f(K) =0 and thus Eq. (3.19) becomes simply

Hus— E(K 0
det( Ad 0 (K) Hep - B(K) ):0, (3.21)

and its solutions are given by E(K) = Hs4 and E(K) = Hgp. A gap would occur at K, if we
had two atomic species with different on—site integrals H44 and Hpp. Eq.(3.21) holds for =
electrons at K of any solid with hexagonal crystal structure because the values of integral and
wavefunction overlap, ¢ and s, respectively, disappear when f(K) = 0 and the energy is only
determined by the values of H44 and Hpp, respectively. Thus, if the two atoms in the unit cell
are not the same, an energy gap at K can be observed. For example, a very similar material
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to graphene is a sheet of hexagonal BN because it has the same crystal structure as graphene
and atomic species are different to carbon by one coloumn in the periodic table. In BN, the A
and B atoms of graphene are replaced respectively by a boron and a nitrogen atom. In such a
case, the eigenvalues at K are not degenerate because B and N have different on—site energies.
A sheet of BN and BN derived nanotubes are known to be wide-gap semiconductors [30] and
can be used to insulate a metallic carbon nanotube by putting the metallic SWNT inside the
BN tube. In 3D graphite, although the atomic species are the same, the on-site energies are for
unit cell atoms are different from one another because of stacking of graphene sheets. Thus a
small gap can occur in 3D graphite.

For a small electron wavevector k, which is measured from K points, we expand Eq. (3.18)
around K and K’ as f(K+k) and f(K'+k). The K points have coordinates K = (0, —47/(3a))
and K' = (0,47 /(3a)). With k = (kz, ky) we obtain

V3a

f(K"‘k):T(ikm—i-ky) and f(K'+k):@

(iky — ky) - (3:22)

Substituting Egs. (3.22) into Eq. (3.20) we get an approximation for the electron energy disper-
sion relations close to K points. It turns out that in the linear order approximation we get the
same energy dispersion relation around K and K’ points,

B(k) = i‘/?;“t, [k2 + K2, (3.23)

W »

Here the “+” sign is valid for valence band and the sign is valid for conduction band. For
high electron energies the equi-energy contours shown in Fig. 3.6 are generally different from
each other at K and K' points. For small electron energies (less than 2 eV), however the
contours in Fig. 3.6 are almost circles around K and K’ points. The equi—energy circles deform
to triangles, when going to higher electron energies. This is known as the trigonal warping effect
in graphene [31]. The equi-energy contour connecting three nearest M points is a triangle as
shown in Fig. 3.6(b).

Optical transitions occur between bonding and anti-bonding bands and from Fig. 3.4 it is
clear that low energy optical spectroscopy in the region of visible light mainly probes electrons
around K points between the m and 7* bands. In Fig. 3.6 we show the equi—energy contours of
the 7 electrons.

3.3.1 Eigenvectors for 7 electrons

We now calculate the wavefunction coefficients for electrons for A and B atoms, ¢!, and c,
respectively. They are given by the eigenvectors of the Hamiltonian. Here 2 = v,c¢ can be
valence or conduction band.

e — E'(k) f(k){H; — sE*(k)} k)
( fr(k) {H; — sE'(k)} e — B (k) ) ( czz(k) ) = 0. (3.24)

The wavefunction coefficients are the eigenvectors that are obtained by solving Eq. (3.24). The
normalization and orthogonality condition (orthonormality) is (¥*(r,k)|¥/(r,k)) = 6,, where
U'(r,k) = 4 (k)®4(r, k) + 3 (k)P p(r,k). Here, ¢4(k) and c3(k) are the wavefunction coeffi-
cients, which are the eigenvectors of Eq. (3.24). By putting the possible indices for z and 7, we
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can obtain four equations, that are needed to calculate the four wavefunction coefficients of the
Bloch functions. The orthonormality conditions can be expanded in terms of Bloch functions as

< ( , K)[U7(r, k))
cp(@a(r)|@a(r)) + icp(Pa(r)[®@p(r)) + cpcy(2p(r)|@a(r)) + By (@p(r)|@5(r)).

Using the Bloch functions in Eq. (3.2) which is also normalized, we get (®4(r)|®4(r)) =1 and
(®p(r)|®p(r)) = 1. Thus the orthonormality becomes

(3.25)

(U (r, k)| W7 (r, k))
= ci(k)cy (k) + cg(k)cy (k) + sf (k)i (k)ep (k) + s £ (k)cg (k)cj (k) = oy,

(1=, cand]—'u,c)
The relation between ¢/, and ¢ is obtained from Eq. (3.24) and is given by

410 = g9 20y 509 (3.26)

To calculate the value for ¢’y (k) for + = v,c, we consider (¥'(r,k)|¥*(r,k)) = 1. We expand
U'(r,k) into Bloch functions and use Eq. (3.26) to replace c¢%3 (k) by ¢4 (k). Noting that

E.(k) _ E,(k) _
—Hw — S Bk w(k) and .~ 8. B, w(k), (3.27)
we can obtain the coefficients for B atoms as
vy _ vl (k) ey e (k)
cp(k) =4 () and c3k) =—c% (k) (3.28)

We need a phasefactor since from Eq. (3.26) we can only solve for the absolute values of ¢% and
¢ if we put 2 = 3 = v, ¢ and solve the two equations we can get from Eq. (3.26). We can then
obtain ¢ (k) for + = v, c without the sign and the phase factor as

— = 3.29
40 = explin)y [ 5o rioagy w00 = explido [ (329)

The coefficients cl;(k) and c%(k) are already given by substituting ¢; from Eq.(3.29) into
Eq. (3.26). Note that the phasefactors ®, or &, for Eq. (3.29) can be chosen arbitrarily because
only the phase difference betweeen A and B atoms is important.

In order to obtain a symmetric solution, we choose &, = &, = /f(k)/w(k). Thus we can
get that the ¢4 and ¢ (with 1 = v,¢) are related to each other by complex conjugation. The
wavefunction coefficients for 7 electrons are given by

Y (1) — 1 FI) e = 1 f(k)
call) = \/2{1 + swk)}\ wk)’ ak) \/2{1 — sw(k)} \/w(k)’ (330)
& (k) = 1 frk) - e (k) = — 1 f*(k)

B 2{1 4+ swk)}\ wk)” B 2{1 — sw(k)}\ w(k)
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Note that substitution of the Eq.(3.30) to (¥°(r,k)|¥"(r,k)) yields zero. The corresponding
wavevectors for electron—hole symmetry can be obtained by setting s = 0. From Eq. (3.30) it
is furthermore clear, that by taking an inversion symmetry, that is changing atoms A—B, the
valence band wavefunction goes to the complex conjugate and the conduction band wavefunction
goes to minus complex conjugate. This is in agreement with general molecular orbitals where
the valence (conduction) band wavefunction of a molecule is made up from symmetric (anti-
symmetric) combination of atomic orbitals.

3.3.2 Expansion of 7 electrons into a Gaussian basisset

To calculate numerical values for the optical absorption matrix elements or the electron phonon
coupling matrix elements, the 2p, orbital is expanded into a Gaussian basis. The merit of this
expansion is that we can do many integrals of matrix elements analytically. We thus expand the
atomic orbital ¢o,_ (r —rg) of an electron in a 2p, orbital centered at ry and the ion potential
v(r —rp) of a free carbon atom into a Gaussian basis functions. In the expansion of the ion
potential v(r — rg), screening from the two 1s core electrons is considered and then the fitted
potential is spherical symmetric. The exact values can be fitted to an accurate calculation. The
functional form we choose for the 2p, orbital is given by

pap, (r —10) = (2 — 20) —= ka exp { — rO) } : (3.31)

Here n, I and oy is the number of basis functions, the amplitude and width of the the basis
function with index k. The fitting parameters are listed in Table3.2(a). In Eq.(3.31) we have
r = (z,y,2) and the atom is centered at ro = (zg,%0,20). The normalization constant for
Eq. (3.31) is N and is given by

5

n
—= 1

I=1,k=1 of "o}

Using the values in Table3.2(a) for n = 4, we get N = 1.0. The potential of the ion which
is shielded by the 1s wavefunctions is given by v(r). It is expanded similarly to the electronic
wavefunctions into a set of p Gaussians. Since v(r) goes to minus infinity for r — 0, it is not
possible to fit the potential directly. Instead we fit rv(r) and divide later by r. The potential is

k| 1 2 3 4 k| 1 2 3 4
(a) I | 0.05 0.41 1.06 1.05 (b) v | 2.13 -1.00 -2.00 -0.74
ok | 216 0.91 0.13 0.39 | 025 0.04 1.00 2.80

Table 3.2: The coeflicients for the radial part of the electronic 2p wavefunction obtained by a
fit to an ab—initio calculation. (a) The wavefunction is given by substituting I} and oy into
Eq. (3.31). The units for Ij, is given in [at.u] “%/2 and o}, is given in [at.u]. (b) The potential is
given by substituting I}, and 7 into Eq. (3.33). The units of vy are Hartree times [at.u] and 7
is given in [at.u].



3.4. EDGE STATES IN NANOGRAPHITE RIBBONS 25

(a) (D)

Figure 3.7: Geometry of N = 6 (a) armchair ribbons (b) zigzag ribbons. The atoms at the
armchair edge and the zigzag edge are indicated by crosses. The unit cells are shown by shaded
atoms and the atoms in the unit cell are labelled by their indices 1...12. Edge atoms in the
unit cells are shown by vertical stripes. The atom indices are the same we use in Table 3.3 for
the matrix elements.

given by
r—rg)?
— = —— . 3.33
v(r —rp) Z Vg, €XP { 272 } (3.33)

The fitting parameters for the potential in Eq. (3.33) are listed in Table 3.2(b). Both the potential
and the wavefunction fitting parameters were obtained from a fit to the output of an ab—inito
calculation.

3.4 Edge states in nanographite ribbons

Using the electron energy dispersion of graphene, we will consider the one-dimensional materials
nanographite ribbons and carbon nanotubes. Nanographite is a 1D graphite ribbon with a few
atom layers width and macroscopic length (see Fig.3.7) [32, 33].  The physical properties
are determined mainly by the width and the shape of the edge along the ribbon’s longitudinal
direction, which is indicated by arrows in Fig.3.7(a) and (b). There are two symmetric edges:
armchair and zigzag edges. The geometry of a single-layer nanographite ribbon with N = 6 (N
is the number of graphite unit cells in 1D unit cell) dimer lines is shown in Fig. 3.7(a) and (b) for
armchair and zigzag ribbons, respectively. The unit cells with 2N = 12 atoms are indicated by
shaded atoms and the atoms in the unit cell are labelled by their atom indices. The atoms which
do not have three neighbours (edge atoms) are indicated by crosses. If an edge atom is inside the
unit cell, it is indicated by vertical stripes. In the case of armchair ribbons in Fig. 3.7(a) we have
four edge atoms with indices 1, 2, 11 and 12. The zigzag ribbon in Fig. 3.7(b) has two edge atoms
with indices 1 and 12. The two edge atoms of the zigzag edge are inequivalent to each other. A
general edge is a combination of armchair and zigzag edges. We study the electronic structure of
armchair and zigzag nanographite by the tight binding approximation. In Table3.3(a) and (b)
the value of the hopping matrix elements Hj,,(k) for wavevector k between nearest neighbour
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Table 3.3: Matrix elements Hj,, for (a) armchair and (b) zigzag nanographite ribbons. The
hopping parameter between nearest neighbours is ¢. For the N = 6 ribbons in Fig. 3.7 the range
for 4, I and m is as follows: ¢ = 0...6,1 =1...12 and m = 1...12. If, for a given i, the [
or m is outside the range, the matrix element equals to zero. In the lower panel, we show the
geometries which correspond to Tables (a) and (b).

l=m-1 l=m+1 l=m-3 l=m+3
(a) m=2i texp(—ika)  texp(ika/2) texp(ika/2) 0
m=2i+1 | texp(—ika/2) texp(ika) 0 texp(—ika/2)

l=m-1 I[=m+1
(b) m=2 tcos(ka/2) t
m=2i+1 t t cos(ka/2)

(a) (P) iy

m=2i-1 2i é§£>
: :Q 21+l

2i+1 =) %
2

21+2 j+2

atoms [ and m is tabulated for armchair and zigzag ribbons, respectively. In the lower panel
of Table 3.3 we show a figure with the part of the nanoribbon unit cell, that corresponds to the
possible values of i,/ and m in Table 3.3. In this Figure, (a) is for armchair and (b) is for zigzag
ribbons, respectively. The indices [ and m are to be taken [,m = 1...2N and correspond to the
atom numbers in Fig. 3.7. We calculate the energy bands by solving the 2N x 2N Hamiltionian
Hy,, for N = 5,6,7 and show the calculated energy dispersion relation in Fig. 3.8 and Fig. 3.9
for armchair and zigzag ribbons, respectively.  The program (2) in the appendix was used to
calculate these results. Whereas the result for armchair is simply given by simple zonefolding
(i.e. cutting along special k) of graphene energy bands, zigzag ribbons show a so—called edge
state at the Fermi level (set equal to zero in this calculation). This state cannot be obtained by
zonefolding and it is localized entirely on the outermost layers at ka = £m. Because the edge
state always appears on the zigzag edge, all zigzag ribbons have a singular DOS at the Fermi
level. The existence of an edge state was also obtained by ab—initio calculations for single— and
multi-layer ribbons [34]. The difference in the number of edge atoms for armchair and zigzag
ribbons (four edge atoms versus two edge atoms per unit cell) is the reason why an edge state
appears in the zigzag edge [32]. Armchair ribbons are metallic when N = 3i — 1, where i is an
integer. See Fig.3.8(a) for the case N = 5.

A zigzag nanographite ribbon has peculiar magnetic properties due to the appearance of the
edge states [35], unlike graphene, which is not magnetic. This can be understood as follows:
For electrons with ka = =+m, the valence and conduction m bands touch each other as can
be seen from Fig.3.9(b). Considering the electron spin that can assume two values for each
band, we have four electron states appearing at the Fermi energy. Thus in principle, a local
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Figure 3.9: Energy band structure of zigzag ribbons for (a) N=5, (b) N=6 and (c) N=7.

magnetic moment is possible, if we have one electron in the valence band and one electron in
the conduction band, both with the same spin. For electrons at the zigzag edge with ka = =+,
this condition is given and calculations of the magnetization [35] suggest that a ribbon has a
magnetic moment at its zigzag edges. Because the zigzag edge atoms are inequivalent to each
other on opposite sides, the total magnetization of the zigzag ribbon is zero.

3.5 Carbon nanotubes

From nanographite, we have seen that reduction of direction to one dimension gives quantized
electronic states along the ribbon width. Zone—folding of the 2D Brillouin zone (BZ) is a good
approximation for SWNTs and means cutting the graphene 7 electron dispersions according
to Eq.(2.15). Along the k given by Eq.(2.15) we can obtain 2N electron energy dispersion
relations for m bands of a SWNT. The cutting lines and the graphene 7 electron energy contours
for the (6,2) SWNT are shown in Fig. 3.10(a). In Fig. 3.10(b) we show the 1D electron dispersion
relations for the (6,2) SWNT. In Fig. 3.10(c) we show the density of states (DOS) for the (6,2)
SWNT.
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Figure 3.10: (a) Cutting lines of the (6,2) SWNT and the energy contours of graphite. (b) The
electron dispersion relations of the (6,2) SWNT obtained by the zonefolding method. (c) The
density of states (DOS) for the (6,2) SWNT. The grey shaded part gives the occupied electron
states. Integration over the grey shaded DOS is equal to 2. A transfer and overlap integral
value of t = 3.10 eV and s = 0.13, respectively have been used. The # — 7* for the lowest VHS
transition is indicated by an arrow.
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Figure 3.11: Difference of the position of the touching points of the cutting lines with the equi—
energy circle, k; and ks in type I and II semiconducting and metal SWNTs. In semiconducting
type I (II) SWNTs the Ey, transition occurs outside (inside) the first BZ. In metal SWNTs, EJY

is split due to the trigonal warping effect.

In the DOS profile we can see sharp peaks that are called van Hove singularities (VHS).
Their origin is the one-dimensionality of SWNTs and this will be discussed in detail later. In
Fig. 3.10(c) the lowest energy VHS is indicated by an arrow.

From Fig.3.10(a) it is clear that if a cutting line for a given SWNT passes through the K
point (see Fig.2.3), that SWNT is metallic. The condition for metallicity in terms of (n,m) is
derived now. We note that for any allowed k state, we get

Cy -k =2nl, (£ integer). (3.34)

This is the condition that the ratio of electron wavelength A = 27 /k around the circumference to
the length of the circumference must be an integer. Since for metallic SWNTs there are allowed
states crossing the K points, we substitute the coordinates of K point, K, into Eq. (3.34). We
write K in Fig. 2.2 in the basis of b; and b as

_ 2b; + by
=—

K (3.35)

Substitution of Eq. (3.35) into Eq. (3.34) and using the definitions of the reciprocal lattice vectors
in Sec. (2.2) gives the important result 2n + m = 3¢ [3]. This can be written as

n —m = 3L. (3.36)

Thus, if n — m is a multiple of 3, the SWNT is metallic. If not, the SWNT is semiconducting.
We now calculate the normal distances from the y = 0 cutting line to K point. The vector
connecting two neighbouring cutting lines is K;. The normal distance is given by

K-Ki 2n+m

e (3.37)

Eq. (3.37) gives the normal distance (in units of |K1|) to the K point. The normal distance from
the g = 0 cutting line to K point is a multiple of 1/3 of K;.

2n+m=30+1 (S1) or 2n+m=30+2 (S2). (3.38)



30 CHAPTER 3. ELECTRONIC STRUCTURE

It implies further that the normal distances from K point to the two nearest cutting lines are
multiples of K;/3. If the normal distances from K point to the cutting lines are 1/3 or 2/3
of Ki, the SWNT is a semiconductor and else the SWNT is a metal. These three possibilities
are shown in Fig.3.11. The cutting lines shown in Fig.3.11 are for zigzag SWNTs but the
statements made hereafter are general. Firstly, we define the touching point of the cutting lines
with the electron equi-energy contour in Fig.3.11 as van Hove singularity (VHS). As we show
in detail in the following section, the electronic density of states has a peak at the VHS point.
The lowest VHS is labelled by k; and the next higher VHS by ks. The difference between S1
and S2 SWNTs is, on which side of K the VHS occur. E.g. for S1 SWNTs, k; occurs inside the
first BZ and ko, occurs along the I'-M line. For S2 SWNTs this order is reversed.
Metallic SWNTs have a cutting line through K point. The two cutting lines nearest to
K point occur at the same distance measured from K point. Their energy is however slightly
different. From Fig.3.11 it can be seen that the two points contributing to the lowest VHS in
metallic SWNTs are at k; and ki and lie on a different equi—energy contour. This leads to the
so—called trigonal warping effect in metallic SWNTSs [36]. The trigonal warping effect induces a
small splitting in the VHS peaks (= 0.1 eV for a (18,0) SWNT with d; = 1.4 nm). The splitting
of the VHS is largest for zigzag SWNT's and equal to zero for armchair SWNTs. This can also be
understood from Fig. (3.11): if the cutting lines are parallel to the vertical K—M line, then the
energies at k; and at k| are equal to each other and no splitting occurs. Metallic SWNTs can
be classified according to the one-dimensional Fermi wavenumber kr, at which the the cutting
line and K cross. We now calculate the crossing point by projecting the Ko direction, similarly
to what we did in Eq. (3.37) for the K; direction. We expand K as in Eq. (3.35) and also Ko
into a basis of b; and by. By noting by - by = b? and by - by = —b%/2 we can obtain
K- K2 m

KoK~ (3.39)

For dr we can substitute Eq. (2.5) and obtain dg = d or dr = 3d, according to wether n — m
is a multiple of 3d or not. When we substitute dg = d, we get an integer number, since d is
defined to be a divisor of n and m. Thus, K occurs at an integer number of shifts by Ky. Thus
we can shift back this point and obtain the Fermi wavevector kr = 0. That is, the center of the
metallic band is crossing K for dp = d. We will call such SWNTs to be metallic type 1 or M1
type. If dp = 3d, we can get krp = 1/3 (in units of K3). Thus the Fermi wavevector occurs at
1/3 of the length of a cutting line. Such SWNTs are metallic type 2 (M2). In summary, the
conditions for metallic 1 and metallic 2 SWNTs are

dR:d (Ml) or dR:3d (MQ) (340)

It is clear, that for armchair SWNTSs, we have dgp = 3d and thus all armchair SWNTs are M2
SWNTs, which have a Fermi wavevector kp = £|Kjs|/3 = +£27/(3a). Metallic zigzag SWNTs
have dr = d and therefore kg = 0.

The chiral indices of all possible SWNTs form a hexagonal lattice as is shown in Fig. 3.12.
We plot the semiconducting S1 and S2 SWNTs by a grey shaded circle and box and the metallic
M1 and M2 SWNTs by a filled circle and box, respectively.  The parallel lines in Fig. 3.12
denote the SWNTs for 2n +m = 14...19, which is called “family”. The optical properties of
the same family appear in the photoluminescence spectra.
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Figure 3.12: Chiral vectors for semiconducting (metallic) type I and IT SWNTs. The (n,m)
indices are written on the left side of the corresponding chiral vectors. Semiconducting (metallic)
type I and type II SWNTs are labelled by a grey shaded (filled) circles and a grey shaded (filled)
boxes, respectively. The SWNTs that belong to the same 2n + m = const family are connected
by lines. The families for 2n+m = 14...19 are shown. The diameter region of 1 nm is indicated
by an arc.

3.5.1 Density of electronic states and van Hove singularities

In SWNTs the one-dimensionality of electronic bands in the zone—folding scheme gives rise to
flat regions in the band structure if the direction of zone—folding is parallel to the equi—energy
contour in graphene. The cutting lines for a (5,5) SWNT are shown in Fig.3.13 and the flat
regions in the 1D electronic bands can be seen. The density of states per energy per C atom in
a SWNT is calculated as

N U
N1 2

DD SRICEEAT)

n(E) = . (3.41)

N U
X1 %4

/oo > 6{E' - Eu(ki)}dE'

_N,__U
2 =73

N .
2=

In Eq. (3.41) the integration is to be taken over all valence and conduction 7 electronic bands.
The factor 2 in Eq. (3.41) comes from spin degeneracy.

The DOS in Fig. 3.10(c) has been calculated with Eq. (3.41). The value of U in Eq. (3.41) is
equal to the number of SWNT unit cells along the SWNT axis, if we neglect finite-size effects.

A quantity similar to the DOS from Eq. (3.41) is the JDOS (joint density of states). The
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Figure 3.13: Cutting lines for a (5,5) SWNT on the surface of graphite bands. Non—degenerate
A symmetry and doubly degenerate £ symmetry bands are labelled. The optical transitions at
VHS EM and E are indicated.

JDOS is related to experiments that measure absorption of light and is defined by

N _1q U_1q
2 2
§[E - {E (ki) — B} (k:)}]
H’lefﬁi:,Q
ny(E) = %_12 %_i (3.42)

—
8
(]

5 (B — (B (ki) — BL(ki)}] dE/

—0o0 N .
Pl == i

M)

From Eq. (3.42) it is clear that the JDOS has a maximum when valence and conduction bands
run parallel. The cutting line indices for initial and final states are p and u', respectively. It
is noted that previous calculations [37] have yielded p' = p for light polarization parallel to
the SWNT axis and ' = p £+ 1 for light polarization perpendicular to the SWNT axis. Thus,
for parallel light polarization, optical transitions occur between the VHS in the valence and
conduction bands.

The optical properties are largely determined by absorption of light with a photon energy
equal to the energy difference between two VHS in the conduction and valence band as is
illustrated in Fig.3.13. Because of the enhancement in the optical absorption due to the high
number of electronic states, it is possible to observe optical spectra from an isolated SWNT.
Furthermore, the strong resonance enhancement can be used to pick up the resonant signal
from only a few SWNTs in a sample with many different (n,m). By changing the laser energy,
different SWNTs can be selectively probed. From Fig.3.13 it is clear why the metallic VHS
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Figure 3.14: Electron energy dispersion relations (left) and DOS (right) for a (5,5) SWNT . See
Fig. 3.13 for cutting lines.

appear at a higher energy than semiconducting VHS for SWNTs with the same diameter. Since
we have a metallic band (labelled by A2), which does not have a VHS (apart from M point
at a high energy), the next cutting line is shifted further away from K point and thus has a
higher energy. In Fig.3.13 we label the non—degenerate bands by A and the doubly degenerate
bands by E. The double degenerate bands are only shown on one side for simplicity. The 1D
electron energy dispersion relations that correspond to Fig. 3.13 are shown in Fig. 3.14. Due to
the crossing of K point by a cuttingline, the (5,5) SWNT is a metal as can also be seen from
the DOS at Fermi level.

For electronic states close to K, the equi-energy—contour is given by a circle as we derived in
Eq. (3.23). When we substitute the k; which are touching points to the circle of constant energy,
we can obtain the VHS energy in the lowest order approximation. For semiconducting SWNTs,

we substitute ,/k2 + k2 = 2i/(3d;) and for metallic SWNTSs, we substitute ,/k2 + k2 = 2i/(d;
T Yy z Y

into Eq. (3.23). If we multiply the energy by 2 then we get the transition energy m — 7* at the
VHS with index 7 as

2ati 2/3ati .
5:\/_Tdt nd  Ej = A (1=1,2,3). (3.43)

Here EZSz and E;:’I denote VHSs of semiconducting and metallic SWNTs, respectively. It is clear
from Eq. (3.43) that the energy gap at the VHS with index 7 is inverse proportional to the SWNT
diameter d; and that the first metallic VHS occurs at three times the energy of a semiconducting
SWNT.
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3.5.2 Effective masses in semiconducting S1 and S2 SWNTs

We now consider the effective masses in the region of E7; and ES,. The effective electron mass
m* is defined as
1 10%E(k)
m* B2 Ok?

Thus for a flat band m* will be larger. In fact, (6n,0) zigzag SWNTs have a completely flat
band, connecting the M points. In such a band, the effective mass would be infinite. The
flattness of a band is also related to the JDOS, since we get higher JDOS for flatter bands.
Again, in the completely flat zigzag band, all electronic states along the cutting line appear at
the same energy.

If we apply this concept to the cutting lines shown in Fig. 3.11, we can estimate the tendencies
for m* (or JDOS) for S1 and S2 SWNTs. From the equi—energy contours, we can see that m*
is increasing little if we go along K—M but increasing relatively more along the K-I" direction.
Thus we expect different effective masses at the same distances from K . The m* along K-M
is smaller in this case. For S1 in Fig.3.11(a), the E}, occurs at k; at 1/3 of a cutting line
distance away from K in T' direction. The ES, occurs at ko at 2/3 of a cutting line distance
away from K in the K—M direction. Thus, m* at ko and at k; are not so different from each
other because the distance in the direction of large increase (K-T') is smaller than the distance
in the direction of little increase (K—M). For S2 in Fig.3.11(b), the situation is quite different.
Here, the distances to ko along KT is two times the distance to ky. Thus the differences of m*
at ko and ki are more different than in the case of S1 SWNTs with the same diameter.

(3.44)



Chapter 4

Raman spectroscopy of graphite and
single wall carbon nanotubes

In this chapter the current status of research for optical properties of a SWNT
is reviewed. We show the calculation of phonon dispersion relations and first—order
Raman effect in graphite and SWNTs is reviewed. The double resonance Raman
theory is explained and the formulas to calculate first—order Raman intensities are
given.

4.1 Phonon dispersion relations in graphite and SWNT's

Phonon energy dispersion relations are a fundamental physical property of a solid, especially
for determining the mechanical, thermal and other condensed—matter phenomena. The phonon
energy dispersion relations of three-dimensional (3D) graphite (or two—dimensional (2D) tur-
bostratic graphite) have been determined experimentally by inelastic neutron scattering [38, 39]
and electron energy loss spectroscopy (EELS) [40, 41, 42]. These methods do generally not probe
the whole BZ but are particularly accurate for zone—center phonons. For phonons in between
the K point and M point, there are no experimental data. As a result of the lack of data, the
discrepancy between different experimental methods is large between K and M point. Close
to I' point, all methods stated above agree on the shape of the dispersion. Furthermore, the
zone—center phonons can be probed by Raman spectroscopy which is known to give accurate
results with an error bar around only 1 cm™!. Recently inelastic x-ray scattering has provided
the phonon dispersion relations of graphite with experimental data—points in the region between
K and M [43]. Theoretically, a force constant model [38] and ab-initio calculations [44, 43] have
been used. In a tight binding force constant model (or a molecular dynamics method) a set
of 8 or 12 force constants are fitted to reproduce the experimental data points. In ab—initio
calculations, force constants are calculated by calculating the force on an atom when displacing
the atom from its equilibrium position.

We will use a force constant model that can calculate phonon dispersion relations by fitting
the force constants of four nearest neighbour atoms to experiments or to a more sophisticated
ab—initio approach. The twelve force constants we use are sufficient to reproduce all experimental
and theoretical data. We will first explain the force constant model [4] and then tabulate the

35
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force constants that reproduce recent results. The force constant model has been used together
with bond—polarization theory [45] to calculate non-resonant Raman spectra of SWNTs [46].

4.1.1 Force constant model

The phonon dispersion relations are calculated using a force constant model, in which the i—
th atom is connected to its j—th neighbour atom through a force constant tensor K(7). The
components of the force constant tensors are made from the force constants. Since the force
between two atoms decreases with increasing inter—atomic distance, interactions can be neglected
for a longer distance than the cut—off radius. The cut—off distance was taken equal to the
fourth nearest neighbour distance because the fitted phonon dispersion can reproduce well the
observed neutron scattering data [38]. Since any A or B atom has 18 neighouring atoms up
to the fourth nearest neighbour, we need 12 force constant tensors for the A (B) atom with
symmetry considerations. Each shell has three force constants for in—plane radial (along bond
direction), in—plane transversal (perpendicular to bond direction) and out-of-plane movements.
Within a given shell, we put one atom on the z axis with coordinate of the radius of the shell.
Then we can rotate the force constant tensor to any atom position on that shell by a rotation
matrix Uy, around the z axis perpendicular to the graphene plane. For the first shell U, for the
interaction of the type A atom with a By, atom (m = 1,2, 3) is given by [4]

cosf,, sinf, 0
Upn=1| —sinb,, cosf, 0 |. (4.1)
0 0 1
The force constant tensors in the first shell can be calculated using

K(A,Bm) — Urle('%Bl) Um’ (m = 2, 3) (42)

For m =1, Uy, is the unity matrix and the force constant tensor has only diagonal elements and
is given by

oM 0 o
KABY) — | ¢§i1) 0 . (4.3)
0 0 ¢

The force constant between an atom in the center and an atom on the positive x axis in the
nth shell shall be ¢$n) for in—plane radial, ¢§i") for in—plane tangential and qﬁg}) for out—of-plane
plane vibrations. Force constants up to fourth neighbor atoms are needed to reproduce the
twisting vibrations of a C—C bond in which the fourth nearest neighbor C1 and C2 atoms in
C1-C—C—C2 are vibrating. The vibrational frequencies are obtained by solving

D(q)S"(q) = 0. (4.4)

Here q is the phonon wavevector and S”(q) is the phonon eigenfunction of the v—th phonon
branch. The dynamical matrix D defined by

DAA DAB
D= ( DBA DBB > ) (45)
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Fitted Jishi et al.  initial set Dubay et al. Maultzsch et al.
force constants neutron [38] random  ab-initio[44] x-ray [43]
in—plane
& = 36.50 44.80 44.58 39.28
0 = 24.50 11.25 11.68 11.36
&) = 8.80 7.63 7.31 6.34
@ - -3.23 ~4.24 -3.74 -3.18
QO 3.00 -6.45 570 -6.14
@) — ~5.25 6.47 6.67 9.27
Y = 1.92 1.94 1.82 2.53
4 = 2.29 0.90 0.52 -0.40
out—of-plane
W= 9.82 9.97 10.00 10.18
2 — ~0.40 -0.73 -0.83 0.36
& 0.15 1.21 0.51 0.46
o= 0.58 0.90 0.54 0.44

Table 4.1: Force constant parameters of graphite in units of 10*dyn/cm. Here the subscripts r,
ti, and to refer to radial, transverse in—plane and transverse out—of-plane, respectively.

with

D) (q) = | Y KU — Myuw*(Q)I | 6 — Y KU ARir - (i j=A,B)  (4.6)
jll jl

where the sum over j” is taken for all neighbor sites from the i—th atom with K(") £ 0, and the
sum over j' is taken for the equivalent sites to the j—th atom. The first two terms of Eq. (4.6)
have non-vanishing values only when 7 = j, and the last term appears only when the j—th atom
is coupled to the i-h atom through K07 0.

In a periodic system, the dynamical matrix elements are given by the product of the force
constant tensor K and the phase difference factor e’ 2Rii with R;; being the distance vector
between atoms ¢ and j. This situation is similar to the case of the tight binding calculation for
the electronic structure where the matrix element is given by the product of the atomic matrix
element and the phase difference factor. Using the force constants that were obtained by a fit
to neutron scattering data, we solve the 6 x 6 dynamical matrix in Eq. (4.4) for the phonon
frequency and plot the phonon dispersion relation of graphene in Fig.4.1(a) along with the
experimental points denoted by circles. In Table4.1, we list the force constants for the earliest
result of a fit to inelastic neutron scattering data by Jishi et al.[38]. In Fig.4.1(b), the ab-initio
calculation of Dubay et al. [44] is shown by open circles. The lines in Fig.4.1(b) denote the
fitted dispersion relation. The force constant parameters for Fig. 4.1(b) are given in Table4.1. In
Fig.4.1(c), we show a recently measured phonon dispersion relation, published by Maultzsch et
al. [43]. In Fig.4.1(c), inelastic x—ray scattering has been used to obtain a few data points along
the K—M direction. These points can not be easily connected by a dispersion branch because
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they are scattered in a wide frequency region. In the same paper [43] an ab-initio calculation
was done and it was in good agreement with their inelastic x-ray scattering measurements.

In order to reproduce the experimental and theoretical data from different groups shown in
Fig.4.1, we find the set of force constants, that provides the best fit. This will enable us, to
reproduce phonon dispersion relations of different groups by our force constant model. The force
constants in Table4.1 are obtained by a numerical fitting procedure that is explained in detail
in Sec.7.2.1. The numerical fitting procedure finds the minimum of the sum of squares of the
difference between calculated and experimental data. Depending on the data, that we fit, there
are several local minima. Thus, the choice of an initial force constant set as starting values for
the fitting procedure becomes important for obtaining a good fit. In our fit of the force constant
sets from Table4.1, we define a starting set of force constants for each set of data, which we
want to fit. To fit the data in Fig. 4.1(b), the initial set in Table4.1 was used. To fit the data in
Fig.4.1(c), the output of the fit from Fig. 4.1(b) was used. The output of the fit from Fig. 4.1(b)
is listed in Table4.1 under “Dubay et al.” and output of the fit from Fig.4.1(c) is listed under
“Maultzsch et al.”. for future use.

From Fig.4.1, it can be seen that most experimental data points are available from I' to M
and the rest of the BZ is not covered. We have six phonon mode branches that are in increasing
frequency out of plane transverse accoustic (0TA), in—plane transverse accoustic (iTA), in—
plane longitudinal accoustic (LA), out—of-plane transverse optic (0TO), in—plane transverse
optic (iTO), in—plane longitudinal optic (LO).

4.1.2 Phonons in carbon nanotubes

Since SWNTSs behave like solids along the axial direction but behave like molecules around the
circumference direction, we expect four accoustic modes: three are translational modes and one
mode is a rotation around the tube axis, which comes from the molecular nature of SWNTs.
The rotational mode does not exist in graphite because it is a 3D solid. Thus we only have
three accoustic modes in graphite. The number of phonon modes is given by zone—folding of
graphite. Thus we expect 6 N phonon modes in a SWNT, in which N is given by Eq. (2.6). The
optical modes of a SWNT are generally well described by zone—folding of phonon dispersion
of 2D graphite. There is, however, a small difference in phonon frequencies between iTO and
LO in SWNTs whereas these modes are degenerate for graphite. The difference comes from
the curvature which shifts the iTO phonons to a lower frequency in SWNTs when compared to
graphite. As for accoustic modes in a SWNT, we have two accoustic modes with A1 symmetry [
(in—plane longitudinal (LA), twisting mode (TW) ]. The LA mode corresponds to a translational
motion along the direction of the SWNT axis and the TW mode corresponds to a rotational
motion around the SWNT axis. The two accoustic modes with E1 symmetry are a translational
motion in the directions perpendicular to the SWNT axis. In Fig.4.2 we show the Eigenvectors
of the six A1 symmetry phonons of a (10,10) SWNT at ¢ = 0. Two modes have zero frequency
at ¢ = 0. These are the in-—plane longitudinal accoustic mode (LA) mode and the twisting mode
(TW). For the LA mode, we have a movement of all atoms along the SWNT axis. Since this is
a translation, the phonon energy must be zero, because it shifts the center of mass. In the case
of TW, the SWNT is rotating along its axis and center of mass is not moving.

The lowest A1 mode with finite phonon energy is the radial breathing mode (RBM), where all
atoms are moving in—phase in radial direction. The RBM mode at about 165 cm™! is known to
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Figure 4.1: (a) Phonon dispersion as fitted to elastic neutron scattering data by Jishi et al. [38].
The circles denote experimental points. It can be seen, that there are no experimental data
available for the region close to K. (b) Ab-initio calculations by Dubay et al. [44]. (c) Inelastic
x-ray scattering data by Maultzsch et al. [43]. The open circles in the lower frequency range
denote neutron scattering data, that were used to improve convergence of the fit.



40 CHAPTER 4. RAMAN SPECTROSCOPY

iLO
w=1590cn?!

oTO
w=874cnrt

iTO
w=1586cm?

Figure 4.2: Al symmetry phonon eigenvectors in a (10,10) SWNT ordered from lower to higher
frequency. Force constants from Ref.[4] have been used to calculate the frequencies. The
direction of phonon eigenvectors is independent of the force constants.

be Raman active. and appears at a frequency that is inversely proportional to d;. Experimental
Raman spectra are frequently used to estimate the d; from the position of the RBM mode. The
frequency of the RBM is generally described by a law of the form

WRBM = % +Cy with C; =248 cm™'nm and Cy=~0...20 cm™!. (4.7)
C1 and (5 are obtained by fitting the experimental data. Cs is a constant describing the upshift
of wrpm due to bundling effects and should be equal to zero for isolated SWNTs. Cs depends
on both the bundle diameter and the diameters of SWNTs inside the bundle and has in general
a different value for each sample.

At about 850 cm™! out-of-plane optical mode (0TO) occurs. Although the 0TO mode is
Raman allowed by group theory, the first order Raman spectrum is weak in the experiment.
However, we see this mode in the second—-order Raman spectra.

The in—plane tangential optic (iTO) and in—plane longitudinal optic (LO) modes are not
degenerate unlike in the case of graphite. Both, the iTO and the LO phonons are Raman active.
The splitting of iTO and LO is a result of SWNT curvature. The frequency of the LO phonon,
wg is independent of d; and the iTO phonon frequency, wg, is inversely proportional to d7 [47).
The proportionality constants for semiconducting and metallic SWNTs were determined by a
fit to 62 chiralities. The fitting law and fitting parameter C are given by

__ 4, C

We = wg — d_% , C =477 cm !(semicond.) C = 79.5 cm !(metal). (4.8)

4.2 First—order resonance Raman spectroscopy

In the resonance Raman effect, an electron is photoexcited from the valence to the conduc-
tion band. The photo—excited electron creates (Stokes) or absorbs (anti-Stokes) a phonon,
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(b),

Figure 4.3: The first order Raman Stokes (a) and anti-Stokes (b) resonant Raman effect. Real
electronic states are denoted by filled circles and virtual states are denoted by open circles. The
transition from a to b occurs by absorption of a photon. Then the electron phonon interaction
creates or absorbs a phonon. The electron goes from b to ¢, thereby changing its energy. Finally,
the electron at ¢ recombines with the hole at a by emitting a photon. The matrix elements for
electron photon and electron phonon interaction are My, and M,;, respectively. See text for
details.

respectively going to a lower or higher electronic energy state. In Fig. 4.3 we show these two
possibilities for the RRS in Stokes and anti-Stokes geometry. If one of the two intermediate
states are real electronic states, we have resonance Raman scattering (RRS). This condition is
given if either the incident or scattered light is connecting real electronic states. In Fig.4.3(a)
we show for Stokes Raman processes the two resonance conditions, which are known as “incident
resonance” and “scattered resonance”. These two resonance conditions describe, if the incident
or the scattered photon matches the energy between valence and conduction band. In other
words, the processes are different according to which of the two intermediate states b and ¢ is an
eigenstate of the electron. The same distinction is made for Fig. 4.3(b) in which we describe the
anti—Stokes process and its resonance with the incident and scattered photon. The behaviour
can also be understood quantitatively by considering the formula, that we use to evaluate the
Raman intensity:

I(Biuer) = |

Here the first and second factors in the denominator, respectively, describe the resonance energy
difference with the incident and scattered light, where the + (~) applies to the anti-Stokes
(Stokes) process for a phonon of energy FE.;p, while I', gives the inverse of the lifetime for the
scattering process. The matrix element for the optical processes are given by M, (k) for
absorption while M7, ; (k) gives the matrix element for emission of a photon. M (k) denotes
a phonon emission which is accompied by the transition of the photoexcited electron on the same
k state in the conduction band. For phonon absorption (anti-Stokes), that is p = A and for
phonon emission (Stokes) processes, that is p = E. The p = A and p = E go together with the
“+” and “-” signs in the denominator of Eq. (4.9), respectively. In 2D graphite, there are two
possibilities for getting a high Raman intensity, which come from the resonance with incident

2
Mg (K M, () Mg, () e )
(Elaser - E(k) - irr)(Elaser + Evib - E(k) - 7;]-—‘7‘) ’ '
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Figure 4.4: The phonon symmetries which contribute to the first—order Raman effect in SWNTs
are shown by the five cutting lines. The scattering geometries for X polarized light perpendicular
to the SWNT axis and Z polarized light parallel to the SWNT axis are tabulated.

or scattered light that leads to a vanishing denominator.

The first-order Raman spectrum in graphene exists at about 1580 cm~!. This corresponds
to a Raman active phonons of the iTO and LO modes, which are degenerate at I" point. Further-
more, in graphite there is a Raman-active mode at around 49 cm™! which corresponds to the
in—phase movement of all the atoms in one graphene layers while neighbouring graphene layers
are moving out—of-phase. However, this mode is not observed in Raman experiments because
of a strong elastic Rayleigh scatting tail.

The second-order D-band feature lies at around 1355cm™! (for Fj,s;=2.41 eV) and its
overtone, the G’-band at about twice the frequency of the D-band. While the D-band intensity
depends on the presence of defects, the G’-band exists independent of defects. These features
will be discussed with the double resonance Raman theory in Sec. 4.3.

4.2.1 Raman spectroscopy in carbon nanotubes

In SWNTs, there are 6N — 4 phonon modes that have non—zero phonon frequency at ¢ = 0.
For a Cy symmetry group, A, F1 and FEs modes are symmetry allowed and the cutting lines
with these symmetries are shown in Fig.4.4. In Chapter 5, we will discuss the reason for this
selection in terms of the electron photon matrix elements. The Raman active cutting lines in
Fig.4.4. Because only three cutting lines are non-degenerate, they give rise to 6 x 3 —3 = 15
phonon frequencies that have non—zero phonon frequency at ¢ = 0. Out of these, only two
strong bands are observed experimentally. These are the radial breathing mode (RBM) occurs
at around 180 cm™! and the graphite derived G-mode at around 1580 cm™'.

A typical experimental spectrum was shown in the introduction in Fig. 1.4 [11]. This spec-
trum was taken with a laser wavelength of 1024 nm and the SWNTs were oriented randomly.
The four strongest peaks are indicated by labels. The first—-order Raman features labelled by
“RBM” and by “G” are the strongest peaks. The RBM consists of only one phonon branch
but in the G-band 6 different phonon frequencies are contributing. The RBM mode is special
to SWNTs in the sense that there is no corresponding mode in graphite. The RBM frequency
wrpM 1S frequently used to determine the diameter d; of a SWNT because the simple relation-
ship between d; and wrpm given in Eq. (4.7). Due to the strong diameter dependent frequency
and the strong resonance enhancement that occurs, if the laser energy is equal to an Ej; tran-
sition, it is possible to assign an experimentally observed RBM peak to an (F;;,d;) data pair
and thus obtain the structural information or a group of a few (n,m) indices, that are likely to
identify the resonant SWN'T for a given Fjger- The most striking features for the G-band of a
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Figure 4.5: Experimental G-band spectra of SWNTS and their phonon symmetries [48].

SWNT are the splitting into a lower frequency TO and a higher frequency LO peak and changed
lineshape of TO modes if metallic SWNTs are in resonance which can be observed in Raman
experiments. The TO modes in metallic SWNTs are downshifted in frequency when compared
to semiconducting SWNTs and their lineshape can be fitted to so—called Breit—Wigner—Fano
lines. The latter was explained by a phonon—plasmon coupling that is enhanced for bundles and
supressed for isolated SWNTs. The TO and LO components of the G-band consist of several
peaks that can be associated with A, F; and Fy phonon symmetries.

We now discuss the selection rules for various scattering geometries for incident and scattered
light polarized parallel or perpendicular to the SWNT axis, which is along z direction. We can
use the selection rules for electron photon and electron phonon scattering (which will be derived
in Chapters 5 and 6, respectively) to analyze a first-order Raman process, in which the electron
is excited at the valence band of the cutting line with index y and energy El(f). Light, that
is polarized along the z or z axis will be referred to as Z or X, respectively. We can get the
following rules [49].

o Y %4 g9 2 B9 4 EVY,
w e 5 B9, & B9 X BY,
ma e % BY 2 B9 X EBY, (4.10)
w) B = B, 5 BY S EY,
v) BY % B9, = B9 X BV

Here A, E1, and Eo denote phonon modes of different I'-point symmetries of the cutting lines
p =0, u = =1, and p = £2, respectively, as shown in Fig.4.4. Thus, by first-order Raman,
we can probe the five cutting lines E_s,..., Ey as shown in Fig.4.4. By selecting a specific
scattering geometry, we can selectively probe phonons from py = 0 for ZZ , p = 1 for XZ,ZX
and 4 = 2 or g = 0 for XX geometry. An experimental G-band spectra for ZZ and XX
geometry is shown in Fig. 4.5, in which the F, mode can be assigned to X X geometry. It shall
be noted that the processes in Eq. (4.10) only occurs, if they are in resonance with the laser
energy. Optical transitions along X are generally supressed due to the depolarization effect as
discussed in Chapter 5. In 1D SWNTs, we have seen in Sec. 3.5.1 that the electronic density of
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states shows van Hove singularities (VHS), in the density of states and thus we can expect that
the Raman intensity is greatly enhanced if Fj 5 matches a VHS. Generally the resonance effect
in the denominator is much stronger than the matrix elements and thus the matrix elements
were assumed to be constant in the integration of Eq.(4.9) in previous analysis. However, in
order to compare the absorption intensity of different chiralities at their E;;, matrix elements
are important.

4.3 Double resonant Raman scattering

4.3.1 Classification of Raman processes

Raman spectroscopy does not provide the phonon dispersion relations because the wave vector
of the incoming photon is too small to create phonons at a large distance from the I' point
in the first-order Raman scattering process. In the first-order Raman spectra, only phonons
with q = 0 appear and thus no information about zone-boundary phonons is available. The
reason for the q = 0 selection rule in first-order Raman is that the initial and intermediate
electron state are at almost the same k because the light has an energy dispersion £ = hck with
almost zero wavevector. In the case of second-order Raman scattering, this condition can be
removed because two phonons (or a phonon and a defect) are involved in the process as far as
the sum of two phonon wavevectors gives total zero wavevector. Moreover, a scattering of an
electron from K to K' points (hexagonal corners of 2D BZ) or vice versa is possible for ¢ # 0
phonons. Hereafter, we call this process inter—valley scattering process, while the scattering
within K (or K') is called intra-valley scattering. In second-order Raman scattering processes,
there are low—intensity features in the Raman spectra which do not originate from phonons
of the I' point. These peaks can be classified into two—phonon peaks and disorder—induced
one—phonon peaks. It is easy to distinguish most second—order Raman peaks from first—order
features, since the Raman mode frequencies of the second-order Raman processes are generally
dispersive, that is, the Raman shifts depend on the laser excitation energy Fjaser- An example
of a disorder-induced phonon mode is the D-band around 1350 cm ™! for laser excitation energy
Elaser = 2.41€V [50, 28, 27, 51, 52, 53, 54]. This mode shifts with laser excitation energy by about
53 cm~!/eV. The overtone mode of the D-band is known as the G’~band [27] (or the D*~band
using another notation [54]) at about 2700 cm ! with a dispersion of about 106 cm~!/eV. The
G’-band spectrum is observed even in highly-order graphite, since the corresponding process
involves the creation of two phonons with equal but oppositely directed momenta. Thomsen
and Reich explained the dispersion of the D—band phonon frequency with Ej,se by a double—
resonance process [53]. This idea was then applied to all six branches for the phonon dispersion
relations of graphite, for which many disorder—induced peaks can be assigned as non zone—center
phonon modes when combined with theory [55]. The assignment is almost perfect near the T’
point. However the assignment is not so good near the K point phonons, which is ascribed to
the lack of experimental data from inelastic neutron measurements for regions of the Brillouin
zone near the K point. The first— and second—order intra—valley Raman processes are shown
in Fig.4.6. In Fig.4.6(a), a first—order process, that consists of three interactions is shown:
(1) the electron photon interaction to bring the electron from the valence to the conduction
band, (2) the electron phonon interaction between two conduction band states, and (3) electron
photon interaction that recombines the electron with the hole. In Fig.4.6(b), a second-order,
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Figure 4.6: Intra—valley Raman processes, in which a photo—excited electron state scatters within
one of the two K points. (a) The first-order Raman effect with ¢ = 0 that leads to the G-band
and (b) a second—order Raman process with g # 0 is responsible for a weak feature around 1620
cm~!. See text for description of numbered, constituent scattering processes.

inter—valley, one-phonon process is shown. This process consists of four interactions: (1) the
electron photon interaction to bring the electron from the valence to the conduction band, (2) the
electron phonon interaction to scatter the photo—excited electron to an intermediate state, (3)
the electron defect interaction that scatters the electron back to the initial electron wavevector
k, and (4) electron photon interaction, that recombines the electron with the hole.

In Fig. 4.7 an inter—valley process is shown. The processes (1) to (4) in Fig. 4.7 are the same
processes as in Fig. 4.6(b) except for the length of q.

It is noted, that the interaction (3) in Fig.4.6(b) and in Fig. 4.7 is not necessarily a defect
scattering but an electron phonon interaction is also possible. This corresponds to a second—
order two—phonon process which does not depend on the presence of defects. The G’—band at
about 2700 cm™! is assigned to a second-order, two-phonon, inter-valley process. It involves
two inter—valley phonons with opposite momenta. In the following section, we give a detailed
description of the double-resonance Raman processes.

4.3.2 Double-resonance conditions

In the double-resonance Raman processes, the origin of the D-band and of the many weak
dispersive phonon modes in the Raman spectra of graphite is explained by (1) a second—order
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Figure 4.7: inter-—valley process that leads to the D-band at 1350 cm™!. The electron phonon
(2) and electron defect (3) interactions connect K’ with K and K with K’ point, respectively.

scattering process, and (2) a resonant enhancement of the Raman intensity in two consecutive
scattering processes. In the second-order scattering process, an electron with initial momentum
k is: (a) at first excited to the energy E’(k) by the incident photon, (b) scattered to a state
k+q, [E(k +q)], and (c) then back-scattered to the state k, [Ef(k)], and finally (d) recombined
with a hole to yield the scattered photon. If E(k + ¢) and either the E*(k) or Ef(k) states
correspond to real electronic states, the Raman intensity is enhanced twice by two resonant
factors in the denominators occurring in the intensity formula, and this is known as the double
resonance Raman process [56].

When we look at double-resonance Raman processes in the 2D BZ of graphite, we see that
electrons around the K point are relevant to Raman processes. As far as we restrict the exciting
laser energies, Flaser, 10 be Ejuger < 3 €V, the equi—energy contours of 7 electrons can be treated
as circles around the K point as a first approximation (see Fig.4.8). Further, we assume that
the electron energy dispersion is symmetric £F/(k) around the Fermi energy E = 0, where E(k)
and —E(k) are anti-bonding 7* and bonding 7 bands, respectively. Here we adopt a simple
tight binding result for E(k) [4] with a nearest neighbor tight binding parameter 7y = 2.89eV.
For smaller laser energies, we can use the linearized energy dispersion relation for electrons,
E(k) = V/3y9ka/2 in which a is the lattice vector a = v/3ac_c with ac_c=1.42A. In this case
the photon absorption occurs when FEj,e, = 2E(k). Hereafter, the k vectors which exist on
the energy contour E = E(k) are denoted by k = k(F). When we consider double-resonance
Raman processes involving an inelastic scattering event by emitting a phonon with an energy
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Ephonon and an elastic scattering event due to a defect occurring for each forward and back
scattering event, we have four different resonant processes. A factor of two (of the four) comes
from two possibilities: whether inelastic or elastic scattering occurs first, and another factor of
two comes from whether the incident E*(k) or the scattered E7 (k) states are resonant. These
four processes generally lead to different lengths from one another for the wavevector g of the
scattering phonon. Moreover, there are two possibilities for selecting the g vectors, since there
are two inequivalent energy-contours around the K and K’ points in 2D BZ. A relatively small
q vector is selected for scattering within the same energy contour (from K to K or from K’ to
K'), while a larger ¢ vector is selected for scattering from K to K’ (or from K’ to K), which we
call intra—valley see Fig. (4.6) and inter—valley scattering (see Fig. (4.7), respectively . In total,
there are eight different double resonance Stokes scattering processes for the second-order, one-
phonon emission, double-resonance D-band Stokes processes.

In Fig. 4.8 we show an example of the four ¢ vectors for intra—valley scattering, where solid
and dotted arrows denote inelastic and elastic scattering processes, respectively. Solid and open
small circles denote, respectively, resonant and non-resonant conditions. That is, in the case of
the solid circles, the corresponding energy of the state is that for the real electronic state E(k),
while the state for open circles has a virtual energy state different from F(k). The electron-hole
pair is created and recombined for the same k points at the labels of (a), (b), (c) or (d). From
this point the electron is scattered to an intermediate k + ¢ state which is always resonant (one
solid circle). In the case of processes (a) and (b), the incident laser with Ej,g, is in resonance
with E*(k) and solid circles of (a) and (b) correspond to the initial states. Thus the initial &
vectors are on the second largest circle denoted by k3 of energy contour of E = Ejager/2. In the
case of (a), the scattering to the k + ¢ state is inelastic (solid arrow), and the corresponding
energy lies on the smallest circle (ki) where E = FEjaser/2 — Ephonon- The back scattering to &
now becomes elastic and E7 (k) = Elaser/2 — Ephonon is smaller than E*(k) which is denoted by
an open circle. In the case of (b), the scattering to the intermediate states is elastic and thus the
intermediate states are on the same circle (ks) as the initial states. The back scattering to the
initial states for (b) is inelastic and E/ (k) is non-resonant and has an energy FEiuser/2 — Ehonon -
For processes (c) and (d), the final state with Ef(k) are resonant with the scattered energy
Elaser — Ephonon and thus the final k vectors are selected on k(Eiaser/2 — Ephonon/2) Which are
the second smallest circles (k2) in Fig.4.8. The corresponding initial k& vectors for (c) and (d)
lie on the circles k(Fiaser/2 — Ephonon/2). In the case of (c), since the back scattering is elastic,
the intermediate states should have the same energy as E7 (k), while in the case of (d), the back
scattering is inelastic and thus the intermediate state has a higher energy than the final state
by the phonon energy, namely Ejaser/2 + Ephonon/2. Thus we can classify the four processes by
either an incident or scattered resonance Raman event, and by the fact that either the elastic
or inelastic event occurs first: (a) incident resonance, inelastic first, (b) incident resonance,
elastic first, (c) scattered resonance, inelastic first, and (d) scattered resonance, elastic first.
As a result, four electron energy contours separated by Epnonon/2 are relevant for the double
resonance processes, as shown in Fig. 4.8. Four energy surfaces correspond to the energies from
the smallest energy (or circle) in Fig.4.8, Eiaser/2 — Ephonon, Flaser/2 — Ephonon/2, Flaser/2 and
Fiaser/2 4+ Ephonon/2, for which the k vectors are denoted by from ki to k4, respectively. It is
noted here that Fphonon (< 0.2 €V for G-band phonon) is generally much smaller than Fjage;
(2 ~3eV) so that the distance between two of the circles circles 0k = k(Ephonon/2) is smaller than
the diameter of the circles and much smaller than the hexagonal edge of the 2D BZ. Figure4.8
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Figure 4.8: Four different, intra—valley, double resonance scattering processes occur around the
K point in the 2D Brillouin zone of graphite. At each point of (a) (b) (c) and (d), an electron-hole
pair is created. The electron is then scattered, and subsequently back scattered to the original
position. Solid and dotted lines are, respectively, inelastic and elastic scattering processes. In (a)
and (c), inelastic scattering occurs first, while in (b) and (d), elastic scattering occurs first. Solid
and open circles denote resonant and non-resonant states, respectively. Processes (a) and (b),
and (c) and (d) correspond, respectively, to incident and scattered resonance conditions. Four
energy surfaces correspond to the energies from the smallest energy (or circle), Fiaser/2— Ephonon;
FEaser/2 — Ephonon/2, Fiaser/2 and FEiaser/2 + Ephonon /2, for which the k vectors are denoted by
from kq to k4, respectively. The separation between two circles is artificially enlarged compared
to laser energy for clear understanding. [57]

is drawn schematically to convey a clear understanding of the physical processes. The phonon
q vectors for the intra-valley scattering are related to phonon wave vectors around the I" points.
In the case of inter—valley scattering, the intermediate k + ¢ states exist at inequivalent K points
with the same energy as in Fig. 4.8 (K’ is not shown). The corresponding ¢ vector has a value
from K to K’ (or from T to K). The g vectors for the inter—valley scattering are related to
phonons around the K point [55].

For any k vector, possible g vectors exist on the circle of the k + ¢ states for each case, and
the length of the g vectors can be changed from the closest to the most distant points on the
circles. Since the ¢ vectors are homogeneously distributed on the 2D BZ and especially on the
circles, the density of the distance of g vectors from the K point, has a singularity for |g| at
the minimum and the maximum values which are shown in Fig.4.9. The maximum |q| vector
corresponds to 2|k| if we neglect the small difference between the diameters of the circles, as
mentioned above. In the case of the minimum |g| values, we can assume |g| = 0, which is exact
for the cases of (b) and (c). Since the phonon dispersion, except for the acoustic phonon mode,
is flat around |g| = 0, the minimum |g| ~ 0 also gives a similar phonon frequency to that of
lg| = 0. It is clear that the lengths of the g vectors are equal for the two processes of each figures.
This gives two split Raman peaks in the dispersive phonon modes such as D-band for |g| # 0
and one peak for |g| = 0 when the distance is measured from the I" and K points for intra— and
inter—valley scattering, respectively.
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Figure 4.9: Here the three extreme cases, which lead to a high density of g-vectors for intra-
valley scattering are shown. The left figure corresponds to ¢ ~ 0 for (a) and (d) in Fig.4.8 and
the center and the right figures correspond, respectively, to the ¢ = 2k and g = 2k cases for (a)
and (c) and for (b) and (d) [57].

Table 4.2: Experimental frequencies and widths [58] in cm~! of the D-bands for different Fj,s;
(in eV).

Elaser | wp, WDy Wp; VD
1.91 | 1324 1333 1342 64
2.18 | 1336 1345 1354 66
2.41 | 1352 1361 1370 69
2.54 | 1357 1366 1375 72

4.3.3 Stokes and anti—Stokes spectra

In Fig. 4.10, we show a summary of the four possible Stokes processes (a-d) and the corresponding
four anti-Stokes processes (e-h).

The length of the phonon wavevecor ¢ is shown for each process. We can see that for the four
Stokes processes, we can get only two different lengths (a and ¢) and (b and d) for ¢q. Thus
we expect two D—band peaks in the experimental spectra. For the corresponding anti—Stokes
spectra the situation is similar and we also get two different lengths for ¢g. From Fig.4.10 we
can now estimate the difference in phonon energy for the Stokes and anti-Stokes processes. It
is known experimentally that the slope of the D-band is about 53 cm~!/eV. We can thus write
that dwp/0Aq = A x 53cm~!/eV. The distance between the phonon singularities associated
with the two peaks in both the S and the AS spectra is 0¢ = FEphonon/A, Where Ephonon =
0.13eV. Therefore the shift between the two peaks which compose the D-band is expected to
be dwp = Ephonon X 54 cmfl/eV = 9.2cm~!. It can be seen in Fig.4.11, that the two Stokes
(or the two anti—Stokes) peaks can be fitted to two Lorentzians to the experimental Raman
D-band though their spectral widths are much larger than their frequency separation dwp.

Here we mention that at least two important facts contribute to the width of the peaks that
constitute the D-band. First, due to the finite lifetime of the electronic excited states, phonons
with wavevectors near ¢ = 2k can also contribute to the double resonance Raman process, thus
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Figure 4.10: Fig. a-d (e-h) show Stokes (anti-Stokes) double resonance Raman processes. In
processes (a) and (b) and (e) and (f), the incident photon is in resonance with a 7-7* transition,
and in processes (c) and (d) and (g) and (h) the scattered photon is in resonance with a m-7*
transition [58].
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Figure 4.11: Stokes and anti-Stokes Raman spectra of the D-band in polyparaphenylene based
graphite treated at 1500 ° (PPP1500) at Ejuser = 2.54eV. D-band is fit by two Lorentzians, the
Stokes band by the peaks D; and Dy, and the anti-Stokes band by the peaks Dy and D3 [58].
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increasing the width of the D-band peaks. Another important contribution to the linewidth is
the trigonal warping effect, since the energy contour of the electron dispersion is modified from
a circle to a triangle with increasing Akg [36]. Therefore, the distribution of wavevectors dko
associated with a given energy separation between the m and 7* bands increases with increasing
Akgy. Fig.4.11 shows the fit of the Stokes and anti-Stokes D—-bands for Fj,ee; = 2.54€V [58].
The D-band in the Stokes spectrum is fit by two Lorentzians centered at wp, and wp,, and
in the anti-Stokes spectrum the D-band is fit by two Lorentzians at wp, and wp, which can
be understood by the length of ¢ shown in Fig.(4.10). In the Stokes spectra, the Dy peak is
associated with processes (a) and (c) in Fig.4.10, whereas D is associated with processes (b)
and (d). For the anti-Stokes mechanisms illustrated in Fig.4.10(e-h), the highest frequency
peak Dj is associated with processes (e) and (g), whereas processes (f) and (h) give rise to the
intermediate peak Dy. Therefore, we conclude that the two peaks in the S and AS D-band are
associated with the scattering from a point around K to a point around K’, by a phonon or by
a defect.

Table4.2 shows the fitting parameters of the Stokes and anti-Stokes Raman D-band, for
incident laser energies Fjaser = 1.91, 2.18, 2.41 and 2.54 eV, respectively. The frequency wp,
is always the same in the Stokes and anti—Stokes spectra. Notice in Table4.2 that the widths
of the Lorentzians slightly increase with increasing Fj,se,. This is a clear manifestation of the
trigonal warping effect, which is more important for higher laser energies.

In the Stokes spectra in Fig. (4.11), though the D-band is composed by two peaks with
frequencies wp, and wp,, and the overtone G’-band is composed by a single peak centered
at 2xwp,. Since G’-band corresponds to a two-phonon process, the processes of b, d f and
h in Fig. (4.10) do not exist and the processes a, ¢, e and g can be changed to two-phonon
processes by changing the elastic scattering processes to the inelastic scattering processes. For
the anti-Stokes spectra, the D-band is also composed by two peaks centered at wp, and wp,,
and the G’-band is centered at twice the frequency of the highest frequency component D3. The
phonons related to the intermediate peak Do are thus only observed in the D-band.



Chapter 5

Optical absorption in graphite and
carbon nanotubes

In this chapter, we show how to calculate the electron photon interaction ma-
trix element using first—order time—dependent perturbation theory and tight binding
wavefunctions for the 2p, electrons.

5.1 Dipole approximation

The Hamiltionian for a charged particle with mass m and charge e in an electromagnetic field
with vector potential A(¢) and a periodic crystal potential V(r) is given by

1
H=_—{—ihV —eA(t)}* + V(r). (5.1)
2m
where c is the velocity of light and m the electron mass. Here the electron = wavefunctions ¥*(k)
and W’(k) are eigenstates of an unperturbed tight binding Hamiltonian Hy = —%A + V(r) for

the bands 1 and 3, respectively. When we neglect quadratic terms in A(t) and use the Coulomb
gauge V - A(t) = 0, the perturbation Hamiltonian Hopt, acting on the electron and causing its
transition from valence to conduction band is given by
ieh .

Hoptp = EAp(t) -V with p=AorE. (5.2)
The p =A,E gives absorption or stimulated emission of light, respectively and determines the
sign of +iwt in the phase factors for electric and magnetic components of the wave. The Maxwell
equation, which we need is in SI units given as

OE
B= —. .
V x EQMO ot (5 3)

The electric and magnetic fields of the light are E,(t) = Egexpli(k - r £+ wt)] and B,(t) =
By exp[i(k - r £ wt)], respectively. Thus B =V x A =ik x A and V x B = ik x B. Noting that

1 we write | 6
B=FkA=-"—. 5.4
V% c Ot (5-4)

!AxB)xC=(A-C)B-(B-C)A

52



5.1. DIPOLE APPROXIMATION 53

Since E is a plane wave, we just get OE/0t = —iwE. We also need k = w/c and then A in

vacuum becomes B
—1
A, = - L. (5.5)

The energy density of the electromagnetic wave is given by I,, the length of the Poynting vector,

2
_EB, B

1
? Ho Hoc

(5.6)

The unit of I, is [Joule/(m?sec)]. The vector potential can be written in terms of light intensity
I,,, and polarization of the electric field component P as

A, (t) = _Ui\/gexp(:tiwt)P. (5.7)

The “+” sign corresponds to emission(“+”) or absorption (“—”) of a photon with frequency
w. Here ¢ is the dielectric constant of vacuum with units [Farad/m|. The matrix element for
optical transitions from an initial state + at k = k, to a final state f at k = k is defined by

Mb (kg k0) = (7 ()| Hopro |9 (K,) ). (5.8)

The matrix element in Eq. (5.8) is calculated by

I .
Mg;tp(kf,kz) = Tszp /m_P;ez(wf—wiiwp)thz(kf’kz) P (5.9)
where
D'k, k) = (1) VI (k) ) (5.10)

is the dipole vector between initial states 2 and final states f. Fermi’s golden rule gives transition
probabilities between the initial state :+ and the final state f for interaction time 7 with the
perturbation. For ¥/ and U*, we put the tight binding wavefunctions of the 7 electrons in
graphite. Using Hp, from Eq. (5.2) and Eq. (5.7), we can write the optical absorption (A) and
emission (E) probability per one second as as a function of k.

WrAE (k) CHL b Dy, ) U W) = (k) + Brer )
Fr Teom? B2 Fr ¥ (BT (kf) — B'(K,) % Fiaser)?

(5.11)
Here, for absorption, p = A goes with the sign and emission p = F goes with the “+” sign
of “+£”. To derive Eq. (5.11), we considered the light propagation in vacuum. If we consider
the real sample, which consists of a low density of SWN'T's, we have to replace ¢y — €ye, where
€ is the effective dielectric constant of the sample. The initial and final states can be valence
or conduction bands 2, f = v or ¢. The meaning of I, in Eq. (5.11) in the case of absorption
of light and in the case of stimulated light emission is the intensity of the incoming light. The

energy conservation E7 (ky) — E'(k;) & Ejaser = 0 is fulfilled for long interaction times 7 because
sin?(at)
wa’t

w_»

— 0(a) for 7 — 0.
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In summary, in this section we have shown that the optical absorption intensity is propor-
tional to the absolute square of the inner product of light polarization with dipole vector.

2
W (ks k,) [P - DF(ky, k) (5.12)

In the following we derive an expression for the dipole vector for transitions connecting 7 and 7*
bands. In Sec. 5.2 we will derive an expression for the dipole vector for graphene and in Sec. 5.4
a derivation for the dipole vector for SWNTs is given.

5.2 Dipole vector

The wavefunction ¥ = c4® 4 + cpPp is expressed by the sum of Bloch functions for 2p, orbitals
of carbon atoms at A and B sites, &4 and ®p {see Eq. (3.1)}. Further we decompose ®4 and
®p into atomic orbitals with Bloch phase factors {see Eq. (3.2)}. The optical transition within
a 2p, orbital at the same atom is not possible because of the odd symmetry of D in z, y and
z.  Furthermore, the z component of D/* is zero for all atomic matrix elements (also if the
transition is between nearest neighbour atoms) which is also because of the odd symmetry of
the z component of D/*. D/ is given by

= o (ky)ey (k) (Bp(ky,7)|V|®a(k,, 1)) + iy (kp)ep (k) (Palkys, )|V @p(k,r)) .
The magnitude of the inner product D/* - P largely determines the polarization dependence of
W, which is calculated on the electron equi-energy contour for F/ — E* + Ej,ger = 0. Here the
“—" gign is for absorption and the “+” sign is for emission of a photon. W becomes zero if P
is perpendicular to the real and the imaginary part of D/?.

We now substitute the Bloch functions from Sec. 3.1 to the tight binding atomic wavefunc-
tions. The coordinates of all atoms in the crystal can be split into R/, and R’; over the A and
B sublattice respectively. To go to the nearest neighbour atom from the A (or B) atom with
index 7 to the nearest neighbour atom of type B (or A) with index j we use the set of vectors
r’, and rf, respectively. The vector r, (r%) connects nearest neighbour atoms starting from an
A (B) atom and is defined in Eq. (3.12).

R/, =R, +rh, RL =R} +rY, (£=1,2,3). (5.14)

We substitute the Eq. (3.2) in Eq. (5.13) and get

D% (ky,k,)
1 U-1 3 '
= = S (kyp)ch(k,) exp [i(k, — k¢) - RY | exp(—iky - r r—rt r
Ui_%;(f) () exp [ifk, — ky) - RY ] exp(—iky - %) (4(r — £4)[V|(r) ) 6515
J% > G (kp)eh(k,) exp [i(k, — k) - R ] exp(—ik; - rp) <¢(r - r%)IVI¢(r)>-
=0 ¢=1

The summation over the atoms RY and R%; in Eq. (5.15) gives the selection rule for k as k,=k s
which means that the transitions occur vertical. Thus the dipole vector in Eq. (5.13) for graphite
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is simply given by
DY (k) = <\I!f(k)\V|\Iﬂ(k)> . (5.16)

At this point, it will be useful to define the atomic dipole vector for the A and B sublattice as
vya and vgp respectively.

3 3
voall) = Y exp(ixy 1) [ (e e = YOI S (it 1
0 £l

3 3
vyp(k) = — ) exp(—ir§ - k) / ¢*(r — r5)Ve(r)dr = _V/3mop > exp(—irh - K)rf (5.17)
¢ 0

a

Here a/+/3 is the length of r%; and r’, as defined in Eq. (3.12). The direction of the vectors vg4
and vyp can be understood by the fact that (1) these vector point along the bond between the
two centers and (2) that the gradient gives a vector that points away from the origin because the
wavefunction has a positive value, which is decreasing, when moving away from the origin. Thus

the vectors point from the origin (center of one wavefunction) to the atom centered at r% or r4.

Thus each contribution is proportional to —rﬁ or —reB. In Eq. (5.17), mgp is an atomic matrix
element for nearest neighbour carbon pairs. Since the product of the atomic wavefunction and
its derivative quickly decreases with increasing the distance between the atoms, we consider only
nearest neighbour coupling. mqp; describes the optical properties of 7 electrons in graphite and

g

Note that in Sec. 5.9 we give an analytical result for mp¢ in terms of Gaussian fitting parameters
to the 2p, electron wavefunctions. When we substitute the previously fitted LDA wavefunctions,
with fitting parameters from Table 3.2(a) we obtain mep; = 0.21 [a.u.] !, Here 1 a.u. is 0.529A.
The value of mqp is positive because we use the coordinates of B atom at r};. Further we note
that ¢§c} = —(c%cY%)*, which can be shown analytically by substituting the expressions for
the wavefunction coefficients from Eq. (3.28). Also, from Eq. (5.17), we can see that v ,(k) =
—vyp(k). We can write the dipole vector from Eq. (5.15) as D®(k) = c5c%vga + c§ chvgB.

2
D% (k) = —%Re 5 (k) (k) Y exp(—irly - k)rly (5.19)
!

in which Re[...] denotes the real part of [...]. Eq. (5.19) says that D (k) is a real vector and
its direction depends on k. Since we only have a real part in D®(k), we can always find a P
that is perpendicular to D (k) and that excludes special k so that do not contribute to the
optical absorption W (k). If D¢ (k) would have non—parallel real and imaginary parts, such an
effect would not be possible.

In Fig.5.1(a) we plot the normalized direction of D (k) from Eq. (5.19) as arrows and in
Fig.5.1(b) we plot the value of the oscillator strength O(k) in the units of mqp; on a contour
plot. O(k) is defined by

O(k) = v/De*(k) - D0 (k). (5.20)
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Figure 5.1: (a) The normalized dipole vector is plotted as a function of k over the 2D BZ.
(b) The oscillator strength in units of mqpt as a function of k is plotted over the 2D BZ. The
separation of two adjacent contour lines is 0.4 mps.

From Fig.5.1(a) it can be seen that close to K and K’ points, D (k) has a direction approxi-
mately parallel to the equi—energy contour. The rotational direction of D (k) is clockwise (K
point) or counterclockwise (K’ point). The position of the node in W (k) is approximately given
by the direction of light polarization, when we see the direction from the K (K') points, i.e. the
node is rotating in the same direction around the K and K’ points. From Fig.5.1(b) it is clear
that the oscillator strength has a maximum at M points and a minimum at the I" point. For a
given laser excitation energy Fl,ser, the § function in Eq. (5.11) selects optical transitions along
an equi—energy line around K and K’ points. In Fig. 5.2 the optical absorption around K point
is shown and it can be seen that two nodes lie along the equi—energy contour. Detail analysis
will be given in the next section. In Fig.5.3 we plot the optical aborption W (k) as defined in
Eq. (5.11) for Ejaser = 3.0eV for three different values of the light polarization. In (a) P = (0, 1),
(b) P = (-1/2,4/3/2) and (c) P = (1,0). The bright (dark) shading indicates k with low (high)
optical absorption. The rotation of the node with polarization can be seen. Based on the results
given here, an ab—initio calculation of the dipole vector in graphene has been performed by a
different group [60] and their results fully confirm our calculation.

5.3 Expansion around K point

In Sec. 5.2 we have seen that in graphene, the transitions occur vertically and the dipole vector
is equal to the zero vector for the case that initial and final k are not equal to each other. The
optical absorption intensity in graphene is thus only a function of k and given as

W (k) < [P -D(k)%. (5.21)

The fact that the optical absorption around K points shows a node as a function of k can be
understood by expanding D (k) around K (K') point. We take the Eq.(5.19) and expand
the ¢ (k)cY (k) and the — 3", exp(—irf - k)r, around K points. The wavefunction coefficients
for are given by Eq. (3.29) and Eq. (3.28). We are free to choose the phase factors ®, and @,
appearing in Eq. (3.29) and we set &, = &, = 0. Furthermore, we set the wavefunction overlap
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W(K) [arb. unit]

Figure 5.2: The absorption probability W (k) as a function of angle ¢ around the K point.
Solid, dashed and dotted lines, respectively, denote the numerical results obtained from use of
the eigenvectors, and the linear and quadratic approximation in Eq. (5.26). The plots are made
for Ejaser = 2.5eV and the polarization vectors are (a) P = (1,0) and (b) P = (0, 1) [59].

s = 0. The expansion of f(K+k) and f(K'+k) from Eq. (3.22) is substituted into the definition
for the wavefunction coefficient from Eq. (3.29). Then the wavefunction coefficients in Eq. (3.29)
and Eq. (3.28) around K = (0, —47/(3a)) become

1 —ky + ik 1 ky — ik
GK+I) = 5, K +K) = ka” AK+I) = =, ch(K+k) = yT;f”
(5.22)
Around K' = (0,47/(3a)) we get
(K + k) = % &K' +k) = % A (K + k) = % &K +k) = %

In Eq. (5.22) and in Eq. (5.23) we use k = 4 /k2 + k2, the distance from the K or K’ point. Note,
that the products of wavefunction coefficients c¢%c% and cjc are linear function in k; and k.
Similarly, we expand eikTh rg appearing in Eq. (5.19) around the K points. We only keep terms
of linear order of the dipole vector. The product of wavefunction coefficients for A and B atom
is already linear in k& with no constant term. Therefore it is sufficient, if we only consider the

constant terms around K = (0, —47/(3a)) in etk r, as
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Figure 5.3: Optical absorption intensity (dark area for strong optical absorption) as a function of
electron wavevector k over the 2D BZ of graphite. The light polarization vectors P are selected
as (a) P = (0,1), (b) P = (=1/2,4/3/2) and (c) P = (1,0). The laser energy is Ejaser = 3
eV. The optical absorption is zero if the electron wavevector measured from nearest K point is
parallel to P. The node is rotating with rotating P [59, 61].

When we substitute the constant term in Eq. (5.24) and the wavefunction coefficients in Eq. (5.22),
we get an approximation to lowest (=linear) order for the dipole vector around K

3m0pt
2k

3m0pt

D (K +k) =
(K +k) ok

(ky, —kg,0) and D(K'+k)= (—ky, kz,0) (5.25)
Eq. (5.25) says that the direction of the dipole vector is tangential along a circle around K and
K'. The vortex of rotation is opposite for K and K'. For simplicity we omitted the z component
of D which is equal to zero. For getting the optical absorption, we take the inner product
D (k) - P up to the linear terms in k, and k, for a given polarization vector P = (pz, py, ;).

3mopt

P- < UC(k)|V|¥%(k) >=+ o

(pyks — paky) - (5.26)

This result shows that the line pyk; — pyky = 0 in the 2D BZ becomes a node in the optical
absorption for a given P = (p;,py). For a given laser energy, the equi-energy line for optical
absorption gives a circle around the K point. Thus we expect no optical absorption around the
two crossing points of the line pyk, — pzky, = 0 with the circle. This result holds for both the
K and the K’ points to first order, i.e. the location of the node rotates in the same direction
by rotating the polarization direction. However, higher order terms modify this behavior, since
the corrections for K and K' are different from each other.

The existence of a node in the absorption coefficient as a function of k is a special effect
that has never been observed in other materials. It occurs in graphite because the wavefunction
coefficients and the energy dispersion around K point are linear functions in k. In Sec.3.3, we
have shown, that the electronic structure around K point of graphene is special because of the
existence of two inequivalent atoms in the unit cell of graphene. In most materials, a quadratic
term in kg, k, is the leading term in the energy dispersion relation, so that the optical absorption
then does not have a node.

Nevertheless, it is difficult to observe the existence of such a node in the optical absorption
of graphite experimentally. The constraints on the electron wavevector in nanographite ribbons
have been used to observe the node in optical experiments [62, 63]. We will next discuss the effect
of the node for graphite and for carbon nanotubes in more detail in the following sections. As
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far as the linear k approximation for the energy and the wavefunction is valid, the expression in
Eq. (5.26) works well for specifying the node position. However, when the laser energy increases,
the equi—energy contour is no longer a circle, but it is changed into a triangle due to the trigonal
warping effect[36]. In this case, the higher—order corrections for Eq. (5.26) become important
for describing the node positions and the absolute value of W (k).

In Fig. 5.2, we plot W (k) as a function of the polar angle ¢ of the node around the K
point, that is k; = kcos¢ and ky = ksin¢g, with Ejueer=2.5€V, for (a) P = (1,0) and (b)
P = (0,1). Solid, dashed and dotted lines in Fig. 5.2 correspond to numerical results and the
analytic expression within the linear and quadratic k approximations for Eq. (5.26), respectively.
In the case of Fig. 5.2(a), ¢ = 0,7 (or ky = 0) correspond to the node positions of W (k), while
in the case of Fig. 5.2(b), ¢ = 7/2,37/2 (or k; = 0) correspond to the node positions. In the
case of (b), since ¢ = 0 and 7 are equivalent k positions, the value of W (k) is identical, while
this is not the case for (a). It is clear from Fig. 5.2 that the linear approximation of Eq. (5.26)
is sufficient for describing the node position for Fjaser < 3€V; however, we need to use at least
the quadratic term of k for describing the asymmetric peaks of W (k). This asymmetry will be
important for describing the chirality dependence of W (k) for SWNTs, as discussed in the next
section.

5.4 Dipole vector in carbon nanotubes

In the previous section, we showed that the dipole vector in graphite is special which is relevant
to the node of optical absorption. In this section, we derive the dipole vector for single wall
carbon nanotubes. The main difference is that the atomic dipole vector d’, (d’) for the A (B)
atom with index j is not parallel to the atomic dipole vector at a different j. This is due to
the curvature on the cylindrical surface of the SWNT. The SWNT dipole vector D/*(ky, k;) can
be written as a sum over df4 and d% multiplied by the corresponding phase factors of Bloch
functions. The sum is taken over N different sites for A (B) atoms in the 1D unit cell of a
SWNT.

D/ (ky, k)
V@%nmn f* 0 — i(k,—k )R, 17 f* 0 - i(k,—k )R 37
= Na cy (kf)cp(k,) Z eI dy (k) e (ky)cy (ki) Z e ady (k)

Jj=0 j=0

(5.27)
Here the R% and Rf;l are, respectively, the coordinates of the B and A carbon atoms in the
2D unrolled SWNT unit cell. We put the SWNT in a coordinate system with tube axis axis
along z and R’, for y = 0 at the z axis ith zero y component. The vectors k, and k; are the
initial and final wavevectors of the electron, respectively. It is noted here that the second term
of Eq. (5.27) is not the complex conjugate of the first term.

The df4 (d%) are related to one another by rotations around the z axis for different j.
Additionally, we need one rotation around y axis to account for the chiral angle of a SWNT.
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The dil(k,) and d%(kz) are given by

3
&) (k) = ~Uy(~/6 + 0)U.(a;) D €™+ ar,,
£ (5.28)
. o
dj(k,) = —Uy(—7/6 + 0)U.(B;) Z el Br%-
)2

where 6 is the chiral angle of the nanotube. The angle «; is measured from the z axis. The
U,(c;) and U,(B;) are rotational operators for A and B atom, respectively around z axis and
Uy is a rotation around y axis. The contribution of each atom to df.4 is multiplied by a phase
factor "0 KDRY a0 similarly for the B atom. This cancels most of the dipole vectors except
for the dipole-allowed transitions.

5.5 Selection rules and optical absorption intensity in SWNTSs

In the case of a vertical transition, (k, = ky), only the z components of the dipole vector can be
added, and the = and y components are cancelled with one another for N dipole vectors. Thus,
when the polarization vector P is parallel to the nanotube axis, only those transitions (so—called
”vertical transitions”) are possible which do not change either the electronic k state along the
nanotube axis z or the electron wavefunction symmetry in the circumferential direction (i.e.,
within the same cutting line). On the other hand, when P is perpendicular to the nanotube
axis (cross polarization), |k, — ks| = 2/d; = |K;|, where K, is a reciprocal lattice vector of
a SWNT[4, 36], a phase change of 7 is introduced into the expression for the optical matrix
vectors for the opposite carbon sites, which in turn gives non-zero values for the = and y dipole
vectors. Thus the transition from Ej (k) to By, (k) is possible for the cross polarization, which is
consistent with previous results using effective mass theory [37]. Here, E};(k) and Ej (k) denote
the valence and conduction band energy of the y—th cutting line.

It is interesting to calculate D in Eq.(5.27) as a function of k. In Fig.5.4 we plot the
z component of D for a (5,5) armchair SWNT with d; = 0.70 for g = —4...5 along a
continuous 1D &k wavevector.  As stated in the previous paragraph, only the z component of
D is non—zero in the case of parallel polarization. In the upper panel of Fig. 5.4 we show the
matrix element for transitions with parallel polarized light for different cutting lines and in the
lower panel, we show the corresponding transitions. It can be seen that for the A symmetry
bands, optical absorption completely disappears. It is also clear from Fig. 5.4 that the optical
absorption at the VHS has a maximum along k but is zero at k = 0. It is interesting to note the
zero photoconductivity for the metallic (5,5) SWNT since the matrix element along the metallic
band with p = 5 is equal to zero for all k states. The Fig. 5.5 shows a similar plot to Fig. 5.4 for
a (9,0) zigzag SWNT. The diameter of the (9,0) SWNT (d; = 0.70 nm) is almost the same to
the (5,5) SWNT (d; = 0.68 nm). In the case of zigzag SWNTs, however, the optical absorption
for the metallic band p = —6,6 is not zero along the whole band except for £k = 0. Thus we
could separate an armchair SWNT by means of a photoconductivity measurement.

In Fig.5.6(a) the initial and final states for transitions with perpendicularly polarized light
are shown for a (10,2) type I semiconducting SWNT. Only transitions related to van Hove sin-
gularities (VHS) in the joint density of states (JDOS) are shown. For parallel polarization, the
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Figure 5.4: Length of the dipolevector for parallel light polarization in a (5,5) SWNT with
dy = 0.68 nm as a function of 1D k vector. The upper (lower) panel shows the matrix elements

(transitions) that are allowed for parallel polarization. Doubly degenerate electronic states (E)
are indicated by thick lines and not degenerate states (A) are indicated by thinner lines [64].

VHS are denoted by k; (with i=1,2,3) in which the van Hove singularity k£ point is expressed
by a touching of the cutting lines to the equi—energy contour. The energy gaps between valence
and conduction bands at each k; point are usually labelled Ezl\f and E'zsz , where the % orders the
transition energy magnitude in increasing order, and M and S denote metallic and semiconduct-
ing SWNTs, respectively. These E;; energies are usually observed with parallel polarized light
and plotted vs.d; in a Kataura plot [66]. In the case of perpendicular polarization, the k, that
contributes to the JDOS, is the point where the valence and conduction bands have the same
slope. Generally, these points occur for a 1D k value in between the 1D k; VHS wavenumbers for
adjacent cutting lines (see Fig. 5.6). Hereafter we use k;; to denote the 1D wavenumber at which
the VHS transitions between cutting lines of the E;; and Ej; singularities occur (see Fig. 5.6).
There are in general two VHS—enhanced transitions starting from a given initial y index as is
shown by labels (pl) and (p2) in Fig.5.6(a). In Fig.5.6(a), only transitions originating from the
p—th line are considered and illustrated by arrows pointing towards the y + 1 cutting lines:

(p1) Eigz = Eﬁfe(km) - Eﬁ(ku)a
(p2) Efy = B y(ki3) — Ej(ki3)-

The parameter ¢ depends on which of the two inequivalent corners of the 2D BZ, K or K’,
the transition occurs, and whether the SWNT is semiconducting type I or II. In Eq. (5.29) we

(5.29)
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Figure 5.5: The same plot of Fig. (5.4) for a (9,0) SWNT. The matrix elements for the metallic
bands (u = —6,6) are not zero here [64].

have selected the two transitions that start from the cutting line with the E}, singularity. In
Eq. (5.29) we have £ = —1 for a semiconducting type I tube for k;; on 4 cutting line near the
K point. When we select p around K’ we get £ = 1. For a semiconducting type II SWNT, the
situation is just the opposite and we get £ =1 (£ = —1) for p near the K (K) point.

In Eq. (5.29) we use the label EZS] for a semiconducting SWNT, for which the electron goes
from E} to Eﬁ 4o with £ = £1. Here the labels “” and “j” in Eg are defined by the fact the
cutting line with index p has the F;; singularity and the cutting line with index p + £ has the
E;; singularity. The two transitions in Eq. (5.29) are shown in Fig.5.6(a). When we consider
relatively small transition energies, we can neglect both the trigonal warping effect and the
electron—hole asymmetry (see Sec.3.3). Then we can use the following simplification:

B35 + Eigl_

; (5.30)

S

) Eigz; =
Thus the resonance energy EY, for perpendicular polarization appears in the energy gap of EY)
and E%,, as is shown in Fig.5.6(b). Similar results can be obtained for other transitions. The
splitting of the EY| transition is however somewhat special, since both E, and EY; are larger
than Ef,. So far we assumed that the overlap parameter s vanishes (s = 0) in calculating the

electron energy dispersion in the tight binding calculation [4]. A non-zero s value is essential
for obtaining a larger (smaller) energy band width in the conduction (valence) bands. However,
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Figure 5.6: (a) The three parallel lines labelled by p — 1, g and g + 1 are cutting lines for a
(10,2) tube near the K point. For parallel light polarization, transitions occur at VHS & points
ki1, ko and k3, denoted by a filled circle, and for perpendicular polarization, the k1o and k3,
are indicated by open circles. For perpendicular polarization, the two transitions at VHS in the
JDOS, labeled by pl and p2 are shown {Eq. (5.29)}. (b) Energy dispersion along 2D k parallel
to Ki. The energies at the VHSs k; are denoted by E;;. If we neglect the trigonal warping effect
and electron-hole asymmetry, the resonant energies for perpendicular polarization are given by
E?, and Ef; [65] .

as far as we consider parallel polarization, an enlargement of the conduction band width and a
shrinking of the valence band width for the same p value cancel each other to linear order in s,
and the effect of s will only appear to order s?. Thus for the value of s = 0.129, this effect can
be neglected around the K point of the 2D BZ {see Eq. (3.20)}.

However, it is no longer true for perpendicular polarization. The energy difference between E;;
and Ej; depends on the amount of the electron-hole asymmetry, which is contained in the tight
binding overlap parameter s. In Fig.5.7(a) we show an example of the band structures of a
(10,10) metallic SWNT with s = 0 (left) and s = 0.129 (right). Solid circles indicate VHS
k points. In Fig.5.7(b) we plot the joint density of states (JDOS) for these band structures.
We find a splitting between the E12 and E9; transition energies when s # 0 (solid line). For
s = 0, the F15 and E9; transitions occur at the same energies (dashed line). The splitting in
Fq9 — Ey for s = 0.129 is about 0.2eV and thus should be observable in optical experiments.
Alternatively, the dependence E1o — E5; on s could be used to determine the exact value of s
for different SWNT diameters. Further experimental work is needed to measure s.

5.6 The Kataura plot for parallel and perpendicular polariza-
tion

The selection rules for parallel and perpendicular polarization allow us to calculate singularities
in the joint density of electronic states (JDOS) for light polarization parallel and perpendicular
to the SWNT axis. Plotting the Ej; and Ej; vs. SWNT diameter d; gives the so—called Kataura
plot [66], that is used to analyze optical and Raman spectra. This plot is originally given for
parallel polarization and the F;; are plotted vs. SWNT diameters d;. Experimentally the F;;
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Figure 5.7: The electron-hole asymmetry leads to different energies for the electronic transitions
for perpendicularly polarized light. In (a) we show E(k) for a (10,10) tube around the K
point. The dashed lines (left) are for tight binding parameters ¢ = —2.89 eV and s = 0 and for
the solid lines (right) t = —3.033eV and s = 0.129 was used. (b) JDOS for transitions with
perpendicularly polarized light for a (10,10) SWNT. The dashed and solid lines in (b) are the
calculated absorption spectra for (a) left and right, respectively [65].

energies can be obtained by Raman experiments, using a tunable laser [27] or by comparing
Stokes and anti-Stokes intensities [67] or by photoluminescence (PL) experiments [68], where
the ratio between two Fq9 and F11 can be determined.

Alternatively, we can also take peaks in the RBM Raman spectra of bundles and assign
them to resonance of a particular SWNT diameter with Fj,5,. In this way we analyzed the
experimental data that we use. The experimental points have been measured using six different
Elaser + 1.17,1.59,1.92,2.41,2.54 and 2.71eV [69]. In order to compare them to the calculated
Kataura plot for parallel and perpendicular polarization, shown in Fig. 5.8(a) and in Fig. 5.8(b),
respectively, we plot the same set of experimental points “X” in Fig.5.8(a) and in Fig. 5.8(b).
Each “X” corresponds to a peak in the RBM Raman spectra obtained from randomly aligned
bundles [69]. If we assume only resonance for parallel polarization, we would expect each “X” to
lie in a region of Ej; points. However, when we plot all features that appear in the experimental
spectra of SWNT bundles, several small intensity peaks cannot be explained by this method,
since they appear in the gap region of Ej; transitions in Fig. 5.8(a). Comparision with calculated
values of VHS energies of perpendicular polarization suggests that an “X” that lies in between
two Ej; transition regions in Fig. 5.8(a), lies in an E;; transition region in Fig. 5.8(b). This most
clearly holds for the experimental data around 1.6 eV, which are in the gap region between E’QS2
and E}. Most of these points can be seen to be far (i.e. ~ 0.2 eV) from the E5, and E}{
transitions but do lie in the EP; region. We thus assign these experimental data points to the
Els3 transition with perpendicular polarization. Smaller RBM data around 1.2 eV may consist
of ES, (parallel polarization) or Ef, and EX (perpendicular polarization) transitions. When we
go to energies above 2.2 eV, the situation is no longer clear, and the orientation of the resonant
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Figure 5.8: Energies of van Hove singularities vs. tube diameter (Kataura plot) for (a) parallel
polarization and (b) perpendicular polarization. In (a) the transitions are indicated as follows:
O E?, ,0ES,, e EM, O ES;, A E},,mENM < E5. In (b) we use the same symbols to denote
the initial state and plot transitions that have a VHS in the JDOS for neighbouring cutting
lines. The “X” show experimental data for SWNT bundles [69]. The plots are made for the
values of t = —3.033 eV and s = 0.129 [65].

SWNTs with respect to the light polarization should be known in order to make an assignment
for transitions with parallel or perpendicular polarization.

5.7 Optical absorption at van Hove singularities

In Fig. 5.9 we plot for a (10,0) semiconducting nanotube the optical absorption spectra (thick
solid line) and joint density of states (JDOS, thin solid line) for parallel polarization. The
thick and thin dotted lines show, respectively, the optical absorption spectra and the JDOS
for perpendicular polarization. As was discussed, the resonant energy positions depend on the
polarization direction of light. When we compare the optical absorption spectra and JDOS,
the optical spectra become more sharp than JDOS as a function of energy when we explicitly
consider the matrix element, though the spectral shape near the singular points for the two cases
are similar. It should be mentioned that we do not consider the depolarization effect discussed
by Ajiki and Ando [70] in which the optical absorption disappears almost perfectly for the
perpendicular polarization. The self-consistent screening effect might be supressed in the case
of SWNT bundles, since we do observe the perpendicular polarization spectra experimentally in
SWNT bundles[48, 71, 72, 73].

In Fig. 5.10 we plot the optical absorption matrix element at k points along the K-M and
K-TI lines as a function of the distance of the k£ vectors from the K point in the 2D BZ. The value
of the matrix element in Fig. 5.10 is given by Eq. (5.27) for parallel polarization (z component
of the optical matrix vector). The matrix element is increasing in the direction from K to M
but decreasing from K to I'. At the I' point, we do not have an optical absorption of the =
band. Thus, depending on the position k; of the VHS in the 2D BZ of graphite, we can expect a
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Figure 5.9: Energy dependence of the optical absorption of a (10,0) tube with parallel (solid line)
and perpendicular (dotted line) polarization. The thick (thin) line is calculated with (without)
the matrix element included, and the results show that the van Hove peaks are enhanced by
explicit consideration of the matrix element in calculating the optical absorption [59].

corresponding chirality dependence of the optical absorption intensity. In Fig. 5.11, we plot the
optical matrix element of Eq. (5.27) at the van Hove singular point k; as a function of chiral angle
for parallel polarization. The figure is plotted for a given laser energy of 2.41eV (as is commonly
used in Raman experiments) and the (n,m) values are selected within the resonant window of
|Ei; — Elaser| < 0.05eV. The solid lines in Fig. 5.11 correspond to a smooth evaluation of the
matrix element along the equi—energy contour of 2.41eV. Each point in Fig. 5.11 corresponds
to a different (n,m) nanotube, and the solid and open symbols correspond to metallic and
semiconducting nanotubes, respectively. From Fig. 5.11, most points on the two lines in the
figure, show a chirality dependence of the absorption matrix elements. The relative asymmetric
appearance of the two curves in Fig. 5.11 comes from the fact that the k; positions exist on
inequivalent cutting lines of the 1D BZ relative to the 2D BZ as is shown in the inset, and this
inequivalence arises from the trigonal warping effect [36]. In the inset of Fig. 5.11, we show the
k; positions as the bold parts of the equi—energy contours for the laser energies from 1.0 eV to
2.5 eV in steps of 0.5 eV. When the chiral angle 6 of a SWNT changes from 6 = 0 (zigzag) to
0 = 7/6 (armchair), the k; position will change in the 2D BZ from Z1 (or Z2) to Al (or A2) of
the bold parts of the contours. Around the K (or K') point, the value of the absorption matrix
element has a three-fold rotational symmetry, and depending on the position of the cutting
line relative to the K point, the two cases of the bold parts (the long or short ones) can be
considered. Thus the matrix element has relatively large values for chiral angle close to 7/6.
The chirality dependence of the matrix element comes from the trigonal warping effect of the
optical matrix element, as is shown in Fig. 5.10. In the case of semiconducting nanotubes, the
k; point is along either the A1-Z1 or the A2-Z2 curve, depending on their (n,m) values, while
in the case of metallic nanotubes, two k; points appear on the A1-Z1 and the A2-7Z2 curves. It
is noted that the corresponding two E;; values at two k; position are different from each other.
Because of the trigonal warping effect, in the case of armchair nanotubes, the two FE;; values are
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Figure 5.10: The optical absorption matrix element for parallel polarization along the high
symmetry lines from K to M and from K to I' as a function of distance of the k vector from K
[59].

equal to each other [36].

From Fig. 5.11, it can also be seen that the splitting between the two lines is a maximum
for zigzag tubes (§ = 0). In the case of armchair tubes (6 = 7/6), the splitting becomes zero
because the k; points aer equivalent to each other. For a given nanotube chirality, except for
the armchair case, the width of the splitting increases with increasing laser energy.

5.8 Possible experimental setup for observing the theoretical
predictions

Although all the present results are based on the standard theory of optical absorption, the
results presented here are of particular interest in connection with the recent progress in single
nanotube Raman spectroscopy. Here, we discuss possible experimental setups for observing the
node phenomena in graphite and the chirality dependence of the optical matrix elements in
SWNTs.

The nodes in the absorption matrix element cannot be observed easily by optical absorption
spectra of graphite, since the optical absorption does in general not select the k vector of the
electron. However, we can propose some possible circumstances under which the effect of the
nodes in graphite and in SWNTs can be observed. One possibility is to carry out the optical
absorption experiment on a nanographite ribbon. The nanographite ribbon is defined as a strip
of a graphene layer with a fixed width and its geometry and electronic structure was given in
Sec. 3.4. Because of the finite size in the direction of the width of the ribbon, the wave vector
in the direction perpendicular to the ribbon direction becomes discrete. The situation is similar
to that for a SWNT, but the difference is that the dipole vectors, < ¢(r — R;)|V|¢p(r — R}) >,
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Figure 5.11: Chirality dependence of the optical matrix element at the van Hove singular point
k; for 2.41€V in units of mep in Eq. (5.27). The symbols correspond to SWNTs which have a
van Hove singularity in a window of 0.05 eV around the laser energy. Full symbols correspond
to metallic tubes and open symbols to semiconducting tubes. The transitions are indicated as
follows: (O E11, 0 Fo, & E33, A Ey, < Es5, and 7 FEgg. The inset shows the equi—energy
contours from 1.0eV to 2.5eV in steps of 0.5eV. The possible van Hove singular k; points are
given by the bold part of the equi—energy contours. Al and A2 show k; positions and the
corresponding matrix element of armchair nanotubes, while Z1 and Z2 show those of zigzag
nanotubes [59].

are parallel to one another on a plane of the ribbon, while that is not the case for the cylin-
drical surface of SWNTs. The nanographite ribbon lies entirely in plane, the two dimensional
electron wavevector is conserved. Unlike in SWNTs, transitions gy — p £ 1 are not possible in
nanographite ribbons. Thus we should be able to detect the node by a rotation of the polar-
ization vector in the graphene plane relative to the direction of the nano-graphite ribbon. The
second possibility for observing the node is a study of the polarization dependence of the D—band
spectra of 2D graphite. In the double resonance Raman theory, the observation of the D—band
spectra depends on the condition ¢ ~ 2k where ¢ and k are the phonon and electron wavevectors,
respectively [55]. As is discussed in Sec. 4.3, all ¢ vectors which satisfy ¢ ~ 2k around the K
point contribute to yield a broad D-band feature. If there is a node in the absorption spectra,
some ¢ vectors will not contribute to the D-band spectra, and this effect results in a narrow
spectral width of the D-band frequency as a function of the polarization because of the trigonal
warping effect of the phonon energy dispersion around the K point. The third possibility is
that we can observe the chirality dependence of the resonance Raman intensity, as discussed in
Sec. 4.2.
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The chirality dependence of the optical absorption should be observed both in semicon-
ducting and metallic SWNTSs, if we can observe their single nanotube spectra. In the case of
semiconducting nanotubes, the k; positions depend on the i value of Ej;; and on (n,m) which
satisfies 2n+m = 341 or 2n+m = 3£+2 (£ integer) [36]. When 2n+m = 3£+ 1 (semiconduct-
ing 1), the VHS point for 7 = 1 exists around the K-T' symmetry line, while for 2n +m = 3£+ 2
(semiconducting 2), the VHS point for 1 = 1 exists around the K—M symmetry line as shown in
Fig.3.11. The situation becomes opposite for ¢« = 2. In fact, most experimental data we have are
for the laser energy in resonance with the VHS Foss. For semiconducting 1 SWNTs, Ey occurs
at K—Msymmetry line and for semiconducting 2 SWN'Ts, F9y occurs at K-I" symmetry line as is
shown in Fig. 3.11. Thus by comparing the relative intensities corresponding to EY, and to ES,,
we might be able to establish whether the SWNT is semiconducting type 1 or type 2. For the
experimentally important E§2 singularity, we predict that the 2n 4+ m = 3¢+ 1 (semiconducting
1) have stronger optical absorption.

In metallic nanotubes, the EZI\Z/[ VHS peaks are split into two peaks as can be seen from
Fig.3.11. The higher and the lower energy peaks are related to the k; positions around the K-T'
and K—M lines, respectively. Thus the lower energy peaks have relatively larger optical intensity
than the higer energy peaks whose difference in intensity is the largest for zigzag nanotubes and
zero for armchair nanotubes. Actually in the case of armchair SWNTs, for which there is no
splitting, we should not observe such an effect. These observations in SWNTs will be possible
by using many different laser lines or a tunable laser, which will be useful for assigning (n,m)
values using single nanotube Raman spectroscopy.

5.9 Derivation of electron light interaction

Before finishing this section, we derive an analytical expression for the mqp; defined in Eq. (5.18)
which will be useful for calculating the optical absorption intensity. The numerical value is
important when we want to get a quantitative value for the absorption or relaxation time for a
photoexcited electron by recombination with a hole. This is related to the PL process because
hot electron recombination reduces the PL or Raman spectra. We used the calculated value of
Mopt, = (¢1|a%|¢2), where ¢1 and ¢y are the two 2p, wavefuntions for atoms located on the zy
plane that are separated by ag when evaluating the dipole vector in Eq. (5.19). In the definition
of mgpy in Eq. (5.18), the two electrons are at the origin and at rh. Their coordinates are given
by (0,0,0) and (—ayg,0,0), where ag = 2.712 is the C-C distance in units of [at.u].

For the analytical calculation of Eq. (5.18) we expand the wavefunctions in a sum over Gaussians.
The origin is in between the two atoms so that « and S as shown in Fig. 5.12 are the x coordinates
of the two atoms. We get = —(agp — @) and thus a definition equivalently to Eq. (5.18) for
Mopt 18

o = (211 (5)

O zfg(r)>, (5.31)

where f; and fo are radial parts and given by a sum over Gaussians. The coordinates of the
atoms are chosen to be different for each overlap of Gaussians with indices k and [. Thus we have
ay; and —(ag— ayy) for the z coordinates of the two atoms. The radial parts of the wavefunctions
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Figure 5.12: The coordinate system used for calculating mqp;. The origin is located along a
bond between nearest neighbours. The distances of the two atoms from the origin are o and S.

therefore are
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We substitute f; of Eq. (5.32) and Eq. (5.33) into the definition of mgp, and get

—(r+(ag—a)?—v* -2l ay—=
Mopt = ZIkIl/ZZ exp [ ( ( 2)) L 5
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To simplify the integration, we choose a special value for ay; (shifting the origin in Fig. 5.12)
that one exponential function in the integral disappears. This condition is given by

X exp [

ag
2
(0% ag —
Okt BT K _ ) and thus ap = k. (5.35)
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When we substitute ay; of Eq. (5.35), the integration over x disappears. We now change the inte-
gration from cartesian to spherical coordinates by substituting = rsinf cos ¢, z = rsinfsin ¢
and z = r cos @ and the Jacobian for dr and get

—(ap — akl)Z] exp [—aﬁl] 1

Mopt = kaflakzexp[

2 2 2
kI 220’6 201 1 o1 (5.36)
—r2 /1 1
x / rtcos?fexp | — (= + = | | sin6drdodg.
2 0, O]

Substitution of x = cos § and integration over z and ¢ gives

47 —(ao - Oékl)Q —Oéil 1 4 7‘2 1 1
mopt:%l:?IkIlakleXp [T exp 2‘712 U_l2 ™ exp Y 0—%—#0—? dr.(5.37)

To evaluate this integral we use

o) 2
4 T - 5/2 i
/O T eXp[gkl] = 3akl \/; (538)

The final formula for mgp; becomes

Ao, [w —(ap — ag)? —a3, 1
mopt:ZT 5 XD |55 | XD 202 . (5.39)

11
kol k o2 T o2

For ay; , we must evaluate and substitute Eq. (5.35)x for each term in the sum. We use the
values of I, and oy, from Tab. 3.2(a) The result is mqp; = 0.21 in units of [at.u.]™".



Chapter 6

Electron phonon interaction

In this section we show how to calculate electron phonon coupling constants
with tight binding approximations for graphite and single-wall carbon nanotubes.
Calculated results of electron phonon matrix elements for photo—excited electrons
are given as a function of electron wavevector k and phonon mode v.

6.1 Electron phonon interaction in graphite

The value of the crystal potential at position r in the crystal is generally a time-dependent
function because of the atomic vibrations of a phonon mode v with frequency w!, (q) and
wavevector q. In the following, we adopt the “rigid-ion approximation” or “adiabatic approxi-
mation”, which means that the potential of the atom is perfectly following the movement of the
atom. In such a model, the total potential is given by a sum over atomic screened ion potentials
v(r — RY). Here RY is the coordinate of the atom c=A,B in the v—th unit cell of graphene
that are displaced from equilibrium position due to the phonon. For time dependent RY, the
displacement is described by the phonon eigenfunction S%(q), where v is the phonon branch
and 0 = A, B are the atom indices. For small amplitudes of the vibration (in order of a few
percent of the bond length), we can expand the potential around the equilibrium position in
the normalized phonon eigenfunction S;(RY,q,t) = Sy (RY, q) exp {iwy; (q)t}. The correction
to the potential at position r due to the vibration is then given by the deformation potential

Ny—1

- > ZZA” )Vo (r —Rg) - S5 (R, q) exp {+iwl, (q)t} - (6.1)

v=0 ¢=A,Bv=1 q

The “+” and p indices refer to whether a phonon is created (“—” and p = F) or absorbed (“+
and p = A). The amplitude of the vibration, A}(q) depends on the temperature 7' through
the number of phonons in the mode with index v given by N7, o and the number of atoms N,
that contribute to the phonon. The potential energy at the maximum displacement is given by
k(AZ)Q/Q = hw with the spring constant k = mw?. where m = 1.9927 x 10726 kg is the mass of
a carbon atom. Thus the vibration amplitude is given by

2ANi, () (p=A,E). (6.2)

AZ(Q): Wa
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The number of phonons N, , and N, . at phonon wavevector q for the phonon absorption
and phonon emission processes, respectively, are given by Bose-Einstein distributions

1 1
N\l//ibA (q) = hw? a‘nd NVle( ) = hw? -I_ 1 6 3
exp () -1 exp (") ~ 1 (63

Here kg = 8.617 x 10 eV /K is the Boltzmann constant and the additional term “+1” in N%,
corresponds to spontaneous emission of one phonon. In first—order, time-dependent perturbation
theory the matrix element between initial electron state k, and final electron state k; with
energies E, and Ey, respectively is given by

Ny—1
MMy, k) == 3 N (W (r, k)[4 (q) Vo (r — RY) - SH(RY, @)U’ (r, k,))  (6.4)
v=0 0=A,B

Here ¥*(/) denotes an electron eigenfunction with the indices ¢, f being the initial and final band
index, respectively. k, and k are the initial and final wavevectors of the electrons, respectively.
SY(q) is the phonon eigenfunctions at an atom position RY with wavevector q, which is given
by multiplying a phase factor to the solution of the 6 x 6 dynamical matrix S%(q).

S;(Rg,q) = S;(q) exp(iq - Ry) (6.5)

Similarly the electron eigenfunctions are expanded as

U'(r, k

cs(K)p(r — Ry). (6.6)
u 0s=A,B

We can substitute
RY =Ry +r)’ (6.7)

where / is for the /-th atom of type s. The relative vector r ° starts from a o atom at R} and
goes to a s atom at R¥. When we substitute Eq.(6.6) and Eq.(6.7) into Eq.(6.4) we can obtain
the momentum conservation null, k, = ky £+ q. Here the “4” is for the emission and the “-” is
for phonon absorption. Eq.(6.4) becomes

MLk, ki)

: | | (6.8)
= Y A(q)el () (k,) exp(—ixfy - k) exp(inf, - k,)S5(q) - mp (i, ),

! !
Ll',o,s,s

where mp is the atomic deformation potential vector, that is the value of the three center
integral

mp (a7, 1) = [ ¢ (6 1) Vo(e)plr — 17 (6.9

From Eq.(6.8) it is clear that if the phonon eigenfunction S” and mp are perpendicular to each
other, there is no electron—phonon coupling. In Sec.6.2 we can show analytically that mp
does not have a z component and therefore only in—plane vibrations can make electron phonon
interactions in graphite. We need to calculate mp for many different combinations of the three
centers. However, a numerical integration in 3D real space takes a huge computational time.
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6.2 Calculation of atomic deformation potential vector in graphene

To get a numerical value, we use electronic wavefunctions ¢(r) of the form given in Eq. (3.31) and
a potential v(r) of the form in Eq. (3.33). Both ¢(r) and v(r), which are obtained from a first—
principle calculation for graphite are expanded into a Gaussian basis set to solve the three center
integral in Eq. (6.9) analytically. The coefficients for the expansions of the = wavefunctions and
the screened potential v are given in Sec. 3.3 in Table 3.2. We choose the graphene plane in the
yz plane. The center of the potential can be put to the origin and the A and B atom to r4 and
rp respectively and have values

ry = (07()’0)’ raqg= (anAazA)a rp = (anBazB)-

The potential of the electrons in the field of an atom is

o(r) = %f: p— (;T‘f) . (6.10)

Here vy, and 7 are given by the fitting of the screened potential and listed in Table 3.2(b). When
we apply the gradient to the potential in Eq. (6.10) we get:

Vv()——V 3Z'Ukexp<2 2)<1+:—z> Zj (6.11)

k

For the wavefunctions in Eq. (6.9) we substitute the form we gave in Eq. (3.31) located at posi-
tions r4 and rp, respectively. Substituting the wavefunctions and Eq. (6.11) for the gradient of
the potential into Eq. (6.9) yields

mp= Y ~1ib [ [ [ e | e -+ - )] (6.12)

gk
2 1 2 ',I"/T
(1 + r_2> — exp (—rz) 2 | y/r |dr.
)T 27 2/r

Here we defined 72 = z? + y? + 22. Sine ry and rp lie in the yz plane and the value of the
integral does not change when rotating r4 and rp around the z—axis. The integral can only
be done analytically if one of the exponential terms such as exp{y(..)} or exp{z(..)} disappears.
A transformation is made to a new coordinate system by rotating the two points r4 and rp
around the z axis by an angle «;;. The indices ij are for the two electronic wavefunctions
and the potential. The angle of rotation, we choose to do the integration is different for each
Gaussian overlap combination from the three centers. The rotation is shown in Fig. 6.1.

-1
xexp | s—{z? + (y —yp)* + (z — 2B)*}
20'j

The new coordinates for the atomic wavefunction at r4 are

/ .
Ya = YA COS Q5 — 24 SIN Q5

2y = yasina;; + 24 €os aj.
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@

Figure 6.1: The electronic wavefunctions for atoms A and B and the potential V are located
as shown in (a). In (b) the top view is shown. The integration can be done analytically, when
rotating A and B atom to A’ and B’ because the y component of deformation potential vector
vanishes. After integration, we must rotate back the obtained deformation potential vector.

We use the same form for the rotation of rg. When we substitute the new coordinates for r4
and rp into Eq. (6.12), the new m/, is rotated with respect to mp by an angle w;;.

oo o0 o0 _1
nﬁzi}%qm/ / / m{%ﬂﬁ+w—wf+u—dVﬂ
—00 J —00 J —00 7

1,9,k
-1, 1 \2 1 \2 Y 1 —r? 2 z/r
X exp ) {x +(y—yp)+(z—2zp) } I+ ) 5exp|-5 |7 y/r | dr.
T} )T 27’,c Z/T
(6.13)

Multiplying out the exponents gives

_7,_/2 —7"’2 00 [e's} 00
m’, = Z —I;1;Vy exp ( 20‘;) exp 20129 / / / (6.14)
i,j,k 7 ] —00 J —00 J —0O0
2 / / / / 2 -73/7"
— 1
exp r expl y Ya . Y8 expl z fa 4 B 1+ 5 ) =42 y/r |dr
202 o?  o? o?  o? 2 ) r?
ijk i J i J k z/r
Here we used ) ) ) .
2 T 2T 3t 3
oik  Oi 05 T,

We can now always choose a coordinate system in which the exp[y(..)] disappears. That is a

value «;; must be found so that
(6.15)

<

!/ !/
Y
e
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In terms of the old coordinate system and the rotation angle o;; this can be written as

ACOSQy; — ZASINQ;;  YpCOSQ;; — ZpSin oy,
Y A 24+ Y Y =0. (6.16)
o; o;

The solution to this equation is given by

yAUJQ- +ypoy

5

ot 6.17
ZAO'J2- + z2Bo; ( )

;5 = arctan

Thus in the system which is given by the solution to the above equation, the integral reduces to
the easy form

12

T T
mp =3~ LIV exp ( 20;;) exp ( 205) (6.18)
(]

i,k

e’} o0 e’} _7,2 Z’ Z’ ,,.2 1 £E/’I"
X / / exp >— | exp {2 —’3 + _1;' (1 + —2) —2:102 y/r | dr.
—00Jd—00J—c0 20ijk o; 0 )T 2

Hereafter, the following abbrevations are used:

2 o (7%
Aijk: = —Iz'Iij eXp ( 201.2 ) €xXp 20]2. ;

1 _7,/2 _7,/2 A

A A B | _ “ijk

ijk = —ﬁIinVk exp ( 952 ) exp ( 552 | = 2 (6.19)
! k ! ! J k

cij= A48
i g;

Another transformation to spherical coordinates is made to get rid of the singularity at » = 0.

We set
r? =22 +y? + 22, dr = r?sinfdrdfdey, (6.20)

x =rsinfcosp, y=rsinfsinp, z =rcosé.
The atomic deformation potential vector becomes in spherical coordinates

m’,

[e's) T 2w —7‘2
Z Aijk / / / r? exp —5— | exp (c;j7 cos 0) sin f(sin O cos ©)?
—0Jo Jo 20

1,5,k ijk
sin @ cos @ 0o . pom
x | sinfsing | dpdfdr + Z Ak / / / r
cosf i,k —o0 J0 JO
2 sin @ cos @
X €xp (2 5 ) exp (cijr cos ) sinf(sinf cos p)? | sinfsing | dpdfdr.
Tijk cos 6

(6.21)
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The integration over components involving cos ¢ and sin ¢ gives zero and only the cos @ gives a
: ! !
nonzero integral. mp,, , m Dy are therefore equal to zero.

27
Z Aijk / / / (sin 6 cos ¢)? cos O exp ( ) ) exp (c;jr cos ) sin Odpdfdr+
o

a]!

27
Z Ak / / / (sin @ cos ©)? cos 6 exp ( ) ) exp (cj;7 cos ) sin Odpdfdr.
w

7.75

(6.22)

With a substitution of ¢ = cos @ and sin?@ = 1 — 2 the integrals become:

27
Z Aijk / / / (cos ©)?(t — t3) exp (2 k) exp (ci;rt) dpdtdr+
T3

7.7!

27
Z]k/ / / 4t — t3)(cos @)% exp (2 5 ) exp (c¢;;rt) depdtdr.
irjsk ijh

These integrals can be done analytically. First we integrate ¢, which gives a factor 7. For the
integrations over r and ¢ we define temporary variables ¢; and %o as

(6.23)

t —/ / t(1 — %) exp(—r?b + rct)drdt  and

(6.24)
to = / / t(1 — ) exp(—72b + rct)drdt.
We substitute the following values for b and ¢ :
b="b 1 and c=c (6.25)
= 0 = = Cij- .
2(7”,C
To evaluate t; we first remove the r? by writing
*1
t1 = 72 / / (1 — ) exp(—r?b + rct)drdt. (6.26)
Then we make a full square by using
¢ 242
exp(—r2b + rct) = exp { (r— ;—b)zb} exp(c4—b). (6.27)

We also shift the integration boundaries and get

2t2
(1-¢ : :
t1 = ch/ /Ct/%t t?) exp(—72b) exp(—— I )drdt (6.28)



78 CHAPTER 6. ELECTRON PHONON INTERACTION

We now do the integration over r that gives an error function Erf defined as

Erf(z / exp( t2 dt. 6.29
v (6.29)
We thus get
2 11 1 + erf(ct/2+/D) c2t?
= — —(1—+# dt. :

We first carry out the derivative for ¢ and then the singularity at ¢ = 0 disappears. Note that
for ¢ = 0 the integral disappears because of the odd function in . Then we can integrate and
get

2
2 (—6\/50—4- (6b—c?) ers \/7?E1rf(2$/E

)
) (c#0) and ¢ =0 (c=0).

(6.31)
t =
Vbt
We now evaluate t2. One “¢” and one “r” can be removed by writing
to = / / —(1 — t?) exp(—7?b + rct)drdt. (6.32)
dct
Now we make a full square for the exponential function in r. Then ¢ becomes
¢ 11 9 1 + erf(ct/2v/b) c*t?
to = — —(1 -1 drdt. 6.33
2 dc4/1 t3( )\/7_1- 2\/5 exp( 4b ) " ( )
The final result for ¢, is
2
2vbe (60— c2) — (1262 — 4bc2 + ¢*) e /T Brf(=S=)
to = ( )~ - ) 2VBT  and o =0 (c=0). (6.34)
2b2 ¢t
Then the final result for the dipole vector is
! .. ! ..
mp, =1 Y Agrti(ijk) + Aljta(ijk). (6.35)

ijk

We now go back to the coordinate system, in which the A and B atoms are in the xy plane.
We therfore exchange z and x axes and the y axis stays the same. In this system the atomic
deformation potential vector mp is given by

Mpgy = ZCOS(aij)mIDZ (636)
ijk

Mpy = Z sin(aj)m’p, (6.37)
ijk

mp, = 0. (638)
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6.3 Calculated results

We calculate the z and y components of mp by evaluating the Eq. (6.36) and Eq. (6.37). This
is done as follows. For each triple of Gaussians, denoted by indices 7,5, and k, we calculate
Aijk, Ay, and c;jj as defined in Eq. (6.19) and b;; in Eq. (6.25). Hereafter, we calculate ¢; and
to as defined in Eq. (6.31) and Eq. (6.34) for each triple of indices i, j and k. This result is then
substituted into Eq. (6.35). Hereafter, we substitute Eq. (6.35) and Eq. (6.17) into Eq. (6.36)
and Eq. (6.37) to get the value of mp. The coefficients Iy and oy for the expansion of the
wavefunction into Gaussians are given in Table3.2(a). Similarly, the coefficients Vi and 7 for
the expansion of the potential into Gaussians are given in Table 3.2(b).

We also have to substitute the coordinates of the centers of the two wavefunctions, which are
denoted by r4 and rp, respectively. Since we have two electron wavefunctions, we fix r4 and
calculate mp for different positions of rp. In Fig. 6.2(a) we plot the direction and magnitude of
mp with a fixed r 4 in the first neighbour shell to the potential. We denote the lattice site of the
potential by a triangle and the lattice site of r4 by a square. The value of mp is calculated for
changing rp. The value of mp is largest, if both wavefunctions are located on the same atom
site, that is r4 = rp. In Fig.6.2(a), the largest value occurs at about 3.3 eV /at.u. Such a value
is typical for solids. We have to keep in mind, that the deformation potential is much smaller
than the values in Fig. 6.2, since we multiply each vector mp by the phonon displacement given
in Eq. (6.2), which has a typical length of a few percent of the bondlength, that is in the order of
0.01 at.u. In Fig.6.2(b) we show a similar plot for the second neighour shell and it can be seen
that the maximum interaction occurs at 0.7 eV /at.u. In Fig.6.2(c) and Fig. 6.2(d), we fix r4 in
the third and fourth neighbour shell. It is clear that the fourth neighbour shell’s contribution
is already negligibly small when compared to the largest value in In Fig.6.2(a). In fact, the
maximum value of mp in the fourth neighbour shell of the potential is 0.1 eV/at.u. and that
value is about 3 percent of the maximum value of the first shell. Thus in our calculations, we
omit interactions from the fifth and more distant neighbours.

We now evaluate the electron phonon coupling matrix element in Eq.(6.4). Since the
wavevector of the phonon, q is determined by the initial and final electron wavevector, k, and
k¢, respectively, we plot the electron phonon coupling for a fixed k, around K. All possible k;
and q are determined by electron—-momentum conservation. In Fig. 6.3 we fix k, at an angle of
90° measured from positive k; axis. The electron phonon coupling with electron states around
K’ is shown for different phonon branches. The atomic deformation potential vector defined in
Eq. (6.9) has a special symmetry property that allows us to understand why accoustic modes
at q = 0 have zero electron phonon coupling in graphite. This fact can be understood when
considering

mp(rpy,rys) = —mp(—Tyg, —1s). (6.39)
Eq. (6.39) says that the sign of mp changes, when we invert the relative coordinates for two
electron centers at vectors r;; and ryy. When we invert the relative coordinates r;s and rpg,
we also change the potential from A to B or vice versa. Because of inversion symmetry of the
graphene lattice, we can always find atoms located at —ryy and —rpy when we change the
potential.

The results are shown in Fig. 6.4 for intra—valley scattering around K point. It is clear that
an electron does not scatter to the same state because the line for initial angle equal to the final
angle is zero.
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Figure 6.2: The magnitude and direction of the deformation potential are indicated by contour
lines (value in eV per atomic unit) and unit vectors. The plot is made keeping two centers of
the three center integral in Eq.(6.9) fixed. The potential and one electron wavefunction are
indicated by a triangle and a box, respectively. One electron wavefunction is fixed in the (a)
first, (b) second, (c) third or (d) fourth neighbour shell. One electron wavefunction is at variable
positions and denoted by a filled circle.
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Figure 6.3: In (a) the initial electron state is indicated by k, and the angle ¢ for a final state k¢
is shown. The phonon contour is shown around K’ point. In (b) we show the electron phonon
coupling between a fixed electron state around the K point and states at an angle ¢ around the
K' point, plotted for four in—plane modes.

Such a conclusion is discussed in solid state physics [74]. Because of the linear dependence of the
accoustic modes on the phonon wavevector, the electron phonon scattering for small energies is
usually written as a linear function of the phonon energy times the electron phonon coupling
constant.

In Fig. 6.4 the case of intra—valley optic phonons is discussed. It can be seen that only the
iLLO mode strongly couples electron states at opposite angles around K. We can thus associate
the iLO mode to the overbending, which means that the highest phonon frequency in graphite
occurs slightly away from I'. This is also a common feature that LO occurs at higher frequency
that TO mode.

In Fig. 6.5 it can be seen that the coupling for the iTO band is by far the largest. Especially
we note that the double resonant Raman intensity is proportional to the square of the matrix
element. The iTO band has zero coupling for electrons at the same angle as can be seen by
the 45° line with zero value. At the opposite angles between K and K’ point, the coupling is
highest and this is why we can assign only this mode to the experimentally observed strong G’
and D bands. The LO mode has a strong coupling for the same angle and will be responsible
for Raman features with little dispersion.
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Figure 6.4: Intra-valley in—plane mode electron phonon coupling for iTA, LA, iTO and LO
modes. For accoustic modes, the electron phonon interaction is equal to zero, if initial and final
state are identical. All are given in values in eV /at.u.
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Figure 6.5: Inter valley accoustic and optic modes electron phonon coupling. All are given in
values in eV/at.u.



Chapter 7

Raman intensity calculation in
graphite and carbon nanotubes

Raman spectra are calculated using the electron photon and electron phonon
matrix elements from previous chapters. Comparision of the calculated results with
observed Raman spectra allows a phonon mode assignment. Using double resonance
Raman spectroscopy, we fit the phonon dispersion to the observed Raman spectra.
Here we propose that Raman spectroscopy is an alternative experimental technique
for observing the phonon dispersion at the zone boundary. Analytical expressions
for the phonon frequencies at high symmetry points are presented. These formulas
can decouple the fitting procedure and are useful for understanding the sum rules of
phonon frequencies. Localized phonon modes for a nanographite ribbon are calcu-
lated.

7.1 Resonant Raman intensity calculation

Here we give two examples for calculating results of resonance Raman spectra. Those are the
G’-band for graphite and the G—band for SWNTs, which are two—phonon and one-phonon
Raman processes, respectively. Other Raman active modes can be calculated similarly by the
computer—programs.

The two—phonon, double resonance Stokes Raman mode appears in the spectrum at a posi-
tion w = w; + we, where w; and w9 are the phonon frequencies of the double resonance process
described in detail in Sec. 4.3. In the double resonance processes, two phonons with opposite
phonon wavevectors q and —q contribute to Raman spectra (see Fig.7.1). The two phonons
generally belong to different phonon branches v and /. The intensity of the two—phonon Stokes
process with phonons w?(—q) and wy (q) from branches v and v/ is calculated by

I(w1 + LUQ) = (71)
ve Mcc,u MCC’V’Mcv 2

Z Z optA " vibE“" vibE “"optE
(Elaser — By — i'Y) (Elaser — Epi — hw{ - 'L.'Y) (Elaser — E¢i — hw’f - hwgl - 'L.’Y)

i |a,b,ev,V!

The labels 7, a, b and ¢ for the initial and the three intermediate states, respectively are shown

84
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Figure 7.1: Two—phonon double resonance Stokes Raman processes. (a) and (b) give the two
double resonant two—phonon processes with incident and scattered resonance, respectively. An
electron is photo—excited from an initial state 7 to the conduction band state a. It then scatters
by a phonon from a to b and scatters back to ¢ by another phonon with opposite wavevector. It
recombines at ¢ by emitting a photon.

() « ©
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‘ f ‘ ‘ ‘ ‘ ‘ 2.54eV
(b) f
\
//l
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y \
D e S DTS

1800 2000 2200 2400 2600 2800 3000 2300 2500 2700 2900 3100 3300
Raman Shift (cm ™) Raman Shift (cm™)

Figure 7.2: Calculated Raman spectra (solid line) compared to experimental spectra (dashed
line) for Fj,s = 2.71 e€V. In (a) we set all matrix elements equal to unity. In (b) the elec-
tron phonon matrix elements are included. In (c) we show three features that appear in our
calculation as a function of laser energy.

in Fig.7.1. E,;, Fy; and E; are energies between the initial state and the three intermediate
states and FEl,ger is the laser energy. Note that E,; = FE;, since we take the energy of the
real state. The optical matrix elements for absorption and emission in Eq. (7.2) are M5, and
Mg3 . respectively. The absorption and emission matrix elements are given in in Eq. (5.9).

The electron phonon matrix elements in Eq. (7.2) are given by M\flcé'é and M\flct’)'g for a photo—
excited electron in the conduction energy band. The electron phonon interaction connects two
conduction bands states. The formula to calculate the electron phonon matrix elements is given
in Eq. (6.8). In Fig. 7.2 we show the calculated Raman intensity for the double resonance Raman
process shown in Fig.7.1.

We briefly explain the computational procedure to calculate the Raman spectra shown in
Fig.7.2. To save a computational time, we only include the in—plane phonon branches, since from
Chapter 6 we know that the out—of-plane phonon branches always give a coupling equal to zero.
Thus we can decouple the dynamical matrix in Eq. (4.6) into an in—plane and an out-of-plane
sub—matrix. The calculated results (solid line) reproduce well the experimental results (dashed
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line). If all electron phonon matrix elements are taken to be constant, the integration of Eq. (7.2)
becomes the JDOS. It is clear that the JDOS alone is not sufficient for understanding the Raman
active frequencies. In Fig. 7.2(c) we show the calculated Raman spectra for three different laser
energies, 2.41 eV, 2.54 eV and 2.71 eV. We obtain two peaks, of which the energetically higher
peak at around 2700 cm™! is dispersive and the lower peak is nearly at a constant frequency at
about 2450 cm™—!. This behaviour is observed by experiment and confirms the matrix element.
The appearance of the two peaks at 2700 cm™' and 2450 cm ™! comes from the two resonance
conditions at ¢ = 2k and g = 0, respectively [55].

In order to do an integration over the 2D BZ, we first made a mesh for the electron and
phonon states in the 2D BZ around K and K' points. The mesh for the phonon states is
twice the size because in the double resonance process, the phonon wavevector ¢ is given by
qg = 2k, where k is an electron wavevector. The wavevectors k and g are measured from K
points as is described in Sec.4.3. After specifying Fjasr, we find k& vectors on the mesh, that
are resonant with the laser energy in a resonance window of 2 X wpax, Where wpax = 0.2 €V
is the maximum phonon energy. Hereafter we calculate resonant intermediate states on the
inequivalent K point, by taking a loop over all phonon branches. Then we have another loop
for the second phonon scattering back to the initial electron wavevector. This loop is also taken
over all phonon branches. If we identify a resonant process according to Fig.7.1, we evaluate
Eq. (7.2). This process is repeated until the loop over initial and final electron states and the
loops over the phonon modes are finished. The Fig. (7.2) was calculated with a mesh size of
150 x 150 for electrons and 300 x 300 for phonons for a small region around the K points.

In Fig. 7.3 we show the calculated result for the Raman intensity of SWNT's for the G-band as
a function of chiral angle. LO and TO phonon modes are denoted by Boxes and circles. LO and
TO phonon modes split th G-band into the higher (w(;) and the lower (wg) frequency Raman
peaks, respectively. Each symbol corresponds to a (n,m) SWNT. For a given chiral angle, the
smaller diameter gives to the larger intensity per length of a SWNTs. From Fig. 7.3, we can
see that LO peaks are relatively larger for small 8 (zigzag nanotube) and that TO peaks are
relatively smaller for large chiral angle (armchair nanotube). This results is consistent with the
experimental results of isolated SWNT Raman spectra in which there is the chirality dependence
of the relative G+ and G- band intensity as a function of (n,m) [72, 75].

7.2 Fitting of graphite phonon dispersions

With double resonance theory from Sec. 4.3, it is possible to assign a measured double resonant
Raman peak to a given certain phonon branch. First we can generally decide if it is a T' or
K point phonon from the phonon frequency. Furthermore, double resonant Raman spectra,
that are measured by a set of a few laser lines show a dispersive behaviour Ow/3FE),ser and the
magnitude of the dispersion helps us to assign the phonon dispersion correctly.

7.2.1 Fitting procedure

Based on the double resonance theory, we can now correlate the laser energy to the double
resonant phonon by the simple formula ¢ ~ 2k. Together with observed Raman data wgpg, this
gives us data pairs (g, wobs), that can be used to fit the phonon dispersion relations of graphite.
We use a simple steepest descent algorithm that minimizes a function of least square values
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Figure 7.3: LO and TO Raman Intensity as a function of chiral angle. Boxes circles denote LO
and TO phonons, respectively. Each symbol corresponds to the Eay resonance at for a (n,m)
SWNT.

between experiment and calculated values

N
S(®) = Z W (i, i) [wobs (Vi @) — Weare (B, 4, i) - (7.2)

If the function contains only a few minima, the most efficient algorithm is a conjugate gradient
method which is known to converge much faster than steepest descent. However, the function
shape that we try to minimize is not so suitable for a conjugate gradient method and thus we use
a steepest descent method. The fitting procedure consists of minimizing the sum of squares S
of the difference between observed and calculated phonon frequencies, wops(vi, Q;), respectively.
The fitting parameters are the graphite force constants ®;, with £ = 1... Ng. Here v; and q;
are the phonon branch and phonon wavevector, respectively. Ngata and W (v;,q;), denote the
number of data points and the weight of the 4 — th data point, respectively. The condition
that we have found force constants that give a minimum value of S is given by the set of Ng
equations

oS
e = ith £=1,...,Ns. 7.3

The equations are written as

a8
E = Z 2W(Vz', qi) [wobs(yia Qz') - wcaIC(@a Vi, qz)]

i

chalc(éa v, Qi)
0%,

= 0. (7.4)
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Since the calculated phonon frequencies are the root of the eigenvalues of the dynamical matrix,
we do not have an analytical expression at general q points. However, we can expand the phonon
frequencies for force constants ® into a Taylor series around ®( as

Ng

wcalc(éa Vi, qi) = wcalc(q)Oa Vi, qi) + Z
k=1

6Wcalc((ﬁa v, Qi)
09,

(@ — Pro) + O {(Pr — Pro)®} . (7.5)

We then substitute the expansion of phonon frequencies of Eq. (7.5) into Eq. (7.4). The following
equation only holds to linear order in a small region around ®.

S

0%,
Owealc(®, Vi, d;
= Z2W(Viaqi) [wobs(Vi>Qi) — Weale(Po, Vi, Qi) — Z calcé@k i» G) (B — Bro) | x
%

i
awcalc(q:'a vV, qz')
0,

= 0.
For evaluation it is convenient to write this equation in a more compact form as
A-A® =c. (7.6)

Here the matrix A and the vector ¢ are defined as

No

®,vi,q ®,vi, q;
A@k = Z ZW(VZ', ql) Z awCalC(aq);Vm ql) 8wcalcéq);€yza Qz)
% k=1

and (7.7)

Oweale (P, Vi, q;
co =Y 2W (v, i) [wobs (i, Qi) — weale (o, Vir Q)] calC(a(I)e )
i

The problem is thus reduced to finding the root of a linear equation. As a solution we obtain
A® = & — ®;. All partial derivatives in Eq. (7.7) are for ® = ®(. After solving Eq. (7.6) for
AP, we put B9 — Py + sAP, where s is a small value in the order of s = 0.1 for a reasonable,
not—too—fast convergence. Then we solve again, taking the derivatives at the new ®(,. This
steps are repeated until the values of S stops decreasing. Then we have found a local minimum
and the process is stopped.

7.2.2 Numerical fitting of the phonon dispersion relations

To get the input data for our force constant fitting program, we went through a number of
published results in the field and and extracted dispersive Raman features. Using the the double
resonance theory from Sec.4.3, we can assign them to an electron wavevector. In this manner,
we can obtain many data points shown in Table 7.1. In Fig.7.4, the fitted phonon dispersion
relations are shown by solid lines. The dashed lines are the phonon dispersion relations that
are fitted to inelastic neutron scattering data. Solid dots, solid square, cross, and triangle are
Raman data of highly ordered pyrolytic graphite (HOPG)[78, 79], single—wall carbon nanotube
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Table 7.1: Observed double resonance Raman peaks.[76]

Mode assignment Theoretical value Experimental value
W, [0w/OEB)aser] in em ™! w, [w/OE)sse;] in cm ™t
oTA(T,q=2K) 45 [26] -
iTA(T,q=2k) 300 [121] 288[129]
LA (T',q=2k) 430 [173] 453[216]

oTA (K,q=2k) 500 [-28] -

[
0TO (T',q=2k) 640 [26] -
oTO (T',q=2k) 850 [-5] 865[13]
oTO (T',q=0) 855 [0] 860[0]
iTA (K,q=2k) 900 [-58] 820[-57],865[-53],1084[-74],1094[-77]
iTA (K,q=0) 1000 [0] 970[129],1060[0],1081[22]
LA (K,q=2k) 1250 [-5] -
LA/LO (K,q=0) 1260 [0] -
LO (K,q=2k) 1350 [48] 1352[43],1345[50], 1354[46]
iTO (K,q=2k) 1450 [-11] 1480[-83]
iTO (K,q=0) 1490 [0] 1500[-]
iTO (I',q=2k) 1555 [-20] -
iTO/LO (I',q=0) 1580 [0] 1582[0]
LO (T,q=2k) 1600 [4] 1622[0],1623[0],1623[9]

(SWNT)[54], HOPG and SWNT[80] and graphite whisker(GW) [81], respectively. In order to
improve the convergence of the iterative fitting, we have also used inelastic neutron scattering
data (open circles in Fig. 7.4) in the low frequency region near the M point that were used in the
previous fitting [4]. The data points at the I" point are taken from first-order Raman scattering,
and those at the K point are taken from dispersionless weak features which are assigned to
g = 0 singular phonon modes. When we compare the phonon dispersion of the solid and dotted
lines, only the higher frequency region around the K point is different. In the lower frequency
region, the dispersive Raman data are in good agreement with the previous phonon dispersion
relations. There are dispersive Raman data around 1050 cm~! which shift the longitudinal
acoustic (LA) mode to a lower frequency region. In the phonon dispersion relations obtained
by inelastic neutron data, this LA mode is highly anisotropic around the K point. Since the
double resonance theory gives the phonon frequencies in terms of the distance from the K (or
the I') point, we cannot determine the anisotropy of the phonon branches around the K point.
However no experimental inelastic neutron data are available near the K point, and the lowering
of the LA curve from the I' to the K point seems to be in good agreement with experiment.
The second highest phonon dispersion branch around the K point gives the D-band frequency.
The fitted phonon dispersion in Fig. 7.4 gives a smaller slope for the phonon dispersion relation
than that given by the previous one. It should be mentioned that we excluded some experimental
points for higher Ej,qe; values on the K—M line. Along the K—M line the anisotropy of the
phonon dispersion is large compared with the K-T' line. Since our double resonance model
calculation only gives the distance of the g vector, which is the |g| value from the K point, the
calculation might not be adequate for the fitting procedure for larger laser energies if there is a
large anisotropy (~ 30cm™!) in the phonon dispersion relations for large |g|. Such an anisotropy
is known as the trigonal warping effect and the circles are modified to show an approximate
triangular shape. In this case, since the edge section which gives a singular |g| is given around
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Figure 7.4: The fitted phonon dispersion relations (solid lines) for 2D graphite. The dashed lines
are the previous phonon dispersion relation fitted to inelastic neutron scattering measurements
[4, 77, 38]. Solid dots, solid square, cross, and triangle are Raman data of highly ordered pyrolytic
graphite (HOPG) [78, 79], single wall carbon nanotube (SWNT) [54], HOPG and SWNT [80]
and graphite whisker(GW) [81], respectively. Open circles are inelastic neutron scattering data
for graphite [4].

the KT line, the treatment that we give for the experimental points on the K-I" line is justified.
When D-band phonon data become available for smaller laser energies, it will be nice to have
more reliable data around the K point (or the I' point), which can then be used in a future
study.

For use in future studies, we list in Table 7.2 an updated summary of the twelve fitted force
constants in which @5"), @gi"), and @ig) denote, respectively, the force constants of the radial, in-
plane, and out-of-plane modes for the n-th nearest neighbors (n = 1,...,4). When we compare
Table 7.2 with the previous force constants in parentheses [4], the radial force constants for
the second and third nearest neighbors of Table 7.2 become relatively weak, and the tangential
force constants become relatively hard, reflecting some modification to the values of the optical
phonon modes.

Table 7.2: Calculated force constant parameters for 2D graphite in units of 10*dyn/cm [38].
Here the subscripts r, ¢, and to refer to radial, transverse in-plane and transverse out-of-plane,
respectively. The previous force constants are listed in parentheses [4].

Radial Tangential
W = 40.37(36.50) ¢ = 25.18(24.50) ¢\ = 9.40(9.82)
P = 276(8.80) P = 222(-3.23) 4= —0.08(—0.40)
) = 0.05(3.00) ¥ = _899(-5.25) )= —0.06(0.15)
(4) )

W= 131(-1.92) o) = 0.22(2.29) 4 = _0.63(—0.58)
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7.3 Analytic expressions for the phonon modes

If we can get some relationship between the force constants and phonon frequencies at some high
symmetry points, they can be used for fitting the force constants to experimental data. Force
constant sum rules are conditions which give a zero phonon frequency for the translational and
rotational motion at ¢ = 0. In the Appendix we show how to obtain the analytical form of the
dynamical matrix at ', M and K points. The zero phonon frequency condition follows directly
from the special shape of the matrix at ¢ = 0. This condition is included by generating the force
constant tensors through rotation of one initial force constant tensor. Another relationship is
related to the eigenstates at high symmetry points where the phonon frequencies are given by
a simple formula for the force constants, which decouples the problem into a smaller number
of fitting parameters. Although we do not directly use these equations in the numerical fitting
program, they will be useful for understanding the various phonon dispersion relation for sp?
carbons.

Here we show some analytical results of the phonon eigenmodes for 2D graphite which
are analytically determined as functions of the twelve force constants. Since there are two
carbon atoms A and B in the unit cell, we expect an eigenfunction with six components, i.e.
(Ag, Ay, A, By, By, B,) where A; is related to the displacement in the = axis. An analytical
calculation of the diagonalization of the 6x6 dynamical matrix is solved by Mathematica (see
Appendix) at the three high symmetry points of 2D graphite BZ (', K and M). For the six
eigenvalues, three are acoustic phonon modes with zero frequency which are independent of the
force constants. The other three eigenvalues are are singly and doubly degenerate phonon modes,
which is consistent with group theoretical arguments [82]. Their frequency depends on the force
constants but the double degeneracy of optical modes is independent of the force constants we
use and a result of symmetry. Thus we get twelve formulae, which consist of eight in—plane
and four out—of—plane modes. Since in-plane and out-of-plane phonon modes are orthogonal to
each other in the graphene plane, the corresponding eigenvalues are given, respectively, in terms
of in-plane and out-of-plane force constants. In Table 7.3, we list the corresponding phonon
frequencies and normal modes which are obtained by the set of force constants fitted to the
neutron data.

For the T' point, the in-plane tangential phonon frequencies (LO and TO) w;; and w;o are
degenerate at 1589 cm™!, which is known as Ey,. This degeneracy comes from the facts that
graphite is not an ionic crystal and that there is a three-fold symmetry around each carbon atom
[4]. For all phonon modes at the I" point, all A (or B) atoms in the unit cells of 2D graphite move
in the same phase, and therefore no second-nearest neighbor force constants, ®2), appear in the
expressions Eq. (7.8). Here, when we consider an A(B) atom for the central atom, the first, the
third, and the fourth nearest neighbors are B(A) atoms, while the second nearest neighbors are
A(B) atoms.

Although we have twelve relations between non-zero phonon frequencies at the high symme-
try points and twelve unknown force constants, we can not solve directly for all of the twelve
force constants. The number of independent equations of the twelve equations is nine, which
is understood in terms of the rank of the matrix for the twelve simultaneous equations. This
means that three dependent equations between phonon frequencies at the different symmetry
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points exist. After some analytic calculation, we get the following three relations:
wia(K)? + wi(K)? — 2w (K)? = 0, 2wit(T)% = 9 wij(M)? + 32w (K)? =0,
2
and  w ()2 -9 Zwoj(M)Q + 16w, (K)? = 0.

These equations are independent of the set of force constants and thus they are useful for
estimating the data which yield the phonon dispersion relations over the whole BZ of 2D graphite.

In Fig.7.5, we show examples of the eigenstates for the in-plane optic phonon modes for
the (a) w;2(K) and (b) w;2(M) whose phonon frequencies are 1272 and 1369cm ™!, respectively.
Starting from a lattice point of B atom denoted by solid circles in Fig. 7.5, the vibration of other
atoms are given by multiplying the factor exp(igR) to the complex eigenfunctions of the unit cell
of 2D graphite as shown in Table 7.3 when we shift the vibration by a lattice vector R. For the
g vectors at the K and M points, the vibration has a periodicity, respectively, of the v/3 x v/3
and 2 x 2 super-cells of 2D graphite, which are shown by dotted lines in Fig.7.5. In Table7.3
we show the eigenfunctions of four in-plane modes and two out-plane modes with calculated
eigenvalues at I' = (0,0), K = (21/v/3a,27/3) and M = (27/v/3a,0). The eigenvectors have
six components: z,y, z for the A and B atoms of 2D graphite: {(A4,, Ay, A;), (By, By, B;)}. For
the K point modes, the in-plane tangential optic phonon modes, (w;2, w;3), and the tangential
out-of-plane modes (wy1, we2) are degenerate as is shown in Eq. (7.9). At the K point, either the
A or B atoms move in the eigenfunction, while the other atoms do not move. All eigenvectors
at the symmetry point show the required symmetry between the A and B atoms, in which the
normal modes for each atom are normalized to unity. All vectors have a length of unity, and the
real part of the eigenfunction corresponds to the vectors shown in Fig.7.5. A similar situation
appears, also, in the case of the electronic wavefunctions, where either the A or B components
of the Bloch functions in the eigenfunctions have the finite value and the other components
become zero at the K point. In the 2D BZ, we have two inequivalent K and K’ points, and
three inequivalent M, M’ and M” points. The corresponding eigenfunctions are given by the
rotational operations of 2D graphite in k-space.

Table 7.3: Eigenvectors R4, Rp and frequencies in cm™! are listed for in-plane (w;) and out-

of-plane (w,) phonon modes at the T' = (0,0), K = (27/v/3a,27/3a) and M = (27/v/3a,0),
points.

r K M
Mode freq. {Ra,Rp} freq. {Ra,RB} freq. {Ra,Rp}
w1589 {(1,00),(-1,0,0)] 1487 {(mia0),(i 1,0} 1500 {(7,0,0),(-1,0,0)}
W;2 1589 {(05150)5(05'130)} 1272 {(07070)5('i5150)} 1369 {( Y5 )5(0 150)}
wig 0 {(0,1,0),(0,1,0} 1011 {(evia, 0), (1,1,0)} 775 {(0 7.0),(01 0)}
Wo1 865 {(05051)7(0505'1)} 568 {(05051)3(0 0 0)} 667 {( 7)7( s )}
Wo2 0 {(03031),(03031)} 568 {(0’0,0)5(0 0 1)} 461 {(O 0,7),( ) )}
a = 7ri/6’ v = e27ri/3
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Figure 7.5: (a) Eigenvectors {(0,0,0),(—%,1,0)} of w;2(K)=1272cm !, and (b) eigenvectors
{(0,7,0),(0,1,0)} of wia(M) = 1369 cm™!. The dashed diamond of each figure is the super—cell
for the K and M points. The arrows outside of the hexagonal lattice show the directions of the
k vectors.

Finally we show the analytic expressions of eigenvalues of 2D graphite obtained by the
Mathematica program listed in appendix A. Analytic expressions for the phonon frequencies for
the 2D graphite phonon modes are given here for the three high symmetry points in graphite.
C=1.18928 (cm~'/dyn)'/? is the conversion constant from a force constant in dyn/cm to a
phonon frequency in cm™'. The phonon frequencies at the I' point are

win () = C1/388) + 30 + 8 4 8 126 1280, wo(T) = cy/68L) + 63 + 1282 (7.8)

The phonon frequencies at the K point are

wit (K) = \/0-5(wi(F)2 +9c2(87 + 8%)), win(K) = Vo (K)? - A, and (7.9)
wis(K) = Vo (K)? + A, wor (K) = \/ 9C23?) 4 0.5w2(T),
with:
a=c{15@0 - of + o - o)) —279(01 - o)) }.
The phonon frequencies at the M point are
1/2
wa (M) = € (200 + 60 + 207 + 30 + 307 +2.290() + 1.710()) .
1/2
win(M) =C (@P +300) + 602 + 20 +3.716W + 4200 -
(1/2)
wis(M) = C (300 + @) +20() + 607 +4.290() 1+ 3.710()) ", 7.10)
(1/2) '
win(M) = € (205 +20() + 607 +30{ + 30{) + 1710 +2.200() ",

0 to

and  weo(M) = c\/ 200 + 832 1 68 + 402,

wor(M) = Cy/43L) + 82 + 83V

0 0
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It is interesting to see the result in Eq. (7.9), that the degenerate eigenvalues are expressed by
eigenvalues at the I' points and the second nearest neighbor force constant. The reason why a
second nearest neighbor force constant appears here is that the direction of movement of the
two second nearest neighbors is not parallel. At the M point, both the A and B atoms move in
the eigenfunctions differently, and thus all force constants appear mixed and all eigenstates are
not degenerate as is shown in Eq. (7.10).

7.4 Localized phonon modes at the graphite edge

Before finishing this chapter, let us briefly mention the localized phonon mode of a nanographite
ribbon, since a new experiment is recently reported and it is closely related to the present thesis.
As we have seen in Sec. 3.4, the zigzag edge structure of nanographite ribbons gives rise to a
special electronic band, that is entirely localized on the edge. The recent progress in Raman
spectroscopy with a high spatial resolution [83], enables us to probe the local Raman spectra
experimentally, which in turn are related to the local phonon density of states (LPDOS). Near
field Raman spectroscopy is done with a sharp metal tip that enhances the field locally close
to its position. By moving the metal tip, we can investigate the Raman signal as a function of
position with spacial resolution of a few nanometers. Only atoms that are close to the metal tip
are contributing to the measured signal. This technique is applied when we want to characterize
defects in the crystal structure such as edges, junctions between different chiralities or point
defects. Here we consider the simplest such defect, the edge of a nanographite ribbon. We
calculate the LPDOS close to the edge of a ribbon. The ribbon we used for this purpose was
selected to have sufficient width in order to obtain the result for a graphite plane, if we were to
measure the LPDOS in the middle of the ribbon. We consider the nanographite ribbon shown
in Fig.7.6. It is in the zy plane and has its longitudinal direction along z axis. We define the
LPDOS for a nanographite ribbon at position d and phonon frequency w by

LPDOS(d,w) = ) 57 (9)Si(9)3(Riy — d)6{w — wi(q)}- (7.11)

z’q?‘/

Here we take a sum over all eigenfunctions S;(g) at wavenumber g and atom number i that are
have an y coordinate equal to d and an frequency equal to w. These conditions are expressed
by the § function and are relaxed slightlty in the numerical calculation, where we take a width
Ad = 0.3 nm and a frequency width Aw = 10cm~!. The LPDOS calculated according to
Eq. (7.11) for the ribbon in Fig7.6(a) is shown in Fig. 7.6(b). It is clear from Fig. 7.6(b) that
the LPDOS strongly depends on the distance from the edge. If we are close to the edge we see
localized phonon modes with a frequency of about 890 cm™—! and 1360 cm—!. It is well known
from experiment that these phonon modes exist at defects and one such defect is an edge. In
this way, by solving the ekectron and phonon states, we can predict Raman spectra for any
geometry made of hexagonal graphite lattice structure.
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Figure 7.6: (a) The ribbon for which we calculate local in—plane phonon density of states
(LPDOS) for near field Raman spectra. The distances in units of ay at which we consider
the LPDOS are shown by arrows. The unit cell is marked by shaded atoms. (b) The calculated
local phonon density of states (LPDOS). A Gaussian broadening for the near field Raman tip
is assumed. The FWHM was chosen to be ag.



Chapter 8

Summary

In summary, we have calculated the optical response and Raman spectra for graphite and single—
wall carbon nanotubes (SWNTs) and developed computer programs for determining the phonon
dispersion relations of graphite by double resonance Raman spectroscopy. Such a calculation
involves calculating the electron and the phonon dispersion relations and also a calculation of
the electron—photon and the electron—phonon interaction matrix elements for resonant electron
wavevectors k in the Brillouin zone (BZ) of graphite and SWNTSs. For the dispersion relations
of electrons and phonons, a simple tight—-binding method has been adopted. The tight-binding
method relies on parameters that are usually fitted to experiments or are calculated by an ab—
initio calculation. In the present thesis, we used tight—binding parameters for electrons fitted to
optical measurements and force constants for phonons fitted to neutron scattering and double
resonance Raman data.

In order to evaluate resonant Raman intensities, we calculated both, the electron—photon
and the electron—phonon matrix elements. In the case of graphite, we found that there is a node
in the optical absorption in k space and the position of the node changes with changing the
polarization direction of light. This effect was recently observed in nanographite ribbon, where
the electronic states are quantized due to the reduced dimensions along the ribbon width. If the
electron—photon selection rule gives zero coupling for an allowed electronic state in nanographite,
a dramatic change in the Raman spectra has been observed. A direct experimental observation
of a node for graphite has not yet been achieved and might be possible by angle resolved
photoemission spectroscopy. For SWNTSs, from the selection rules, which we obtain from the
matrix elements, we can give an explanation concerning the appearance of Raman data in the
gap region of the Kataura plot for parallel polarization. Observation of perpendicular polarized
light also allows us to determine the asymmetry in the valence and conduction band energies
with respect to the Fermi energy. From such an observation, the wavefunction overlap parameter
can be deduced.

The matrix elements for parallel and perpendicular polarization also give the strengths of
the optical transitions. Particularly, the maximum value of the matrix element occurs at the
van Hove singularities in the joint density of electronic states. We also predict that there is no
photoconductivity in the metallic bands of armchair SWNTs.

Electron—phonon matrix element is calculated by calculating atomic deformation potential
vectors. The calculated results shows for the first time, a strong k dependent matrix elements,
which is relevant to chirality dependent Raman intensity of SWNTs. Furthermore, we calcu-

96



97

lated double resonant Raman spectra of G'-band (two-phonon Raman process) and G-band
(one—phonon Raman process) as a function of laser energy and as a function of chiral angle,
respectively. In this calculation, we show a non—dispersive feature at 2450 cm~! which origi-
nates from a ¢ = 0 double resonance condition. This feature is reproduced for the first time
by calculation. As for G-band, chirality dependent relative intensity for Gt and G~ bands is
shown to be consistent with experimental observation of Raman spectra for isolated SWNTs.
A new method that determines the phonon dispersion relations of graphite by double resonance
Raman spectroscopy is proposed in this thesis. These technique is sensitive to phonons close to
the BZ boundary and a small crystal size (= 1 pm) is sufficient for observing Raman spectra.
Since the double resonance Raman spectroscopy gives us a large peak from phonons close to
the BZ boundary, the newly developed method gives us accurate phonon dispersions near zone
boundary.



Appendix A

Programs

In this Appendix, we show Mathematica programs. In Sec. A.1 we show the
program to calculate the phonon dispersion of graphite analytically at the high sym-
metry points and numerically at a general k¥ point. In Sec. A.2 the program to
calculate 7 electron energy dispersion relations of a nanographite ribbon is shown.
In Sec. A.3 a program to calculate ¢ and 7 electron energy dispersion relations of
graphite is given. These programs are useful for future work.

A.1 Analytical solution for phonons

The output of the program! is the analytical expression at I' point and the numerical solution
and is shown in Fig. A.1. Other analytical solutions are obtained by changing the k& point
variable in the program. The Egs. (7.8),(7.10) and (7.9) were calculated with this program. The
program first defines a the force constant tensors KAA and KAB etc. for generating dynamical
matrix according to Eq.(4.6) which is stored in DD. Then the eigenvalues and eigenvectors
are calculated analytically at the symmetry points and numerically at general k points. The
input which is relevant for the numerical calculation are the force constants stored in variables

phiril,...,phito4 and can be changed by the user. In Fig. A.1 we show the output of this
program.

(* See R.Saito Phys.Prop.Carbon Nanotubes page 163 *)

Clear[phiril, phitil, phir2, phiti2, phir3, phiti3, phir4, phiti4, phitol,
phito2, phito3, phito4]

mul = 118.828;

"2nd shell AA pairs (six pairs)";

Raa22 = {{-1.5, Sqrt[3]1/2}};
Raa23 = {{0, Sqrt[3]1}};

Raa2 = {{1.5, Sqrt[3]1/2}};
Raa3 = {{1.5, -(Sqrt[3]/2)}};

Raa24 = {{0, -Sqrt[31}};

Raa21 = -{{1.5, Sqrt[3]1/2}};

"2nd shell BB pairs (six pairs)";
Rbb2 = {{-1.5, Sqrt[31/2}};

Rbb21 = {{0, Sqrt[3]1}};

Rbb22 = {{1.5, Sqrtl31/2}};
Rbb23 = {{1.5, -(Sqrt[3]1/2)}};
Rbb24 = {{0, -Sqrt[3]1}};

Rbb3 = -{{1.5, Sqrt[3]1/2}};

'mathematica/thesis/phon_gamm.nb
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"nearest pairs AB (3 pairs)";

Rab2 = {{-0.5, Sqrt[3]/2}};
Rabl = {{1, 0}};
Rab3 = -{{0.5, Sqrt[3]/2}};

"nearest pairs BA (3 pairs)";

Rbal = {{-1, 0}};
Rba2 = {{0.5, Sqrt[3]1/2}};
Rba3 = {{0.5, -(Sqrt[3]1/2)}};

"3rd shell AB 3 pairs";

Rab31 = {{-2, 0}};
Rab32 = {{1, SqrttB]}};
Rab33 = {{1, -Sqrt[3]1}};

"3rd shell BA 3 pairs";
Rba3l = {{2, 0}};

Rba32 = {{-1, Sqrt[3]}};
Rba33 = {{-1, -Sqrt[3]1}};
"4th shell AB 6 pairs";

Rab41l = {{5/2, Sqrt[3]1/2}};

Rab42 = {{5/2, -(Sqrt[31/2)}};

Rab43 = {{-(1/2), -((3%Sqrt[3]1)/2)}};
Rab44 = {{-2, -Sqrt[3]1}};

Rab45 = {{-2, Sqrt[3]}};

Rab46 = {{-(1/2), (Sqrt[3]1%3)/2}};

"4th shell BA 6 pairs";

Rbad4l = {{2, -Sqrt[3]1}};

Rbad2 = {{1/2, (1/2)*(-Sqrt[3])=*3}};
Rba43 = {{-(5/2), -(Sqrt[31/2)}};
Rbad44 = {{-(5/2), Sqrt[3]1/2}};

Rba4b = {{1/2, (3*Sqrt[3])/2}};
Rbad6 = {{2, Sqrt[3]}};

"****************************************************************************\
s,k

Ula’] = {{Cos[(2#Pi*a)/360], Sin[(2*Pi*a)/360], 0},
{-Sin[(2*Pi*a)/360], Cos[(2*Pix*a)/360], 0}, {0, 0, 1}};
Wk sk o ok ok ok ok o ok ok ok sk ok ok o ko ko ok ok ok ok o ko ok ok ok ok o ok o ko ok ok o sk o ok ok ko ok o sk o ko o ok o ko ko ok o ok o ko ok ok ok ok ok ok okok '\
okkok ok Kok ok ok ok 11 5
"the three force tensors for AB interaction in the 1st shell";
KAB1[phirl_, phitil_, phitol_] = {{phiril, 0, 0}, {0, phitil, 0},
{0, 0, phitol}};
KAB2[phirl_, phitil_, phitol_] = Inverse[U[120]]
KAB1[phirl, phitil, phitol] . U[120];
KAB3[phirl_, phitil_, phitol_] = Inverse[U[120]]
KAB2[phirl, phitil, phitol] . U[120];
Wk o ks ko o ok sk ok sk o ko sk ko sk ok o ko ok sk ks sk e ko ko o sk o sk o ko e sk o ko o sk sk o ok sk e sk ok sk ok sk sk e kokok \
Hokookok ok ook ok ok okok !t
"the three force tensors for BA interaction in the 1st shell";
KBA2[phirl_, phitil_, phitol_] = Inverse[U[60]]
KAB1[phirl, phitil, phitol] . U[60];
KBA1[phirl_, phitil_, phitol_] = Inverse[U[120]]
KBA2[phirl, phitil, phitol] . U[120];
KBA3[phirl_, phitil_, phitol_] = Inverse[U[120]]
KBA1[phir1l, phitil, phitol] . U[120];
Wk o ok o ok ok o ok ok o sk o ok o ko ko o ok ok o ko ok ok ok ok o ok o ko ok ok o ok o ok o ko ok o sk o ko o o sk o sk o ok o ok o ko K ok ok ok o ok o ok ok \
sk ok ok ok ko ok ok ok ok ok 1
"the six force tensors for AA interaction in the 2nd shell";
KAA2S[phir2_, phiti2_, phito2_] = {{phir2, 0, O}, {0, phiti2, 0},
{0, 0, phito2}};
KAA2[phir2_, phiti2_, phito2_] = Inverse[U[30]]
KAA2S[phir2, phiti2, phito2] . U[30];
KAA23[phir2_, phiti2_, phito2_] = Inverse[U[60]]
KAA2[phir2, phiti2, phito2] . U[60];
KAA22[phir2_, phiti2_, phito2_] = Inverse[U[60]]
KAA23[phir2, phiti2, phito2] . U[60];

99



100 APPENDIX A. PROGRAMS

KAA21[phir2_, phiti2_, phito2_] = Inversel[U[60]]
KAA22[phir2, phiti2, phito2] . U[60];
KAA24[phir2_, phiti2_, phito2_] = Inversel[U[60]]
KAA21[phir2, phiti2, phito2] . U[60];
KAA3[phir2_, phiti2_, phito2_] = Inverse[U[60]]
KAA24[phir2, phiti2, phito2] . U[60];
W st ks o ko s o ks o ko ko sk sk e ko ok sk ok sk ek o ko ok o sk e sk o ko e o sk o ko s sk ko sk sk o ko ok sk ok sk sk e ko k ok o \
*okokok ook ok kok ok ok !
"the six force tensors for BB interaction in the 2nd shell";
KBB22S[phir2_, phiti2_, phito2_] = {{phir2, 0, 0}, {0, phiti2, 0},
{0, 0, phito2}};
KBB22[phir2_, phiti2_, phito2_] = Inverse[U[30]]
KBB22S[phir2, phiti2, phito2] . U[30];
KBB21[phir2_, phiti2_, phito2_] = Inversel[U[60]]
KBB22[phir2, phiti2, phito2] . U[60];
KBB2[phir2_, phiti2_, phito2_] = Inverse[U[60]]
KBB21[phir2, phiti2, phito2] . U[60];
KBB3[phir2_, phiti2_, phito2_] = Inverse[U[60]]
KBB2[phir2, phiti2, phito2] . U[60];
KBB24 [phir2_, phiti2_, phito2_] = Inversel[U[60]]
KBB3[phir2, phiti2, phito2] . U[60];
KBB23[phir2_, phiti2_, phito2_] = Inversel[U[60]]
KBB24[phir2, phiti2, phito2] . U[60];
W st ok o o ko o sk o o o ko ko o ok K ok o ko K ok ok sk o ok o ko ok o ok o sk o K ok ok o sk o ok ok o o ko ko ok ok ok ok o ko ok ok ok ok o ok o ok k ok o \
ookokok ko ok ko okok ok !
"the 3 force tensors for AB interaction 3rd shell";
KAB32S[phir3_, phiti3_, phito3_] = {{phir3, 0, 0}, {0, phiti3, 0},
{0, 0, phito3}};
KAB32[phir3_, phiti3_, phito3_] = Inversel[U[60]]
KAB32S[phir3, phiti3, phito3] . U[60];
KAB31[phir3_, phiti3_, phito3_] = Inverse[U[120]]
KAB32[phir3, phiti3, phito3] . U[120];
KAB33[phir3_, phiti3_, phito3_] = Inverse[U[120]]
KAB31[phir3, phiti3, phito3] . U[120];
Wt ok ok o ko o s o ok o o ko ko o ok ok ok o ko ok ok ok sk o sk o ko ok o ok o ok o ok ok ok o ok o ok ok o o ko ko o ok ok ok o sk ok ok ok ok ok o ok ok ok ok ok o \
ook ok ok ok ok ok ok ok ok !5
"the 3 force tensors for BA interaction 3rd shell";
KBA31[phir3_, phiti3_, phito3_] = {{phir3, 0, 0}, {0, phiti3, 03},
{0, 0, phito3}};
KBA32[phir3_, phiti3_, phito3_] = Inverse[U[120]]
KBA31[phir3, phiti3, phito3] . U[120];
KBA33[phir3_, phiti3_, phito3_] = Inverse[U[120]]
KBA32[phir3, phiti3, phito3] . U[120];
W stk ks o ko s o ko o ko ko o sk ks o ko ok sk ok sk ok o ko ok o sk o sk o ko ok o sk o ko o o sk o sk o ok sk ok o ko ok sk ok sk o ok o sk ok ok ok o \
sokok ok ok ok ok ok kok ok 1 3
"AB interaction in the 4th shell";
KAB41S[phird_, phiti4_, phito4_] = {{phir4, 0, 0}, {0, phiti4, 0},
{0, 0, phito4l};
winkel = (ArcTan[Sqrt[3]/5]1*360)/(2+Pi);
KAB41[phird_, phiti4_, phito4_] = Inverse[U[winkel]]
KAB41S[phir4, phiti4, phito4] . U[winkell;
KAB42[phir4_, phiti4_, phito4_] = Inversel[U[(-winkel)*2]]
KAB41[phir4, phiti4, phito4] . U[(-winkel)=*2];
KAB43[phir4_, phiti4_, phito4_] = Inversel[U[-120 + winkelx2]]
KAB42[phir4, phiti4, phito4] . U[-120 + winkel*2];
KAB44[phir4_, phiti4_, phito4_] = Inversel[U[(-winkel)*2]]
KAB43[phir4, phiti4, phito4] . U[(-winkel)*2];
KAB45[phir4_, phiti4_, phito4_] = Inversel[U[-120 + winkelx2]]
KAB44[phir4, phiti4, phito4] . U[-120 + winkelx*2];
KAB46 [phir4_, phiti4_, phito4_] = Inversel[U[(-winkel)*2]]
KAB45[phir4, phiti4, phito4] . U[(-winkel)=*2];
W stk ks o ko s o ks o ko ko sk sk o ko ok sk ks ek o ko o sk e sk o ko e o sk o ko s sk ko sk sk e ke ok sk ok sk sk e ko k ok o \
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"BA interaction in the 4th shell";
KBA43S[phir4_, phiti4_, phito4_] = {{phir4, 0, 0}, {0, phiti4, 0},
{0, 0, phito4l}};
KBA43[phir4_, phiti4_, phito4_] = Inverse[U[-180 + winkel]]
KBA43S[phir4, phiti4, phito4] . U[-180 + winkel];
KBA44[phird_, phiti4_, phito4_] = Inverse[U[(-winkel)*2]]
KBA43[phir4, phiti4, phito4] . U[(-winkel)*2];
KBA45 [phir4_, phiti4_, phito4_] = Inverse[U[-120 + winkel*2]]
KBA44[phir4, phiti4, phito4] . U[-120 + winkelx*2];
KBA46 [phir4_, phiti4_, phito4_] = Inversel[U[(-winkel)*2]]
KBA45[phir4, phiti4, phito4] . U[(-winkel)=*2];
KBA41[phir4_, phiti4_, phito4_] = Inverse[U[-120 + winkel*2]]
KBA46 [phir4, phiti4, phito4] . U[-120 + winkelx2];
KBA42[phir4d_, phiti4_, phito4_] = Inverse[U[(-winkel)*2]]
KBA41[phir4, phiti4, phito4] . U[(-winkel)=*2];
"now buildinﬁ the (2 X 2) matrices DAA, DBB, DAB and DBA. from these \
construct D.";
DAA[kx_, ky_, phirl_, phitil_, phir2_, phiti2_, phir3_, phiti3_, phir4_,
phiti4_, phitol_, phito2_, phito3_, phito4_] =
(KAA22[phir2, phiti2, phito2]*(E~(I*Raa22 . {{kx}, {ky}}))[[111[[1]1] +
KAA23[phir2, phiti2, phito2]*(E~(I*Raa23 . {{kx}, {ky}}))[[11]1[[1]1] +
KAA2[phir2, phiti2, phito2]*(E~(I*Raa2 . {{kx}, {ky}}))[[111[[1]1] +
KAA3[phir2, phiti2, phito2]*(E~(I*Raa3 . {{kx}, {ky}}))[[111[[11] +
KAA24[phir2, phiti2, phito2]*(E~(I*Raa24 . {{kx}, {ky}}))[[111[[1]1] +
KAA21[phir2, phiti2, phito2]*(E~(I*Raa21 . {{kx}, {ky}}))[[111L[[111)*
-1 + KAB2[phirl, phitil, phitol] + KAB1[phirl, phitil, phitol] +
KAB3[phirl, phitil, phitol] + KAA22[phir2, phiti2, phito2] +
KAA23[phir2, phiti2, phito2] + KAA2[phir2, phiti2, phito2] +
KAA3[phir2, phiti2, phito2] + KAA24[phir2, phiti2, phito2] +
KAA21[phir2, phiti2, phito2] + KAB31[phir3, phiti3, phito3] +
KAB32[phir3, phiti3, phito3] + KAB33[phir3, phiti3, phito3] +
KAB41[phir4, phiti4, phito4] + KAB42[phir4, phiti4, phito4] +
KAB43[phir4, phiti4, phito4] + KAB44[phir4, phiti4, phito4] +
KAB45 [phir4, phiti4, phito4] + KAB46[phir4, phiti4, phitod];
DAB[kx_, ky_, phirl_, phitil_, phir2_, phiti2_, phir3_, phiti3_, phir4_,
phiti4_, phitol_, phito2_, phito3_, phito4_] =
(KAB1[phirl, phitil, phitoll*(E~(I*Rabl . {{kx}, {ky}}))[[111[[11] +
KAB2[phirl, phitil, phitoll*(E~(I*Rab2 . {{kx}, {ky}}))[[111[[11] +
KAB3[phirl, phitil, phitol]*(E~(I*Rab3 . {{kx}, {ky}}))[[111[[1]] +
KAB31[phir3, phiti3, phito3]*(E~(I*Rab31 . {{kx}, {ky}}))[[111[[11] +
KAB32[phir3, phiti3, phito3]*(E~(I*Rab32 . {{kx}, {ky}}))[[1]J]1L[[1]] +
KAB33[phir3, phiti3, phito3]*(E~(I*Rab33 . {{kx}, {ky}}))[[111[[1]1] +
KAB41[phir4, phiti4, phito4]*(E~(I*Rab4l . {{kx}, {ky}}))[[11]1[[1]1] +
KAB42[phir4, phiti4, phitod]*(E~(I*Rab42 . {{kx}, {ky}}))[[111[[1]1] +
+
+
+
k-

+
+
<+
+

KAB43[phir4, phiti4, phito4]*(E~(I*Rab43 . {{kx}, {ky}}))[[1]11[[1]]
KAB44[phir4, phiti4, phito4]*(E~(I*Rab44 . {{kx}, {ky}}))[[1]11[[1]]
KAB45[phir4, phiti4, phito4]*(E~(I*Rab45 . {{kx}, {ky}}))[[1]11[[11]
KAB46 [phir4, phiti4, phito4]*(E~(I*Rab46 . {{kx}, {ky}}))[[111[[111)
DBA[kx_, ky_, phirl_, phitil_, phir2_, phiti2_, phir3_, phiti3_, phir4_,
phiti4_, phitol_, phit02_, phito3_, phito4_] =
(KBA1[phirl, phitil, phitol]l*(E~(I*Rbal . {{kx}, {ky}}))[[111[[1]1] +
KBA2[phirl, phitil, phitol]*(E~(I*Rba2 . {{kx}, {ky}}))[[111[[1]1] +
KBA3[phirl, phitil, phitoll*(E~(I*Rba3 . {{kx}, {ky}}))[[111[[11] +
KBA31[phir3, phiti3, phito3]*(E~(I*Rba31l . {{kx} {ky}})[[1]11[[1]1]
KBA32[phir3, phiti3, phito3]*(E~(I*Rba32 . {{kx}, {ky}}))[[111[[11]
KBA33[phir3, phiti3, phito3]*(E~(I*Rba33 . {{kx}, {ky}}))[[111[[11]
KBA41([phir4, phiti4, phito4]*(E"(I*Rbadl . {{kx}, {ky}}))[[111[[1]]
KBA42[phir4, phiti4, phitod]*(E~(I*Rbad2 . {{kx}, {ky}}))[[111[[1]1]
KBA43[phir4, phiti4, phito4]+*(E~(I*Rba43 . {{kx}, {ky}}))[[1]11L[[1]]

+ 4+ + 4+
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KBA44 [phird, phiti4, phito4]*(E~(I*Rbad44 . {{kx}, {ky}}))[[111[[1]1] +
KBA45 [phir4, phiti4, phito4]*(E~(I*Rba45 . {{kx}, {ky}}))[[111[[1]] +
KBA46 [phir4, phiti4, phito4]*(E~(I*Rba46 . {{kx}, {ky}}))[[111[[111)*-1;
DBB[kx_, ky_, phirl_, phitil_, phir2_, phiti2_, phir3_, phiti3_, phir4_,
phiti4_, phitol_, phito2_, phito3_, phito4_] =
(KBB2[phir2, phiti2, phito2]*(E~(I*Rbb2 . {{kx}, {ky}}))L[[111[[1]1] +

KBB21[phir2, phiti2, phito2]*(E~(I*Rbb21 . {{kx}, {ky}}))[[111L[[1]]

KBB22[phir2, phiti2, phito2]*(E~(I*Rbb22 . {{kx}, {ky}}))[[1]11[[1]1]

KBB23[phir2, phiti2, phito2]*(E~(I*Rbb23 . {{kx}, {ky}}))[[111L[[1]1]

KBB24[phir2, phiti2, phito2]*(E~(I*Rbb24 . {{kx}, {ky}}))[[11]1[[1]1]

KBB3[phir2, phiti2, phito2]*(E~(I*Rbb3 . {{kx}, {ky}}))[[11IL[[1]1])*-1 +

KBA1[phirl, phitil, phitol] + KBA2[phirl, phitil, phitol] +
KBA3[phirl, phitil, phitol] + KBB2[phir2, phiti2, phito2] +
KBB21[phir2, phiti2, phito2] + KBB22[phir2, phiti2, phito2] +
KBB23[phir2, phiti2, phito2] + KBB24[phir2, phiti2, phito2] +
KBB3[phir2, phiti2, phito2] + KBA31[phir3, phiti3, phito3] +
KBA32[phir3, phiti3, phito3] + KBA33[phir3, phiti3, phito3] +
KBA41[phir4, phiti4, phito4] + KBA42[phir4, phiti4, phito4] +
KBA43[phir4, phiti4, phito4] + KBA44[phir4, phiti4, phito4] +
KBA45[ghir4, phiti4, phito4] + KBA46[phir4, phiti4, phito4];
<< "LinearAlgebra‘MatrixManipulation‘"
DD[kx_, ky_, phirl_, phitil_, phir2_, phiti2_, phir3_, phiti3_, phiréd_,
phiti4_, phitol_, phito2_, phito3_, phito4_] =
BlockMatrix [{{DAA[kx, ky, phirl, phitil, phir2, phiti2, phir3, phiti3,
phir4, phiti4, phitol, phito2, phito3, phito4],

DAB[kx, ky, phirl, phitil, phir2, phiti2, phir3, phiti3, phir4, phiti4,
phitol, phito2, phito3, phito4]}, {DBA[kx, ky, phirl, phitil, phir2,
phiti2, phir3, phiti3, phir4, phiti4, phitol, phito2, phito3, phito4],

DBB[kx, ky, phirl, phitil, phir2, phiti2, phir3, phiti3, phir4, phiti4,
phitol, phito2, phito3, phito4]}}];

1 s ke o sk o ks o o ok sk o ok sk o ok o ks o ke o ko o ks ek sk sk o ok sk sk sk sk e ko o ks o ok ok o sk sk ek skl ko ek ok okok 1 5
e ke o ks e ok sk sk ok sk e ok sk s ek s ksl o ke e ke s ok sk ek sk ks s sk sk sk s ke ks e ks s ks ok skl sk ek sk sk ke ok sk ok ! 5
11 3k sk ok ok ok ok ok ok ok ok ok ok %k %k %k FORCE CONSTANTS OF 2D GRAPHITE sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok T

’
10 sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok e ek ok ok ok ok ok ok ke ke ke sk sk ok ok ok ok ok ok ok ok ok ok ok sk ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok sk sk ok okok !

bl
10 sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk sk ok ok Sk Sk ok ok sk ke ok ok ok ok ok ok k ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ke Kok !

"**************************************************************************";
"Coordinates of the high symmetry points in units a_0 (1.42 Angstrom)";
K = {(2%Pi)/3, (2%Pi)/(Sqrt[3]1*3)}; GA = {0, 0}; M = {(2%Pi)/3, 0};
fGA = neuGA[pl_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_, pl0O_, pli_, pl2_] =
Chop [Simplify[DD[GA[[1]1], GA[[2]], p1, p2, p3, p4, p5, p6, p7, P8, p9,
pl10, pil, p12]1]1;

W s ke o sk o ks s o ks e sk o ek sk ks ko o e s ksl ke sk sk ke ksl ke ksl s ek s ok ks o sk e ke e ks sk sk sk sk e ksl ok ok \
*okokokokokokok ! 5
"GAMMA - POINT";
W s sk o sk o sk o o ksl sk o sk sk o ks o ko o o o ok sk o ko sk sk ke ks ok ks s sk o ok sk s o sk o ke o ks o ok sk o sk sk e kol ok ok \
ko kkok ok 5
"Here we can see the three accoustic modes which give zero Eigenfrequency at \
the Gamma Point";
"The corresponding Eigenvectors show that ";
Print["The dynamical Matrix looks like this:"]
MatrixForm[£GA]
Eigenvalues[fGA]
Eigenvectors[fGA]
F = 1; phirl = 36.5%F;
phitil = 24.5%F; phitol = 9.82%F; phir2 = 8.8%F; phiti2 = -3.23%F;

phito2 = -0.4%F;
phir3 = 3*F; phiti3 = -5.25%F; phito3 = 0.15x%F;
phir4 = -1.92%F; phiti4 = 2.29%F; phito4 = -0.58xF;
<< "LinearAlgebra‘MatrixManipulation‘"
DD1[kx_, ky_] = DD[kx, ky, phirl, phitil, phir2, phiti2, phir3, phiti3,

phir4, phiti4, phitol, phito2, phito3, phito4];

askskokkkkokkokkkkkkkokkk solving DD along GAMMA-D>K-DM kokskokokokokskokokokkokokokokkkkk'! s
sk o sk o ks s e ks e ok sk o sk sk ke sk sk s ko o e s sk ke sk sk ke ok sk ke ksl s sk sk ok ks sk s sk s ks ok sk ek sk ok
"the coordinates of gamma point, K point and M point in units of a_0 (1.42 \

+ 4+ + +
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Angstrom)";

K = {2x(Pi/3), 2% (Pi/(Sqrt[3]1*3))}; GA = {0, 0}; M = {2x(Pi/3), 0};
"vectors of Gamma->M, M->K and K->Gamma. each divided by an appropriate \

constant fact.";

fact = 20; stepsGAM = Ceiling[Sqrt[(M - GA) . (M - GA)]*fact];

stepsMK = Ceiling[Sqrt[(K - M) . (K - M)]xfact];
stepskKGA = Ceiling[Sqrt[(GA - K) . (GA - K)]*fact];

dGAM = (M - GA)/stepsGAM; dMK = (K - M)/stePsMK dKGA = (GA - K)/stepsKGA;

"THE 6 Dispersion Relations from Gamma to M"

valGAM = Table[{GA + dGAMxi}, {i, 1, stepsGAM}],
finGAM1 =

Table[{i, Sqrt[Abs[Eigenvalues[DD1[valGAM[[i]]1[[1]1]1[[1]1],

valGAM[[i11[[111[[21111[[111]1]*mul}, {i,
finGAM2 =

1, stepsGAM}];

Table[{i, Sqrt[Abs[Eigenvalues[DD1[valGAM[[i]]1[[11]1[[11],

valGAM[[i11[[111[[21111[[211]1]*mul}, {i,
finGAM3 =

1, stepsGAM}];

Table[{i, Sqrt[Abs[Eigenvalues[DD1[valGAM[[i]]1[[1]1]1[[1]1],

valGAML[i11[[1110021111 003111 *mul}, {i,
finGAM4 =

1, stepsGAM}];

Table[{i, Sqrt[Abs[Eigenvalues[DD1[valGAM[[i]]1[[11]1[[1]1],

valGAM[[i1]1 [[111C[21111[[4]1]1]1]*mul}, {1,
£inGAMS =

1, stepsGAM}];

Table[{i, Sqrt[Abs[Eigenvalues[DD1[valGAM[[i]]1[[11]1[[1]1],

valGAM[[i1]1 [[111C[21111[[5]]1]1]*mul}, {1,
finGAM6 =

1, stepsGAM}];

Table[{i, Sqrt[Abs[Elgenvalues[DDl[valGAM[[l]][[1]][[1]],

valGAM[[l]][[1]][[2]]]][[6]]]]*mu1} {i, 1

"THE 6 Dispersion Relations from M to K";
valMK = Table[{M + dMKxi}, {i, 1, stepsMK}];
finMK1 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues [DD1[valMK[[i]][[11]1[[1]1],
11111*mul}, {i, 1, stepsMK}];
finMK2 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues[DD1[valMK[[i1][[11]1[[1]1],
2]1111*mul}, {i, 1, stepsMK}];
finMK3 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues[DD1[valMK[[i1][[1]1][[1]1],
3]111]1#*mul}, {i, 1, stepsMK}];
finMK4 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues[DD1[valMK[[i]][[1]]1[[1]1],
4]1111#mul}, {i, 1, stepsMK}];
finMK5 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues[DD1[valMK[[i1][[11][[1]1],
51111 *mul}, {i, 1, stepsMK}];
finMK6 = Table[{i + stepsGAM,
Sqrt [Abs[Eigenvalues [DD1[valMK[[i]][[111[[1]1],

61111*mul}, {i, 1, stepsMK}];
"THE 6 Dispersion Relations from K back to GAMMA";

valKGA = Table[{K + dKGAx*i}, {i, 1, stepsKGAl}];
finKGA1 = Table[{i + stepsGAM + stepsMK,

Sqrt [Abs [Eigenvalues [DD1[valKGA[[i]][[11][[1]1],

11111*mul}, {i, 1, stepsKGA}];
finKGA2 = Table[{i + stepsGAM + stepsMK,

Sqrt [Abs[Eigenvalues[DD1[valKGA[[i]][[11][[1]1],

21111 *mul}, {i, 1, stepsKGA}];
finKGA3 = Table[{i + stepsGAM + stepsMK,

Sqrt [Abs[Eigenvalues[DD1[valKGA[[i]]1[[111[[1]1],

3]1111*mul}, {i, 1, stepsKGA}];
finKGA4 = Table[{i + stepsGAM + stepsMK,

Sqrt [Abs [Eigenvalues[DD1[valKGA[[i]][[11][[1]1],

4]1111*mul}, {i, 1, stepsKGA}];

, stepsGAM}];

valMK[[il1[[11]1 0021111

valMK[[i11[[11]1[[2]1111 [

valMK[[il1[[11]1 00211110

valMK[[il1 01110021111 L

valMK[[i11[[11]1[[2]1111 [

valMK[[il1[[11]1 0021111 L

valKGA[[i11[[111CC2111]CC

valKGA[[i]1[[111C[2]111]1[L

valKGA[[i11[[1110[2]111]1[IL

valKGA[[i]1[[111C[2]111]1[L
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finKGA5 = Table[{i + stepsGAM + stepsMK,
Sqrt [Abs[Eigenvalues[DD1[valKGA[[iJ1[[111[[1]1], valKGA[[i1]1[[11]1C[2]111]1LL
51111 *mul}, {i, 1, stepsKGA}];
finKGA6 = Table[{i + stepsGAM + stepsMK,
Sqrt [Abs[Eigenvalues[DD1[valKGA[[i]1[[111[[1]1], valKGA[[i1]1 [[11]1C[2]1111LL
6]111]1*mul}, {i, 1, stepsKGA}];
"kxkkkk test of coordinates kkkkkkkkkkxkkx!' s
"this giﬁnslational vector is used to go from A atom to B atom in the same \
unitce ;

transl = {{1, 0}}[[117;
"the six AA and BB pairs in the 2nd shell";

AA

BB

= {PointSize[0.02]
Point[Raa23[[1]]
Point[Raa24[[1]]
{PointSize[0.02]
Point [Rbb22[[1]]
Point [Rbb24[[1]]
Point[Rbb2[[1]]

RGBColor[1, 0, 0], {Point[Raa22[[1]]1],

j, Point[Raa2[[1]1]1], Point[Raa3[[1]11,

1, Point[Raa21[[11113};

, RGBColor[0, 0, 1], {Point[Rbb21[[1]] + transl],
+ transl], Point[Rbb23[[1]] + transl],

+ transl], Point[Rbb3[[1]] + tramnsl],

+ transl]}j;

"nearest neighbours, 3pairs";

AB = {PointSize[0.02], RGBColor[1, 0.5, 0],
Point [Rab1[[1]]], Point[Rab3{[1]11]}};

BA = {PointSize[0.02], RGBColor[1, 1, 0], {Point[Rbal[[1]] + tramsl],
Point [Rba2[[1]] + transl], Point[Rba3[[1]] + transl]}};

"third shell , three atoms AB and BA";

{Point[Rab2[[1]]],

AB3 = {PointSize[0.02], RGBColor[0, 0, 0], {Point[Rab31[[1]]1],
Point[Rab32[[1]1]], Point[Rab33[[1]]]}};
BA3 = {PointSize[0.02], RGBColor[0, O, 0], {Point[Rba31[[1]] + tramnsl],

Point[Rba32[[1]] + transl], Point[Rba33[[1]] + transl]}};
"4th shell AB and BA pairs (six)";

BA4 = {PointSize[0.02], RGBColor[0, 1, 0], {Point[Rba41[[1]] + transl],
Point[Rba42[[1]] + transl], Point[Rba43[[1]] + tramnsl],
Point[Rbad44[[1]] + transl], Point[Rba4b5[[1]] + transl],
Point[Rbad46[[1]] + transl]}};

AB4 = {PointSize[0.02], RGBColor[0, 1, 0], {Point[Rab41[[1]]1],

Point [Rab42[[1]]], Point[Rab43[[1]]], Point[Rab44[[1]1]],
Point [Rab45[[1]11], Point[Rab46[[11113};

"circles in A Atom graph";
crcAB = Circle[{0, 0}, 1];
crcAA = Circle[{0, 0}, Sqrt([3]];
crcAB3 = Circle[{0, 0}, 2];
crcAB4 = Circle[{0, 0}, Sqrt[4 + Sqrt[3]°2]1];
Aat = {PointSize[0.03], RGBColor[0, 0, 0], Point[{0, 0}1};
"circles in B Atom graph";
crcBA = Circle[{0, O} + transl, 1];
crcBB = Circle[{0, 0} + transl, Sqrt[3]];
crcBA3 Circle[{0, 0} + tramsl, 2];
crcBA4 = Circle[{0, 0} + tramsl, Sqrt[4 + Sqrt[3]1°2]1];
Bat = {PointSize[0.03], RGBColor[0, O, 0], Point[{0, 0} + transl]};
totallist = Flatten[Join[finGAM1, finGAM2, finGAM3, finGAM4, finGAM5,
finGAM6, finMK1, finMK2, finMK3, finMK4, finMK5, finMK&, finKGA1,
finKGA2, finKGA3, finKGA4, finKGA5, finKGA6], 0];
Clear[K]; ListPlot[totallist, Frame -> True
FrameTicks -> {{{0.01, "\ECapitalGamma]“}, {stepsGAM, "M"}, {stepsGAM + stepsMK, "K"},
{stepsGAM + stepsMK + stepsKGA, "\[CapitalGamma]"}}, {{0.01, "0"}, 200, 400, 600,
800, 1000, 1200, 1400, 1600}, {}, {}}, AxesLabel -> {{False}, {Truel}},
GridLines -> {{stepsGAM, stepsGAM + stepsMK, stepsGAM + stepsMK +
stepskKGA}, None}, Frame -> True, AspectRatio -> 1,
PlotRange -> {{0, stepsGAM + stepsMK + stepsKGA}, {0, 1650}},
TextStyle -> {FontSlant -> "Italic", FontSize -> 20},
FrameLabel -> {"k", "Energy (\!\(cm\"\(-1\)\))"}, RotateLabel -> Truel



*¢1d yeyY) 90N "SUOI}R[OI

‘sque)suod our[d Jo no oxe g1d¢ - - - ‘gd pue oue[d ur ore gd* -
uorsI9dSIp PoAJOS A[[BILISWINU 91} PUR SUOIOUNJUSSIo puk senjeauado uouoyd [eorjAeue oy “ I 1e

XLIJeUW [ed1uIeuip o} st uorje[noeds uouoyd 10§ ureiord eoryewayyey oy} jo ndinQ :1-y oS

phon_gamm_short.nb

[IMatrixForm=
%(p1+p2—p5+p6+2p7+2p8) 0 0 —%(p1+p2+p5—p6+2p7+2p8;
0 %(p1+p2+p5+p6+2p7+2p8) 0 0
0 0 3 (pll+2pl2+p9) 0
—%(pl+p2~95+p6+2p7+2p8) 0 0 %(p1+p2+p5~p6+2p7+2p8)
0 —%(p1+p2+p5+p6+2p7+2p8> 0 0
0 0 -3 (pll+2pl2+p9) 0

{0, 0, 0, 3 (p1+p2+p5+p6+2p7+2p8), 3 (pl+p2+p5+p6+2p7+2p8), 6 (pll+2pl2+p9)}

{{0, 0, 1, 0, 0, 13, {0, 1, 0, O, 1, O}, {1, O, O, 1, O, O}, (O, -1, 0, O, 1, O}, (-1, 0,0, 1, 0,0}, {O, 0, -1, 0, 0, 1}}
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0
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A.2 Nanographite ribbon 7 electron energy dispersion relations

The electron energy dispersion of a nanographite ribbon is calculated by tight—binding method.
The output of the program 2 is shown in Fig. (A.2).

(* Calculate the electronic energy dispersion of armchair and zigag \
nanoribbons *) (* A. Grueneis July 2004 alex@flex.phys.tohoku.ac.jp *)

L3
METHOD : thight binding. nearest neighbour integrals are considered *)
(*
atoms are indexed by an integer number 1 =
1 to the nearest neighbour atoms are found *)
(*

from this number by a simple algorithm.
See chapter 4 thesis and reference Lin. et. al. *)
(*

t is the energy overlap parameter.
symmetric valence and conduction bands are assumed. *)
(*

( NN is the number of dimers. 2N is the number of atoms in the ribbon. *)
*
step is the delta k value. *)
t = 2.9;
NN = 6;
step = 0.01;
(* ZigZag Hamiltonian Z(k) *)

Z[k_] = Table[condla = 1 == m - 1 && EvenQ[m];
condlb = 1 ==m + 1 &% EvenQ[m]; cond2a =1 == m - 1 && Not[EvenQ[m]];
cond2b = 1 ==m + 1 && Not[EvenQ[m]];
Which[condla, -2*t*Cos[k/2], condlb, -t, cond2a, -t,
cond2b, -2*t*Cos[k/2], Not[condla || condilb If cond2a || cond2b],
0], {1, 1, 2%NN}, {m, 1, 2%NN}];
resZ = Tablel[{k, Eigenvaluestz[k]]}, {k, 0, Pi, stepl}];
reslZ = Table[{resZ[[i]]1[[1]1], resZ[[i11[[2]11[[j11}, {i, 1, Length[resZl}, {j,
1, 2x%NN}];
(* Armchair Hamiltonian A(k) *)

A[k_] = Table[condla = (1 == m - 1) && EvenQ[m];
condlb = 1 ==m + 1 &% EvenQ[m]; condic = (1 == m - 3) && EvenQ[m];
cond2a = (1 ==m - 1) &% 0ddQ[m]; cond2b = 1 == m + 1 && 0ddQ[m];
cond2c (1 ==m + 3) && 0ddQ[m];
Which[condla, -t*Exp[-Ixk], condlb, -t*Exp[Ixk/2],
condlc, -t*Exp[I*k/2], cond2a, -t*Exp[-I*k/2], cond2b, -txExp[I*k],
cond2c, -t*Exp[-Ixk/2],
Not[condla || condlb || condlc || cond2a || cond2b || cond2c], 0], {1,
1, 2xNN}, {m, 1, 2*xNN}];
resA = Table[{k, ChoptEigenvalues[A[k]]]}, {k, 0, Pi/3, stepl}];
reslA = Table[{resA[[i]]1[[1]11%3, resA[[il1[[2]]1L[311}, {i, 1,
Length[resAl}, {j, 1, 2*NN}];
(* Make a plot *)

picA = ListPlot[Flatten[res1A, 1], PlotJoined -> False,
TextStyle -> {FontSlant -> "Italic", FontSize -> 20},
AxesOrigin -> {0, 0}, Frame -> True,
FrameLabel -> {ka, "E(eV)", "(b) N=6", ""}, RotateLabel -> True,
PlotRange -> {-3*t - 0.01, 3%t + 0.01},
FrameTicks -> {{0, Pi/2,
Pl}: {{_t, "_t"}, {_2*t, "_Qt"}, {_B*t: "_Bt"}, {O) "O"}, {t:
"t"}, {2*13, "213"}, {3*t, "3t"}}, {}, {}}’
AspectRatio -> GoldenRatio, Axes -> Falsel;
(*x Export to eps file *)
Export["zigzaglO.eps", picAl;

’mathematica/thesis/nanographite.nb
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N=10

RS
2
ka

Figure A.2: Output of the Mathematica program (2) for nanographite electronic structure.

A.3 Graphite ¢ and 7 electron energy dispersion relations.

The 2D and 3D output of this program is shown in Fig. A.3 and in Fig. A.4, respectively. 3

(* Notebook to calculate electronic sigma and pi bands of graphite in LCAO \

approximationx)

(* A. Grueneis 2004 April *)

0ff [General: "spell“]

<< L1nearA1gebra MatrixManipulation®
resultlist = Table[Chop[Solve[Det [H[klist[[i]]1[[1]1], klist[[i11[[2]1]1] -
S[klist[[111[[11], k1ist[[i]1]1[[2]]]*energyl] == 0, energyll,
1/10°8], {i, 1, Length[klist]}];
distlist = Table[Sum[Sqrt[(klist[[i1][[1]] - klist[[i - 1]11[[1]1]1)"2 +
(k1ist[[i]]1[[2]1] - k1list[[i - 111([2]11)"2], {i, 2, j}],
{j, 2, Length[klist]}];
distlist2 = Flatten[Insert[distlist, 0, 1]];
res = Table[{distlist?[[i]], energyl /. resultlist[[i]]1[[j113},
{i, 1, Length[resultlist], 1}, {j, 1, 8}];
resultlist2 = Flatten[Table[Flatten[res[[l]] 0],
{i, 1, Length[resultlist]}],

Export["band2D.dat", Table[{res[[l]][[1]][[1]], res[[11]1[[11]1[[2]],
res[[i]][[2]]1[[2]], res[[i]]1[[3]11L[2]], res[[i]][[4]11L[[2]],
res[[i]]1[[61]1L[[2]], res[[i]l1[[61]L[2]] res[[1]][[7]][[2]],
res[[i]11[[811[[211}, {i, 1, Length[res]}]

plotl = ListPlot[resultlist2, Axes -> {False, True},

PlotRange -> {{0, KGAM + MK}, {-20 - 0.01, 35}}, Frame -> True,
FrameTicks -> {{{0.01, " K "}, {GAK, "\[CapitalGamma]l"}, {KGAM, "M"},

{KGAM + MK, "K"}}, {-10, -20, -30, 0, 10, 20, 30}, {}, {}}
GridLines -> {{GAK, KGAM, KGAM + MK}, None}, AspectRatlo -1,

PlotRange -> {{0, KGAMK}, {emin, emaxl}},
TextStyle -> {FontSlant -> "Italic", FontSize -> 20},
FrameLabel -> {"electron wavevector", "Energy (e)", "(a)", ""},
RotatelLabel -> True, Prolog -> hex] ;

coordslp = {{4, -10}}; labellp = Table[Text["\!\(pp\[Pil\_g\)", coordsip[[il],
TextStyle -> {FontSlant -> "Italic", FontSize -> 11},
Background -> RGBColor[1, 1, 1]1], {i, 1, Length[coordsipl}];

coords2p = {{4, 18}}; label2p = Table[Text["\!\(\(pp\[Pil\_u\"*\)\)",

3mathematica/thesis/graphite_sigma.nb



108 APPENDIX A. PROGRAMS

coords2p[[i]], TextStyle -> {FontSlant -> "Italic", FontSize -> 11},

Background -> RGBColor[1, 1, 1]], {i, 1, Length[coords2p]l}];
coordsls = {{4, -15}}; coordsls2 = {{4.8, 0}};
labells = Table[Text["\!\(ss\[Sigma]\_g\S", coordsis[[i]l],

TextStyle -> {FontSlant -> "Italic", FontSize -> 11},

Background -> RGBColor[1, 1, 1]], {i, 1, Length[coordsis]}];
labells2 =

Table[Text ["\!\ (pp\ [Sigmal\_g\)+\ '\ (\(pp\ [PiI\_u\"*\)\) ,\ '\ (\ (pp\ [Sigmal\_u\"*\)\)+\ !\
\(pp\[Pil\_g\)", coordsis2[[i]], TextStyle -> {FontSlant -> "Italic",
FontSize -> 11}, Background -> RGBColor[1, 1, 1]],

{i, 1, Length[coordsis]}];
coords2s = {{4.2, 26.3}}; coords2s2 = {{4, 10}}; coords2s3 = {{4, 6}};
label2s = Table[Text["\!\(\(ss\[Sigma]\_ui”*\)\j", coords2s[[il],

TextStyle -> {FontSlant -> "Italic", FontSize -> 11},

Background -> RGBColor[1, 1, 111, {i, 1, Length[coords2s]}];
labels = Join[Table[labellp[[il], {i, 1, Length[labellp]l}],

Table[label2p[[i]], {i, 1, Length[label2p]}],

Table[labells[[i]], {i, 1, Length[labells]}],

Table[labells2[[i]], {i, 1, Length[labells2]}],

Table[label2s[[i]], {i, 1, Length[label2s]}]1];
Show[plotl, Graphics[labels]]
Export["/misc/flex/students/alex/mathematica/thesis/graphene_el_band.eps", %]

o=

10 + ~\4"II'>
X p-
= .
b 0 & ppog+ppry*, ppoy* +pP7Tg
| Se< |
c
SS0g ==

K T M K
el ectron wavevect or

Figure A.3: Output of the Mathematica program (3) for o and 7 electron dispersion relations.

K1 = {2x(Pi/Sqrt[3]1), 2x(Pi/3)}; M1 = {K1[[11]1, 0}; GAMMA = {0, 0};
K2 = {0, 4%(Pi/3)}; K3 = {-K1[[111, K1[[2]11}; K4 = -Ki;
K5 = -K2; K6 = -K3;

data = {K1, K2, K3, K4, K5, K6, Ki};

bz = ListPlot[data, PlotJoined -> True];

bztril[xa_, ya_, xb_, yb_, xc_, yc_, steps_] := Module[{vecl, vec2, vec3, bl, b2, points},
vecl = {xa, ya}; vec2 = {xb, yb}; vec3 = {xc, yc};

bl = (vec2 - vecl)/steps; b2 = (vec3 - vec2)/steps;
points = Flatten[Table[Table[vecl + blx(i - 1) +

b2x(j - 1), {j, 1, i}, {i, 1, steps + 1}], 1]; Return[points]];

anz = 5
pl = N[bztri[GAMMAL[1]], GAMMAL[2]], K1[[1]]1, K1[[2]]1, K2[[1]], K2[[2]], anz]];
p2 = N[bztri[GAMMAL[1]], GAMMAL[2]], K2[[1]]1, K2[[2]]1, K3[[1]], K3[[2]], anz]];
p3 = N[bztri[GAMMA[[111, GAMMA[[2]], X3[[11], K3[[21], K4[[11], K4[[2]1], anz]l];
p4 = N[bztri[GAMMA[[1]1], GAMMA[[2]], K4[[11], K4[[21]1, K5[[11]1, K5[[2]], anz]];
p5 = N[bztri[GAMMAL[1]], GAMMAL[2]], K5[[1]]1, K5[[2]], K6[[1]1], K6[[2]], anz]];
p6 = N[bztri[GAMMA[[1]], GAMMA[[2]1], K6[[1]1]1, K6[[2]1, K1[[111, K1[[2]], anz]];

<< "Graphics‘MultipleListPlot‘"
MultipleListPlot[pl, p2, p3, p4, p5, p6]
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kpoint3D = Join[pl, p2, p3, p4, p5, p6l;
resultlist3D = Table[Chop[Solve[Det[H[kpoint3D[[i1][[1]1],
kpoint3D[[111[[2]1]1] - S[kpoint3D[[i1]1[[1]], kpoint3D[[i]][[2]1]*
energyl] == 0, energyl], 0.01], {i, 1, Length[kpoint3D]}];
res3D = Table[energyl /. resultlist3D[[i]]1[[j]1], {i, 1, Length[resultlist3D], 1}, {j, 1, 83}]1;
resultlist3 = Table[Flatten[res3D[[i]]], {i, 1, Length[resultlist3D]}];

bandl = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[i1]1[[2]], resultlist3[[i]1]1[[1]1]1},
{i, 1, Length[kpoint3D]}];

band2 = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[2]1]1},
{i, 1, Length[kpoint3D]}];

band3 = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[il]1[[2]], resultlist3[[i]]1[[3]]},
{i, 1, Length[kpoint3D]}];

band4 = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[4]1]1},
{i, 1, Length[kpoint3D]}];

band5 = Table[{kpoint3D[[i]][[1]], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[5]]1},
{i, 1, Length[kpoint3D]}];

band6 = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[6]]},
{i, 1, Length[kpoint3D]}];

band7 = Table[{kpoint3D[[i]][[1]], kpoint3D[[i]]1[[2]], resultlist3[[i]][[7]1]1},
{i, 1, Length[kpoint3D]}];

band8 = Table[{kpoint3D[[i1][[1]], kpoint3D[[il]1[[2]1], resultlist3[[il1]1[[8]1]1},
{i, 1, Length[kpoint3D]}];

<< "DiscreteMath‘ComputationalGeometry ‘"

blp = TriangularSurfacePlot[bandl,
AmbientLight -> RGBColor[1, 0, 0],

ViewPoint -> {1.484, -2.073, 2.225},

Axes -> Truel;

b2p = TriangularSurfacePlot[band2, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 1, 0], Axes -> True];
b3p = TriangularSurfacePlot[band3, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> True];
b4p = TriangularSurfacePlot[band4, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 1, 0], Axes -> Truel;
bbp = TriangularSurfacePlot[band5, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 0, 0], Axes -> True];
b6p = TriangularSurfacePlot[band6, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> True];
b7p = TriangularSurfacePlot[band7, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> True];
b8p = TriangularSurfacePlot[band8, ViewPoint -> {1.484, -2.073, 2.225},

AmbientLight -> RGBColor[0, 0, 1],

kpoint3D = Join[pl, p2, p3, p4, p5,
resultlist3D = Table[Chop[Solve[Det[H[kpoint3D[[i]1[[1]1], kpoint3D[[i11[[2]1]1] -

Axes -> Truel;

p61;

S[kpoint3D[[i]1[[1]1], kpoint3D[[i]][[2]1]1]*

energyl] ==

, energyl], 0.01], {i, 1, Lengthl[kpoint3D]}];

res3D = Table[energyl /. resultlist3D[[i]]1[[j]1], {i, 1, Length[resultlist3D], 1}, {j, 1, 83}]1;
resultlist3 = Table[Flatten[res3D[[i]]1], {i, 1, Length[resultlist3D]}];

In[38]:=

bandl = Table[{kpoint3D[[i]]1[[11], kpoint3D[[i]1[[2]1], resultlist3[[i11[[11]3,
{i, 1, Length[kpoint3D]}];

band2 = Table[{kpoint3D[[i]]1[[1]], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[2]1]},
{i, 1, Length[kpoint3D]}];

band3 = Table[{kpoint3D[[i]]1[[1]1], kpoint3D[[il]1[[2]], resultlist3[[il]1[[3]1]1},
{i, 1, Length[kpoint3D]}];

band4 = Table[{kpoint3D[[i]]1[[11], kpoint3D[[i]1[[2]1], resultlist3[[i1]1[[41]3},
{i, 1, Length[kpoint3D]}];

band5 = Table[{kpoint3D[[i]]1[[1]], kpoint3D[[i]]1[[2]], resultlist3[[i]]1[[5]1]1},
{i, 1, Length[kpoint3D]}];

band6 = Table[{kpoint3D[[i]][[1]], kpoint3D[[il]1[[2]1], resultlist3[[il1]1[[6]1]1},
{i, 1, Length[kpoint3D]}];
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band7 = Table[{kpoint3D[[i]][[1]], kpoint3D[[i1][[2]], resultlist3[[i]J]1[[71]},
{i, 1, Length[kpoint3D]}];
band8 = Table[{kpoint3D[[i]1[[1]1], kpoint3D[[i]1[[2]], resultlist3[[i11[[8]]1},
{i, 1, Lengthl[kpoint3D]}];
<< "DiscreteMath‘ComputationalGeometry‘"
blp = TriangularSurfacePlot[bandl, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 0, 0], Axes -> True];
b2p = TriangularSurfacePlot[band2, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 1, 0], Axes -> True];
b3p = TriangularSurfacePlot[band3, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> True];
b4p = TriangularSurfacePlot[band4, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 1, 0], Axes -> True];
b5p = TriangularSurfacePlot[band5, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[1, 0, 0], Axes -> True];
b6p = TriangularSurfacePlot[band6, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> Truel;
b7p = TriangularSurfacePlot[band7, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, 0, 1], Axes -> Truel;
b8p = TriangularSurfacePlot[band8, ViewPoint -> {1.484, -2.073, 2.225},
AmbientLight -> RGBColor[0, O, 1], Axes -> True];
Export["bands2.dat", bandl];
Export["bands2.dat", band2];
Export["bands3.dat", band3];
Export["bands4.dat", band4];
Export["bandsb.dat", band5];
Export["bands6.dat", band6];
<< "Graphics‘Graphics3D‘"
<< "Graphics‘Shapes‘"
bz3D = Graphics3D[Polygon[{{K1[[111, K1[[2]1], 0}, {K2[[111, K2[[2]1], O},
{k3[[1]], K3[[21], o}, {K4[[11], K4[[2]], O}
Ks[[11T, k501211, oF, 1KE[[1IT, Ké[[211, 0}}11;

Show[bz3D] ;
labeltext=Graphics3D[Text ["Energy (eV)",{-3,0,0},{-5.5,0},{0,-1}]1 1 ;
totalplot = Show[ blp, b2p, b3p, bdp, b5p, b6p, b7p, b8p, labeltext,
Graphics3D[{Text["", {0, 0, 0}, {0, 0}1}], AspectRatio -> 1,

ViewPoint -> {1,1.3, 0}, Axes -> {True, True, True}, Boxed -> True,
TextStyle -> {FontSlant -> "Italic", FontSize -> 17},

AxesLabel -> {"", "", ""} Ticks -> {{}, {3},
{-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35}},

LightSources -> {{{1., 0., 1.}*3, RGBColor[1, 0, 01}, {{1., 1., 1.}x3,
RGBColor[0, 1, 01}, {{0., 1., 1.}*3, RGBColor[0, 0, 11}},

Shading -> True, PlotLabel -> "(b)", PlotRange -> {-20.1, 35.1}]
Export["/misc/flex/students/alex/mathematica/thesis/totalplot2.eps", totalplot]
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Figure A.4: Output of the Mathematica program (3) for o and 7 electron dispersion relations.
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