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Chapter 1

Introduction

Carbon nanotubes (CNTs) are thin and hollow cylinders made out of entirely carbon atoms.

These were discovered in the form of multi wall carbon nanotubes (MWNT) and single wall

carbon nanotubes (SWNT) in 1991 and 1993, consecutively [1, 2]. SWNTs have a cylindrical

shape of various lengths and diameters on the order of 1µm and 1 nm, respectively. The

diameter is small enough compared to the length, thus SWNT is regarded as a quasi one

dimensional (1D) material. The structure of a SWNT can be conceptualized by wrapping

a one-atom-thick layer of graphite (called graphene) into a seamless cylinder. The way the

graphene sheet is rolled up is represented by a pair of integer index (n,m) called the chiral

vector, which also gives both the nanotube diameter (dt) and chiral angle (θ). Depending

on the (n,m) value, the SWNTs can be either metallic or semiconducting. It has been

predicted that one of three SWNTs shows metallic behavior, while the other two show

semiconducting behavior [3]. These special electronic properties, which are not found in

any other material, suggest many potential applications of SWNTs such as logical circuits,

metallic wires, nanotube transistors, and optical devices [4, 5].
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Optical spectroscopy methods, such as resonance Raman spectroscopy (RRS) and band

gap photoluminescence (PL), have been proved to provide powerful tools for investigating

the geometry and optical properties of SWNTs in different samples. They can be used to

characterize electronic transitions between van Hove singularities (VHSs) in the density of

states (DOS), which originate from the 1D structure of SWNTs. The transition energies

Eii between VHSs for SWNTs of different (n,m) indices are often mapped on the so-called

Kataura plot [6, 7], that is widely used the in RRS and PL studies of SWNTs. The Kataura

plot gives Eii as a function of the tube diameter (dt) or inverse diameter (1/dt). The Eii

energies in the Kataura plot are arranged in bands (ES
11, E

S
22, E

M
11, etc.) for semiconducting

(S) and metallic (M) SWNTs, where the index i denotes the transition between the ith VHS

in the valence band to the ith VHS in the conduction band (i is counted from the Fermi

level).

Early on, some aspects of the optical measurements of Eii could be interpreted within

the context of a simple noninteracting electron model [7, 8]. However, it has been clear that

electron-electron and electron-hole interactions play an important role in determining the

optical transition energies. Theoretical calculations and experimental measurements also

showed that the exciton binding energies are very large in the nanotube system, up to 1 eV,

indicating the importance of many-body effects in this quasi 1D system [9, 10, 11, ?, 12, 13,

14, 15]. Thus, Eii is now well understood in terms of excitonic transition energy (or simply

exciton energy).

1.1 Purpose of the study

It has been found that Eii is strongly influenced by a change in the surrounding materials,

through the so-called environmental effect [16]. To accurately assign an (n,m) index, it is

necessary to know very well Eii (from the RRS or PL measurements) and radial breathing

mode (RBM) frequencies measured from the RRS experiments for a standard SWNT and

how environmental effects can change such standard properties. While the RBM frequency

behavior when the tube is interacting with some environments has been mostly understood

by some empirical formulas [17, ?], a complete description for the Eii’s environmental effect
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is still missing. Theoretical calculations which take into account curvature and many-body

effects are still insufficient to accurately describe the experimentally obtained Eii results.

The reason is that Eii strongly depends on the dielectric constant of the SWNT and its

environment [18]. Consequently, lots of different values of Eii published in the literature are

urging the need for one big unified picture.

In this thesis, we are going to discuss some main aspects of finding an appropriate de-

scription for the SWNT’s environmental dielectric screening effect within exciton picture,

therefore describe all Eii values. In short, the purpose of the present study is as follows.

• To model the environmental effect on Eii in terms of the excitonic dielectric screening

effect.

• To find a formula for reproducing experimentally obtained Eii for many SWNT chi-

ralities in different samples, hence providing an accurate assignment of (n,m) indices

and establishing a standard reference for SWNT characterization from the theoretical

point of view.

1.2 Background

1.2.1 Nanotube synthesis

The synthesis of CNTs is an important issue in the nanotube research field since it deter-

mines many aspects of the physical properties of the CNTs. Chirality control is particularly

the most difficult part to achieve, no one has yet given a nanotube of single (n,m) index.

Nevertheless, some techniques have been developed to produce nanotubes in sizeable quan-

tities, such as arc discharge, laser ablation, and chemical vapor deposition (CVD). Such

processes in the nanotube synthesis, along with the surfactants used to disperse or isolate

SWNTs, play a significant role in the environmental effects. Most of these processes take

place in vacuum or with additional gases and thus have special characteristics related to

their dielectric properties. Here we review some of these synthesis methods.
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Arc discharge

Nanotubes were observed in 1991 in the carbon soot of graphite electrodes during an arc

discharge by using a high current, that was intended to produce fullerenes [1]. The first

macroscopic production of CNTs was made in 1992 at NEC Fundamental Research Labora-

tory [19]. During this process, the carbon contained in the negative electrode sublimates be-

cause of the high discharge temperatures. This method produces both SWNTs and MWNTs

with lengths of up to 50µm and only few structural defects.

Laser ablation

In the laser ablation process, a pulsed laser vaporizes a graphite target in a high-temperature

reactor while an inert gas is blowed into the reaction chamber. Nanotubes grow on the cooler

surfaces of the reactor as the vaporized carbon condenses. To collect the nanotubes, a water-

cooled surface can be included in the system. This process was developed by R. Smalley

and co-workers at Rice University. Actually at the time of the discovery of CNTs, they

were only blasting metals with a laser to produce various metal molecules. When they

realized the possibility of making nanotubes, they then replaced the metals with graphite to

create MWNTs. Later on, they used a composite of graphite and metal catalyst particles

to synthesize SWNTs [20, 21]. This method produces mainly SWNTs with a controllable

diameter that can be determined by the reaction temperature.

Chemical vapor deposition (CVD)

CNTs were first successfully formed by this process in 1993 [22]. During the deposition, a

substrate is prepared with a layer of metal catalyst particles, such as nickel, cobalt, iron,

or a combination. The diameters of the nanotubes to be grown are related to the size of

the metal catalysts. This can be controlled by patterned deposition of the metal, annealing,

or by plasma etching of a metal layer. The substrate is then heated up to approximately

700◦C. To induce the growth of the nanotubes, two kinds of gases are bled into the reactor.

The first one is a process gas such as ammonia, nitrogen or hydrogen and the second one is
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(a) (c)(b)

100 nm 100 nm 100 nm

Figure 1-1: TEM image of SWNTs produced by three CVD methods. (a) Super-growth:
Water-assisted CVD results in massive growth of superdense aligned nanotube forests [?].
(b) ACCVD: High purity SWNTs synthesized at low temperature by using alcohol as the
carbon source [23]. (c) HiPco: Catalytic production of SWNTs in a continuous-flow gas-
phase process using carbon monoxide as the carbon feedstock [24].

carbon-containing gas such as acetylene, ethylene, ethanol or methane. Nanotubes grow at

the sites of the metal catalyst, then the carbon-containing gas is broken apart at the surface

of the catalyst particle, and the carbon is transported to the edges of the particle, where it

forms the nanotubes.

Of the various methods for synthesizing nanotubes, CVD is the most promising process

for industrial-scale production because of its price per unit ratio, small defects, and it is

also capable of growing nanotubes directly on a desired substrate, whereas in the other

growth techniques the nanotubes must be collected individually. There are several well-

known variations of the CVD method. Three of which are water-assisted CVD or the so-called

super-growth method (SG) [?], alcohol-catalytic CVD (ACCVD) [23], and high pressure

carbon monoxide decomposition (HiPco) [24]. They provide SWNTs of high-quality within

a broad range of diameters in different environments, thus suit the needs of Eii analysis in

this thesis.

In the HiPco process, catalysts for SWNT growth form in situ by thermal decomposition

of iron pentacarbonyl in a heated flow of carbon monoxide at pressures of 1 − 10 atm and

temperatures of 800− 1200◦C. The SWNT yield and diameter distribution can be varied by

controlling the process parameters, and SWNTs as small as 0.7 nm in diameter (the same as

Fig. 1-1: fig/fch1-cnt.pdf
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that of a C60 molecule) have been generated. Usually the SWNTs produced by the HiPco

method is further dispersed in the sodium docedyl sulfate (SDS) solution.

In the ACCVD process, alcohol is used as the carbon source and high-purity SWNTs can

be grown at relatively low temperature. Because of the etching effect of decomposed OH

radical attacking carbon atoms with a dangling bond, impurities such as amorphous carbon,

multi wall carbon nanotubes, metal particles and carbon nanoparticles are completely sup-

pressed even at reaction temperature as low as 700− 800◦C. By using methanol, generation

of SWNTs even at 550◦C can be achieved.

In the SG method, the activity and lifetime of the catalyst are enhanced by addition of

water into the CVD reactor. Dense millimeter-tall nanotube ”forests”, aligned normal to

the substrate, are produced. Those SWNT forests can be easily separated from the catalyst,

yielding clean SWNT material (purity > 99.98 %) without further purification, and thus

the surrounding materials around the SWNTs are almost like vacuum. For comparison, the

as-grown HiPco CNTs contain about 5 − 35 % of metal impurities. It is therefore purified

through dispersion (such as by SDS) and centrifugation that damages the nanotubes. The

SG process allows to avoid this problem. It is also possible to grow material containing

SWNT, DWNTs and MWNTs, and to alter their ratios by tuning the growth conditions,

thus the SG method generally provides a very broad distribution of the nanotube diameter.

1.2.2 Measurements of optical transition energies

The optical transition energies Eii of SWNTs are a key signature for the nanotube structure

assignment. The Eii measurements give rich information about the electronic structure of

an SWNT, for example, whether the SWNT is metallic or semiconducting. Based on these

measurements, the tube diameter dt and chiral index (n,m) can also be determined. These

are usually performed by using photoluminescence (PL) and resonance Raman spectroscopy

(RRS).
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Figure 1-2: (a) Schematic density of electronic states (DOS) illustrating PL process. See
text for details. (b) 2D PL intensity map giving some (n,m) values [25].

Photoluminescence spectroscopy

In PL spectroscopy, metallic SWNTs (M-SWNTs) do not fluoresce because they have no

band gaps. In the case of semiconducting SWNTs (S-SWNTs), there is a direct energy gap

so that a strong light absorption and emission can occur. Surfactant materials are used to

separate S-SWNTs from M-SWNTs in a bundle of SWNTs, and then PL spectra can be

observed for S-SWNTs.

The excitation of PL can be described as is illustrated in Fig. 1-2(a). An electron in a

SWNT absorbs excitation light via E22 transition, creating an electron-hole pair. The elec-

tron and hole rapidly relax through phonon-assisted processes from c2 (second conduction)

to c1 (first conduction) and from v2 (second valence) to v1 (first valence) states, respectively.

They then recombine through c1 to v1 transition resulting in light emission (E11). For M-

SWNTs, an electron can actually be excited, thus resulting in optical absorption, but the

hole is immediately filled by another electron out of many available in the metal. Therefore

no electron-hole pair is produced and the light emission cannot be observed.

In Fig. 1-2(b) PL intensity is plotted versus excitation and emission wavelengths (of

Fig. 1-2: fig/fch1-pl.pdf
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light) where we can see some strong peaks corresponding to a certain PL process. Since the

DOS of each SWNT is unique, thus each strong peak should corresponds to a particular

tube structure, that is one (n,m) value of S-SWNT. PL spectroscopy is therefore a very

important tool for S-SWNT characterization.

Resonance Raman spectroscopy

Raman spectroscopy is basically understood as an inelastic light scattering process. The

process is slightly different from the PL process. A given laser light can excite an electron

from a conduction band to a valence band, leaving a hole in the valence band. The photo-

excited electron goes down to a virtual state whose lifetime is very short by emitting phonon,

then the electron recombines with hole resulting in the emitted light. Intensity of the emitted

light is very weak; however, when the laser energy is resonant to the energy gap between the

conduction and valence bands, the intensity is strongly enhanced, thus giving information of

Eii. This is called resonance Raman spectroscopy (RRS). Several scattering modes dominate

the Raman spectrum, such as the radial breathing mode (RBM), D mode, G mode, and G’

mode, which are all related to a special phonon energy. The phonon frequency involved

in the Raman spectroscopy process is called Raman shift. An illustration of some phonon

modes in a Raman spectrum is shown in Fig. 1-3(a).

For characterization purposes, the RBM is particularly of great importance since it is

directly related to the nanotube diameter dt [27]. The RBM corresponds to radial expansion

and contraction of the tube. Its frequency, ωRBM, depends on dt and can be estimated by

ωRBM = A/dt +B, where A and B are fitted for various nanotube samples [?]. This relation

is very useful for extracting the nanotube diameter from the RBM position. A typical RBM

range is about 100 − 350 cm−1. Similar to the PL map, the energy of the excitation light

can be scanned in Raman measurements, thus producing a Raman excitation profile. Those

maps also contain oval-shaped features uniquely identifying (n,m) indices. An example of

such maps is shown in Fig. 1-3(b), where the RBM Raman intensity is plotted as a function

Fig. 1-3: fig/fch1-raman.pdf
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Figure 1-3: (a) Cartoon of a Raman spectrum of SWNTs for a given laser energy. (b) 2D
Raman intensity map showing the SWNT RBM spectral evolution as a function of laser
excitation energy [26]. Dots are 378 Eii values of all SWNTs in the experimental range.

of laser excitation energy and RBM frequency. In contrast to PL, Raman spectroscopy can

detect not only semiconducting but also metallic tubes, and it is less sensitive to nanotube

bundling than PL. However, requirement of a tunable laser and a special spectrometer might

be strong technical drawbacks.

1.2.3 Importance of exciton picture

Basically, an exciton consists of a photo-excited electron and a hole bound to each other

by a Coulomb interaction in a semiconducting material. In most semiconductors, we can

calculate the binding energy of an exciton in 3D materials by a hydrogenic model with a

reduced effective mass and a dielectric constant. The resulting binding energy is on the

order of 10 meV, thus optical absorption to exciton levels is usually observed only at low

temperatures. However, in an SWNT, because of its 1D properties, the electron-hole attrac-

tion energy becomes larger and can be as large as 1 eV, so exciton effects can be observed

at room temperature. Excitons are therefore essential for explaining optical processes in

SWNTs.

In order to explain the observed Eii, much insight has been gained from the simple

Fig. 1-4: fig/fch1-kata.pdf
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Figure 1-4: (a) STB Kataura plot, the vertical energy axis is the nanotube band gap [7]. (b)
Single particle band gap Eg is not simply the transition energy. Self energy Σ and binding
energy Ebd corrections give the true transition energy Eii.

(nearest-neighbor) tight-binding (STB) model of the band structure of SWNTs [7]. This

method predicts the transition energies varying approximately as the inverse of diameter

and having a weak dependence on the chiral angle, as shown in the STB Kataura plot in

Fig. 1-4(a). However, experimental and theoretical results point to the fact that the STB

calculation is insufficient for an accurate description of optical transitions in SWNTs. For

example, as has been reported by Weisman et al., the Eii values calculated by STB model

are lower than those measured in their PL experiment [28]. They also observed the so-called

family spread, in which nanotubes with the same (2n + m) show a unique pattern for the

smaller dt.

The electron-electron and electron-hole interactions change in a significant way the Eii

dependence on diameter. Both the electron-electron and electron-hole interactions are due

to screened Coulomb interactions. The former describes the repulsive energy, called self-

energy Σ, that is needed to add an additional electron to the system, hence, increases the

band gap. In contrast, the electron-hole interaction gives the attractive Coulomb interaction,

Fig. 1-5: fig/fch1-tp.pdf
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Figure 1-5: Two-photon experiment by Wang et al. [10]. (a) In the exciton picture, the
1s exciton state is forbidden under two-photon excitation. The 2p exciton and continuum
states are excited. They relax to the 1s exciton state and fluoresce through a one-photon
process. (b) In the simple band picture, two-photon excitation energy is the same as emission
energy, but this case is not observed. (c). Contour plot of two-photon excitation spectra
of SWNTs. By comparison with the solid line describing equal excitation and emission
energies, it is clear that the two-photon excitation peaks are shifted above the energy of the
corresponding emission feature. The large shift arises from the excitonic nature of SWNT
optical transitions. Ebd is found to be as large as up to 1 eV, thus excitons play an important
role in the nanotube optics.

called exciton binding energy Ebd, which lowers the excitation energy. The overall effect is a

blue-shift so that the positive self energy dominates over the negative exciton binding energy.

This is illustrated in Fig. 1-4(b).

Experimentally, the importance of many-body effects in the form of excitonic electron-

hole attraction and Coulombic electron-electron repulsion in SWNTs was discussed exten-

sively for the first time in the context of the so-called ratio problem [29, 11], where the

ratio between the second and first transition energies in S-SWNTs are not equal to two as

predicted by the STB model [7]. Other experimental results, for example, the two-photon

absorption experiments [10, ?], then provided strong evidence for the excitonic nature of

the lower energy transition. A two-photon experiment by Wang et al., which is the first

breakthrough in the nanotube Ebd measurements, is described in Fig. 1-5, after Ref. [10].
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From the theoretical point of view, the importance of excitons was introduced very early

by T. Ando who studied excitations of nanotubes within a static screened Hartree-Fock ap-

proximation [9]. After some experimental results started to show the rise of excitons, detailed

first-principles calculations of the effects of many-body interactions on the optical properties

of SWNTs were then performed [12, 13]. Some descriptions of excitons in nanotubes based on

simpler or different models were also developed [14, 15]. In this thesis, however, the so-called

extended tight-binding (ETB) model will be used to study the systematic dependence of ex-

citon effects on the tube diameter and chiral angle [30]. In this model, the Bethe-Salpeter

equation is solved for obtaining the excitation energies Eii that already includes self energy

and exciton binding energy. The ETB model also includes the curvature effects through the

σ-π hybridization that cannot be neglected for nanotubes of small diameter.

1.2.4 Environmental effects

Optical absorption, photoluminescence, and resonance Raman spectroscopy have all been

used to determine the Eii energy values, leading to the development of theoretical models

to describe the nanotube electronic structure for excited states. However, the Eii values of a

particular (n,m) SWNT have been found to shift by a large amount (up to 100 meV) by the

effects of the substrate, bundling, and other environmental factors surrounding the SWNTs

such as solvents or wrappings, and even temperature [16].

There are several experimental observations on these effects. Fig. 1-6(a) shows a PL

measurement by Ohno et al. by changing surrounding materials around SWNTs. It is clearly

shown the decrease of Eii with increasing dielectric constant (or relative permittivity) of

surrounding materials, κenv. This indicates the exciton is screened more by higher dielectric

constant materials, thus the energy decreases. In another experiment by Fantini et al. which

is an early experiment on the environmental effects [16], they measured RRS Eii values for

some (n,m) nanotubes made by HiPco process and compared the results in bundles, those

wrapped with sodium docedyl sulfate (SDS) in aquaeous solution, and also those wrapped

Fig. 1-6: fig/fch1-env.pdf
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Figure 1-6: (a) PL measurement for three different surrounding materials around SWNTs
with their own dielectric constants: air (κenv = 1.0), hexane (κenv = 1.9), and chloroform
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bols. (b) Experimental Eii versus ωRBM for 46 different (n,m) carbon nanotubes measured
by RRS. Solid circles and solid squares denote, respectively, semiconducting and metallic
SWNTs wrapped with SDS in aqueous solution. Open stars are for SWNTs in bundles.
Open circles are for SWNTs wrapped in SDS measured by PL spectroscopy [28].

in SDS measured by PL spectroscopy [28]. Two main conclusions are obtained from their

observation. First, for a given nanotube, the Eii value is down-shifted for SWNT bundles

compared to SWNTs in solution, as can be seen in 1-6(b). The shifts are different (from 20

up to 140 meV) for different (n,m) SWNTs. Second, the Eii measurements by RRS and

PL spectroscopy show good agreement to each other, thus it is quite safe to consider both

the methods will give the same Eii results, though in the later chapter it will be shown a

necessary correction to the lowest transition energies in semiconducting SWNTs measured

by PL spectroscopy. In a sense of the nanotube synthesis, the different synthesis methods

may also give different Eii for a certain (n,m) SWNT. The experimental Eii values of

SWNTs made by ACCVD and HiPco methods are generally red-shifted when compared to

those made by SG method [31]. The Kataura plot becomes unique for each environment,

and therefore the environmental effect must be taken into account explicitly.

Fig. 1-7: fig/fch4-sg1kapp.pdf
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Figure 1-7: Black dots show Eexp
ii vs. ωRBM results from resonance Raman spectra taken

for a SG sample [31, 32]. The black open circles (S-SWNTs) and the dark-gray stars (M-
SWNTs) give Ecal

ii calculated with the smallest dielectric constant. Along the x axis, Ecal
ii

are translated using the relation ωRBM = 227/dt [17] which is valid for the SG sample.

Figure 1-7 shows a map of experimental Eii values (black dots) [31, 32] from a SWNT

sample grown by the “super-growth” (SG), water-assisted chemical CVD [?]. The resulting

data for the Eii transition energies are plotted as a function of the radial breathing mode

frequencies ωRBM obtained by RRS. The experimental transition energy values Eexp
ii for the

SG sample are compared with the calculated bright exciton energies Ecal
ii (open circles and

stars), obtained for the smallest dielectric constant. Although Ecal
ii includes SWNT curvature

and many-body effects, the Eexp
ii values are clearly redshifted when compared to the theory.

More emphasis on this fact is shown in Fig. 1-8, in which the Eexp
ii values for the SG and

ACCVD samples are compared. The Eexp
ii values for the ACCVD sample are red-shifted

from those for the SG sample, thus they are also red-shifted from the theoretical results.

Generally, this tendency is true for all experimental Eii data available in the literature [31].

The redshift depends on both ωRBM (or on dt) and the optical energy levels denoted by i in
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Figure 1-8: Eexp
ii vs. ωRBM experimental results obtained for the SG (bullets) and the ACCVD

(open circles) SWNT samples.

Eii.

The environmental effect on Eii can be understood by the excitonic dielectric screening

effect. Previous theoretical studies of Eii mostly described the screening effect by a static di-

electric constant κ which consists of screening terms by the surrounding materials (κenv) and

the nanotube itself (κtube). Calculations by Jiang et al. using a single constant κ = 2.22 pro-

vided a good description for the optical transition energies of bundled SWNTs for a limited

range of dt [30, 33]. In parallel, Miyauchi et al. used 1/κ = Ctube/κtube + Cenv/κenv, where

Ctube and Cenv are dt-dependent coefficients, and they successfully reproduced experimental

Eii values, though only for a very limited number of E11 transitions for S-SWNTs [18]. Other

sophisticated theoretical models on this subject have also been presented [34, 35], but these

formulations might be too complicated to be used for practical purposes.

Recently, Araujo et al. reported a dt-dependent κ that could reproduce many exper-

imental Eii values and thus represents a breakthrough toward tackling the environmental

Fig. 1-8: fig/fch4-sgaa.pdf
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effects [32]. However, different κ dependencies on dt were obtained for (ES
11, E

S
22, E

M
11) relative

to (ES
33, E

S
44). In this thesis, it will be shown a significant improvement for the κ function

which can unify all the dependencies for (ES
11, E

S
22, E

M
11, E

S
33, E

S
44) over a broad range of dt

(0.7 < dt < 2.5 nm). Now κ is found not only to depend on dt, but also on the exciton size

lk in reciprocal space. An empirical formula to calculate unknown Eii for different sample

environments is then established.

1.3 Organization

This thesis is organized into five chapters. In Chapter 1, all the necessary backgrounds have

been introduced. In Chapter 2, the basics of carbon nanotubes are reviewed, especially re-

garding the geometry and electronic structure. The electronic structure is considered within

STB and ETB models. In Chapter 3, the calculation methods used in this thesis are dis-

cussed. The exciton energy calculation based on the ETB model is reviewed, which was

developed by Jiang et al. [30] in our group. The main (original) results of this thesis will be

shown in Chapter 4. The dependence of the exciton energy on the dielectric constant leads

to the development of dielectric constant model which can reproduce many experimental Eii

values. A general functional form of κ is obtained, and it yields a parameter specific to each

type of environments surrounding the nanotubes, therefore characterizes that environment.

This function can then explain the environmental effect on the exciton energies. Further-

more, it can also be used to construct another empirical formula that relates Eii directly to

environmental dielectric constant and with a dependence on the nanotube diameter. Also,

another important result from this work is that the super-growth SG sample can be consid-

ered as a standard for calculating Eii values of other experimental samples. However, a small

correction for ES
11 experimental data obtained by PL spectroscopy is needed. The reason is

that there is a deviated tendency of the κ values for type-I and type-II S-SWNTs for ES
11

only. This deviation suggests that the exciton is thermally activated by the center of mass

motions coupled with phonons. Finally, in Chapter 5, a summary of this thesis is given.



Chapter 2

Basics of carbon nanotubes

The basic properties of single wall carbon nanotubes (SWNTs) are reviewed in this chapter.

The discussion includes a description of the nanotube geometrical structure and electronic

properties. Because a SWNT can be imagined as a single layer graphene sheet rolled up

into a cylinder, its electronic properties are inferred based on the electronic properties of

graphene. Some important definitions related to the nanotube properties will be explained.

The derivation of the electronic structure itself is within the tight-binding framework.

2.1 Geometrical structure

2.1.1 Graphene unit cell

Graphene is a single atomic layer of carbon atoms in a two-dimensional (2D) honeycomb

lattice. Graphene is a basic building block for all graphitic materials of other dimensionalities.

Several layers of graphene sheet stacked together will form 3D graphite, where the carbon

atoms in each 2D layer make strong sp2 bonds and the van der Waals forces describe a weak

interlayer coupling. In 0D, graphene can be wrapped up into fullerenes, and in 1D, as a

main discussion in this chapter, it can be rolled up to form the nanotubes.

Fig. 2-1: fig/fch2-grunit.pdf
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Figure 2-1: (a) The unit cell and (b) Brillouin zone of graphene are shown, respectively, as
the dotted rhombus and the shaded hexagon. ai and bi, where i = 1, 2, are unit vectors and
reciprocal lattice vectors, respectively. The unit cell in real space contains two carbon atoms
A and B. The dots labeled Γ, K, K′, and M in the Brillouin zone indicate the high-symmetry
points.

Figure 2-1 gives the unit cell and Brillouin zone of graphene. The graphene sheet is

generated from the dotted rhombus unit cell shown by the lattice vectors a1 and a2, which

are defined as

a1 = a

(√
3

2
,
1

2

)
, a2 = a

(√
3

2
,−1

2

)
, (2.1)

where a =
√

3aCC is the lattice constant for the graphene sheet and aCC ≈ 0.142 nm is the

nearest-neighbor interatomic distance. The unit cell surrounds two distinct carbon atoms

from the A and B sublattices shown, respectively, by open and solid dots in Fig. 2-1(a).

The reciprocal lattice vectors b1 and b2 are related to the real lattice vectors a1 and a2

according to the definition

ai · bj = 2πδij, (2.2)

where δij is the Kronecker delta, so that b1 and b2 are given by

b2 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3)

The first Brillouin zone is shown as a shaded hexagon in Fig. 2-1(b), where Γ, K, K′, and M

denote the high symmetry points.
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2.1.2 Nanotube unit cell

Carbon nanotube forms a periodical structure or lattice, which are non-bravais lattice since

it is a 1D structure. Referring to the unrolled graphene sheet shown in Fig. 2-2, the unit cell

of a SWNT is limited by two vectors: the chiral vector Ch, and its pair, the translational

vector T. The chiral vector is defined as the way the graphene sheet is rolled up. It gives the

circumference of the SWNT. One-dimensional periodicity is then determined by the vector

perpendicular to the chiral vector, that is the translational vector.

The chiral vector Ch can be written in terms of the unit vectors of graphene a1 and a2,

Ch = na1 +ma2 ≡ (n,m), (2.4)

where (n,m) is a pair of positive integer indices with n ≥ m. Since Ch specifies the circum-

ference of the SWNT, it is straightforward to obtain the relations for the circumferential

length L and diameter dt:

L = |Ch| = a
√
n2 + nm+m2, (2.5)

dt =
L

π
=
a
√
n2 + nm+m2

π
. (2.6)

The chiral angle θ is the angle between Ch and a1, with values of θ in the range of

0 ≤ |θ| ≤ 30◦. Taking the inner product of Ch and a1, an expresion for cos θ can be

obtained, thus relating θ to the chiral index (n,m),

cos θ =
Ch · a1

|Ch||a1|
=

2n+m

2
√
n2 + nm+m2

. (2.7)

As can be seen in Fig. 2-2, the translation vector T is perpendicular to Ch and thus

become the tube axis, it can be expressed as

T = t1a1 + t2a2 ≡ (t1, t2), (2.8)

Fig. 2-2: fig/fch2-construct.pdf
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Figure 2-2: Geometry of a (4, 2) SWNT viewed as an unrolled graphene sheet with the
graphene unit vectors a1 and a2. The rectangle OPQ’Q is the 1D SWNT unit cell. Total
hexagons covered within this rectangle unit cell is N = 28. OP and OQ define the chiral
vector Ch and translation vector T, respectively, whereas the chiral angle θ is the angle
between a1 and Ch. From the figure, it is obvious Ch = (4, 2) and T = (4,−5). If the
site O is connected to P, and the site Q is connected to Q’, the cylindrical SWNT can be
constructed.

where t1 and t2 are obtained from the condition Ch ·T = 0,

t1
2m+ n

dR
t2 = −2n+m

dR
. (2.9)

(2.10)

Here dR is the greatest commond divisor (gcd) of (2m+ n) and (2n+m). The length of the

translation vector, T , is then given by

T = |T| =
√

3L/dR. (2.11)

The unit cell of a SWNT is defined as the area covered by Ch and T. It is given by
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Figure 2-3: Classification of carbon nanotubes: (a) zigzag, (b) chiral, (c) armchair SWNTs.
From left to right, the chiral index of each SWNT above is (5, 0), (4, 2), (3, 3), respectively.
In (a) and (c), orange and red solid lines are intended to emphasize “zigzag” and “armchair”
structures, respectively.

the magnitude of the vector product of Ch and T. The number of hexagons per unit cell of

the SWNT, N , is obtained by dividing the area of the SWNT unit cell with the area of the

hexagonal unit cell in the graphene sheet:

N =
|Ch ×T|
a1 × a2

=
2(n2 + nm+m2)

dR
. (2.12)

All the basic structural parameters of the SWNT are shown in Fig. 2-2. The SWNT can

then be classified according to its (n,m) or θ value (see Fig. 2-3). This classification is based

on the symmetry of the SWNT. There are three types of carbon nanotubes: zigzag, chiral,

and armchair nanotubes. Chiral SWNTs exhibit a spiral symmetry whose mirror image

cannot be superposed onto the original one. Zigzag and armchair SWNTs have mirror

images that are identically the same as the original ones. The names of of armchair and

Fig. 2-3: fig/fch2-swnt.pdf
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zigzag arise from the shape of the cross-sectional ring in the circumferential direction of the

SWNTs. We then have various SWNT geometries that can change diameter, chirality, and

also cap structures, giving rich physical properties of carbon nanotubes.

While the 1D unit cell of a SWNT in real space is expressed by Ch and T, the corre-

sponding vectors in reciprocal space are the vectors K1 along the tube circumference and

K2 along the tube axis. Since nanotubes are 1D materials, only K2 is a reciprocal lattice

vector. K1 gives discrete k values in the direction of Ch. Expressions for K1 and K2 are

obtained from their relations with Ch and T:

Ch ·K1 = 2π, T ·K1 = 0, (2.13)

Ch ·K2 = 0, T ·K2 = 2π. (2.14)

It follows,

K1 =
1

N
(−t2b1 + t1b2),K2 =

1

N
(mb1 − nb2), (2.15)

where b1 and b2 are the reciprocal lattice vectors of graphene. In Fig. 2-4, K1 and K2 are

shown for the (4, 2)SWNT.

Fig. 2-4: fig/fch2-bz.pdf
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Figure 2-4: The reciprocal lattice vectors K1 and K2, and the Brillouin zone of a (4, 2)
SWNT represented by the set of N = 28 parallel cutting lines. The vectors K1 and K2 in
reciprocal space correspond to Ch and T in real space, respectively. The cutting lines are
labeled by the integer angular momentum index µ.
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The allowed wave vector k of a SWNT is

k = µK1 + k
K2

|K2|
(2.16)

where µ = 0, 1, . . . , N − 1 is the “cutting line” index, and k is in the range of −π/T < k <

π/T . The length of K1 and K2 are given by:

|K1| =
2π

L
=

2

dt
, |K2| =

2π

T
. (2.17)

The unit cell of the SWNT contains N hexagons, then the first Brillouin zone of the SWNT

consists of N cutting lines. Therefore, N parallel cutting lines are related to the discrete

value of the angular momentum µ, and the cutting line length K2 determines the periodicity

of the 1D momentum k.

2.2 Tight-binding framework

The electronic dispersion relations of SWNTs are derived from those of a graphene sheet.

The tight-binding model is reviewed here, starting from a simple tight-binding (STB) model.

In a later section, the extended tight-binding (ETB) model that gives a good agreement with

some optical spectroscopy measurements are described.

The electronic dispersion relations of a graphene sheet are obtained by solving the single

particle Schrödinger equation:

HΨb(k, r, t) = i~
∂

∂t
Ψb(k, r, t) , (2.18)

where H = T + V (r) is the single-particle Hamiltonian, T is the kinetic energy operator,

V (r) is the effective periodic potential, Ψb(k, r, t) is the one-electron wavefunction, b is the

band index, k is the electron wavevector, r is the spatial coordinate, and t is time. The

electron wavefunction Ψb(k, r, t) is approximated by a linear combination of atomic orbitals
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(LCAO) in terms of Bloch functions:

Ψb(k, r, t) = exp
(
−iEb(k)t/~

)∑
so

Cb
so(k)Φso(k, r) ,

Φso(k, r) =
1√
U

U∑
u

exp (ikRus)φo(r−Rus) ,

(2.19)

where Eb(k) is the one-electron energy, Cb
so(k) is the Bloch amplitude, Φso(k, r) is the Bloch

wavefunction, φo(r) is the atomic orbital, Rus is the atomic coordinate, the index u =

1, . . . , U is for all the U unit cells in a graphene sheet, the index s = A,B labels the two

inequivalent atoms in the unit cell, and the index o = 1s, 2s, 2px, 2py, 2pz gives the atomic

orbitals of a carbon atom.

The stationary Schrödinger equation for the Bloch amplitudes Cb
so(k) can be written in

the matrix form: ∑
so

Hs′o′so(k)Cb
so(k) =

∑
so

Eb(k)Ss′o′so(k)Cb
so(k) , (2.20)

where the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices are given by:

Hs′o′so(k) =
U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)Hφo(r−Rus)dr ,

Ss′o′so(k) =
U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)φo(r−Rus)dr ,

(2.21)

and the index u′ labels the unit cell under consideration. The orthonormality condition for

the electron wavefunction of Eq. (2.19) becomes:

∫
Ψb′ ∗(k, r, t)Ψb(k, r, t)dr =

∑
s′o′

∑
so

Cb′ ∗
s′o′ (k)Ss′o′so(k)Cb

so(k) = δb′b . (2.22)

To evaluate the integrals in Eq. (2.21), the effective periodic potential V (r) in the single

particle Hamiltonian H of Eq. (2.18) is expressed by a sum of the effective spherically-



2.2. TIGHT-BINDING FRAMEWORK 25

symmetric potentials U(r−Ru′′s′′) centered at the atomic sites Ru′′s′′ :

V (r) =
∑
u′′s′′

U(r−Ru′′s′′) . (2.23)

The Hamiltonian matrix Hs′o′so(k) then contains the three-center integrals that involve two

orbitals φ∗o′(r−Ru′s′) and φo(r−Rus) at two different atomic sites Ru′s′ and Rus, while

the potential U(r−Ru′′s′′) originates from a third atomic site Ru′′s′′ . On the other hand,

the overlap matrix Ss′o′so(k) contains two-center integrals only. Neglecting the three-center

integrals in Hs′o′so(k), the remaining two-center integrals in both Hs′o′so(k) and Ss′o′so(k) can

be parameterized as functions of the interatomic vector R = Rus−Ru′s′ and of the symmetry

and relative orientation of the atomic orbitals φ∗o′(r) and φo(r):

εo =

∫
φ∗o(r)Hφo(r)dr ,

to′o(R) =

∫
φ∗o′(r) (T + U (r) + U (r−R))φo(r−R)dr ,

so′o(R) =

∫
φ∗o′(r)φo(r−R)dr ,

(2.24)

where εo is the atomic orbital energy, to′o(R) is the transfer integral, and so′o(R) is the

overlap integral. A numerical calculation of parameters εo, to′o(R), and so′o(R) defines the

non-orthogonal tight-binding model. Within the orthogonal tight-binding model, so′o(R) is

set to zero.

2.2.1 Graphene dispersion relations

In the STB model, we neglect the σ molecular orbitals and the long-range atomic interac-

tions, R > aCC. The STB model thus has three parameters: the atomic orbital energy ε2p,

the transfer integral tππ(aCC), and the overlap integral sππ(aCC). The transfer and overlap

integrals will simply be referred to as t, and s, respectively.

To construct the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices of Eq. (2.20),

consider the nearest-neighbor interactions (R = aCC) in the unit cell of a graphene sheet.
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The unit cell contains two atoms, A and B, each of which has three nearest neighbors of the

opposite atom type. The absence of nearest-neighbor interactions within the same A or B

sublattice gives the diagonal Hamiltonian and overlap matrix elements, HAπAπ = HBπBπ =

ε2p and SAπAπ = SBπBπ = 1, independent of the transfer t and overlap s integrals. For

the HAπBπ and SAπBπ matrix elements, the interatomic vectors R from atom A to its three

nearest-neighbors in Eq. (2.20) are given by (a1 + a2) /3, (a1 − 2a2) /3, and (a2 − 2a1) /3.

Substituting these vectors into Eq. (2.20), one can obtain HAπBπ = tf(k) and SAπBπ = sf(k),

where f(k) is the sum of the phase factors over the nearest neighbors given by

f(k) = exp

(
i
kxa√

3

)
+ exp

(
−i kxa

2
√

3
+ i

kya

2

)
+ exp

(
−i kxa

2
√

3
− ikya

2

)
. (2.25)

The HBπAπ and SBπAπ matrix elements are derived in a similar way. The interatomic vectors

R have the opposite signs, giving HBπAπ = tf ∗(k) and SBπAπ = sf ∗(k). The Schrödinger

equation in the matrix form, Eq. (2.20), can be written as

 ε2p tf(k)

tf ∗(k) ε2p

 Cb
Aπ(k)

Cb
Bπ(k)

 = Eb(k)

 1 sf(k)

sf ∗(k) 1

 Cb
Aπ(k)

Cb
Bπ(k)

 . (2.26)

Solving this secular equation yields the energy eigenvalues:

Ev(k) =
ε2p + tw(k)

1 + sw(k)
, Ec(k) =

ε2p − tw(k)

1− sw(k)
, (2.27)

where the band index b = v, c indicates the valence and conduction bands, t < 0, and w(k)

is the absolute value of the phase factor f(k), i.e., w(k) =
√
f ∗(k)f(k):

w(k) =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.28)

According to Eq. (2.27), the atomic orbital energy ε2p is an arbitrary reference point in the

orthogonal STB model (s = 0), while ε2p is a relevant parameter in the non-orthogonal STB

model (s 6= 0).
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Fitting the dispersion relations of the graphene sheet given by Eq. (2.27) to the energy

values obtained from an ab initio calculation gives the values of the transfer integral t =

−3.033 eV and overlap integral s = 0.129, and set the atomic orbital energy equal to zero of

the energy scale, ε2p = 0 eV [4]. Fig. 2-5 (a) shows the dispersion relations of the graphene

sheet given by Eq. (2.27) with the above parameters throughout the entire area of the first

Brillouin zone. The lower (valence) band is completely filled with electrons in the ground

state, while the upper (conduction) band is completely empty of electrons in the ground

state.

Unlike most semiconductors, the band structure of a graphene sheet shows linear disper-

sion relations around the K and K′ points near the Fermi level, as can be seen in Fig. 2-

5(b). The electron wavevector around the K point in the first Brillouin zone can be written

in the form kx = ∆kx and ky = −4π/(3a) + ∆ky, where ∆kx and ∆ky are small com-

pared to 1/a. Substituting this wavevector into Eq. (2.28) and making the expansion in a

power series in ∆kxa and ∆kya up to the second order, one can obtain w =
√
3
2

∆ka, where

∆k =
√

∆k2x + ∆k2y is the distance from the electron wavevector to the K point. Substitut-

ing w into Eq. (2.27) gives the electronic dispersion relations in the valence and conduction

Fig. 2-5: fig/fch2-piband.pdf
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Figure 2-5: The π bands of graphene within the simple tight-binding method. In (a), the
energy dispersion is shown throughout the whole region of the Brillouin zone. (b) Near the
K point, the energy dispersion relation is approximately linear, showing two symmetric cone
shapes, the so-called Dirac cones. (c) Contour plot of the energy dispersion near the K point.
The tight-binding parameters used here are ε2p = 0 eV, t = −3.033 eV, and s = 0.129.
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bands:

Ev (∆k) = ε2p −
√

3

2
(ε2ps− t) a∆k , Ec (∆k) = ε2p +

√
3

2
(ε2ps− t) a∆k , (2.29)

which are linear in ∆k. The linear dispersion relations near the Fermi level suggest that

the effective mass approximation of the non-relativistic Schrödinger equation used for con-

ventional semiconductors with parabolic energy bands is not applicable to a graphene sheet.

The conducting π electrons in a graphene sheet mimic massless particles whose behavior

is described by the relativistic Dirac equation. Furthermore, the linear dispersion relations

increase the mobility of the conducting π electrons in a graphene sheet compared to conven-

tional semiconductors. In contrast to the π electrons, the σ electrons are involved in covalent

bonds, and therefore are not mobile. Indeed, the σ energy bands lie several eV away from

the Fermi level, as obtained by solving Eq. (2.20) for the σ molecular orbitals. In Fig. 2-5(c),

the contour plot of the energy dispersion near the K point is shown. The energy surface

changes from circle to triangle with increasing distance from the K point, giving rise to the

so-called trigonal warping effect [7], which strongly affects the optical transitions in SWNTs.

2.2.2 Nanotube electronic structure

Now the electronic structure of a SWNT can be derived from the energy dispersion cal-

culation of graphene. The allowed wave vectors k (the cutting lines) around the SWNT

circumference become quantized. The energy dispersion relations of the SWNT are then

given by the corresponding energy dispersion relations of graphene along the cutting lines.

When the 1D cutting lines µK1 +kK2/|K2| of a SWNT in Eq. 2.16 are superimposed on the

2D electronic energy dispersion surface of the graphene sheet in Eq. 2.27, N pairs of energy

dispersion relations of the SWNT, Eb
SWNT(µ, k), are obtained:

Eb
SWNT(µ, k) = Eb

2D

(
µK1 + k

K2

|K2|

)
,
(
µ = 0, 1, . . . , N − 1;−π

T
< k <

π

T

)
. (2.30)
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Figure 2-6: Examples of 1D energy dispersion relations of SWNTs: (a) armchair (6, 6), and
(b) zigzag (10, 0) SWNTs. No bandgaps can be seen in (a), thus the SWNT is metallic,
whereas the SWNT in (b) is semiconducting because there is an open gap.

For a particular (n,m) SWNT, if a cutting line passes through K or K′ point of the

Brillouin zone of graphene, where the valence and conduction bands touch to each other,

the 1D energy bands of the SWNT have a zero energy gap, therefore, they become metallic.

However, if a cutting line does not pass through K or K′, the (n,m) is semiconducting with

a finite energy gap. Figure 2-6 gives two examples of the SWNT dispersion relations.

As shown in Fig. 2-7(a), if we project the ΓK vector pointing toward the K point onto

the K1 direction perpendicular to the cutting lines, that can be denoted by ΓY = ΓK ·K1,

we can find:

ΓK

K1K1

=
1
3
(2b1 + b2) · 1

N
(t1b2 − t2b1)

1
N

(t1b2 − t2b1)
1
N

(t1b2 − t2b1)
(2.31)

=
2n+m

3
, (2.32)

If (2n+m)/3 is an integer, ΓK has an integer number of K1 components, so that one of

Fig. 2-6: fig/fch2-dis.pdf
Fig. 2-7: fig/fch2-class.pdf
Fig. 2-8: fig/fch2-famnum.pdf
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Figure 2-7: (a) Condition for metallic energy bands is related to the ratio of the length of
vector YK to that of K1. If the ratio is an integer, metallic energy bands are obtained [4].
(b) Three possible configurations of the cutting lines in the vicinity of the K point depending
on the value of mod(2n+m, 3). From left to right, the nanotube type is M- (metallic), S1-
(type-I semiconducting), and S2- (type-II semiconducting) SWNT, respectively. The solid
lines represent the cutting lines and the dashed lines indicate the KM directions, which are
the boundaries of the first Brillouin zone of the SWNT.
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Figure 2-8: Nanotubes family classification on the unrolled graphene sheet for the nanotubes
of diameter less than 1 nm. The (n,m) indices written in the hexagons represent the chiral
vectors pointing to the centers of the hexagons. Here the chiral vector of a (4, 2) SWNT is
shown by an arrow. The dashed lines represent the families of constant 2n+m, n−m, and
2m + n for each family. The magenta, light yellow, and cyan hexagons correspond to the
chiral vectors of M-, S1-, and S2-SWNTs, respectively.
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the cutting lines passes through the K point, hence giving a metallic SWNT. If (2n+m)/3

is not an integer, i.e, the residual is 1 or 2, the K point lies at 1/3 or 2/3 of the spacing

between two adjacent cutting lines near the K point, hence giving a semiconducting SWNT,

as shown in Fig. 2-7(b). These three types of SWNTs are referred to as M-, S1-, and

S2-SWNTs, respectively:

M : mod(2n+m, 3) = 0, (2.33)

S1 : mod(2n+m, 3) = 1, (2.34)

S2 : mod(2n+m, 3) = 2. (2.35)

The S1- and S2-SWNTs are often written as type-I and type-II semiconducting SWNTs.

There are also other metallicity notations frequently used in the nanotube research commu-

nity depending on the value of mod(n−m, 3) as follows:

mod 0 : mod(n−m, 3) = 0, (2.36)

mod 1 : mod(n−m, 3) = 1, (2.37)

mod 2 : mod(n−m, 3) = 2. (2.38)

With a simple algebra, it can be shown that mod 0, mod 1, and mod 2 SWNTs are the same

as M-, S2-, S1-SWNTs, respectively.

In Fig. 2-8, the chiral vectors for M-, S1-, and S2-SWNTs are shown. Within the trian-

gular graphene sheet, the diagonal lines of each hexagon are connected to the diagonal lines

of the adjacent hexagons, shown by the dashed lines in Fig. 2-8. These lines with constant

values of (2n + m), (2m + n), and (n − m) are called the family lines. Especially for the

(2n+m) families, the SWNTs which belong to the same (2n+m) have the closest diameters,

compared to the (2m+ n) or (n−m) families, as obviously can be seen in Fig. 2-9.

Fig. 2-9: fig/fch2-2nmfam.pdf
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Figure 2-9: Chiral angle (θ) versus diameter (dt) of all SWNTs in the range of 0.5 < dt <
3 nm. Nanotubes of the same family number (2n + m) are connected by lines. Up to
dt ≈ 1.2 nm, the constant 2n+m nanotubes have similar diameters.

2.3 Density of states and transition energies

The electronic density of states (DOS) or the number of available electrons for a given energy

interval is especially very important for understanding optical properties of materials. The

DOS is known to depend on the dimension of the materials. For parabolic bands found

in most semiconductors, the DOS rises as the square root of the energy above the energy

bottom E0 in the 3D cases such as diamond and graphite, g(E) ∝ (E − E0)
1/2. For a 1D

system such as SWNT, E0 is equal to the subband edge energy Eb
i , where the DOS magnitude

becomes singular, known as the van-Hove singularity (VHS). The presence of VHSs in the

DOS of SWNTs has a great impact on their optical properties, a significant enhancement in

the SWNT response is observed when the excitation energy for the probe matches one of the

VHSs in the DOS in the valence and conduction bands of the SWNT. For example, optical

absorption is strongly enhanced when the photon energy is in resonance with the allowed

transition between two VHSs in the valence and conduction bands. This enhancement is

generally interpreted in terms of the joint density of electronic states (JDOS) which takes

into account the dipole selection rules. The optical transitions should conserve both angular

and linear momenta in SWNTs, thus the transitions are vertical, as shown in Fig. 2-10.
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Figure 2-10: (a) The dispersion relations and (b) density of electronic states DOS of the
(15, 0) SWNT. The arrows show the allowed optical transitions between the first and second
valence and conduction subbands. (c) The joint density of states (JDOS) of the (15, 0)
SWNT. The labels E11 (E22) corresponds to the transition between Ev

1 and Ec
1 (Ev

2 and Ec
2)

shown in (b).

The optical response of SWNTs is dominated by the VHSs in the JDOS labeled by Eii.

The optical transition energies Eii for i = 1, 2, 3, . . . and for all the possible (n,m) SWNTs are

summarized in the Kataura plot [6] as a function of the SWNT diameter dt. The Kataura

plot is a useful tool for analyzing Raman spectra of SWNTs, since the frequency of the

Raman-active radial-breathing phonon mode ωRBM is inversely proportional to dt. In Fig. 2-

11(a), the Kataura plot calculated within the STB model is shown, in which the transition

energies are interpreted as the energy gaps between i-th VHSs in the conduction and valence

bands. The same STB Kataura plot is shown in Fig. 2-11 (b) as a function of the inverse

SWNT diameter 1/dt, which is more convenient for direct comparison with experiments,

since 1/dt is proportional to ωRBM. Furthermore, the 1/dt scale allows us to explore the

small dt region (dt < 1.2 nm), which has a lower density of (n,m) indices. As one can see

Fig. 2-10: fig/fch2-dos.pdf
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Figure 2-11: The optical transition energies Eii for i = 1, 2, 3, . . . and for all possible (n,m)
SWNTs in the range of 0.5 < dt < 2.0 nm calculated within the STB model as a function of
(a) SWNT diameter dt, and (b) inverse diameter 1/dt, known as the Kataura plot. Black,
red, and blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The constant 2n+m
families are connected by lines.

from Fig. 2-11, the Eii energies for M-, S1-, and S2-SWNTs show distinct behavior. Within

the M-, S1-, and S2-types, the Eii energies that belong to the families of constant 2n + m

group together in the Kataura plot.

2.4 Extended tight-binding model

Recent Eii measurements by photoluminiscence (PL) and resonance Raman spectroscopy

(RRS) clearly indicate that the STB calculation is not sufficient to interpret the experimental

Fig. 2-11: fig/fch2-stbkat.pdf
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Figure 2-12: (a) 2D photoluminiscence (PL) map measured on wrapped HiPco SWNTs
suspended by SDS surfactant in aqueous solution [36]. (b) The Kataura plot extracted from
the PL map [28]. The numbers show the constant 2n+m families.

results. Figures 2-12 and 2-13 give the same Eii energies for the same SWNT sample, that is

HiPco SWNTs suspended by SDS surfactant in aqueous solution. The experimental Kataura

plots in Figs. 2-12(b) and 2-13(b) differ from the theoretical STB Kataura plot in two

different directions: in the large diameter limit and in the small diameter limit.

In the large dt limit, the ratio of ES
22 to ES

11 reaches 1.8 in the experimental Kataura

plots, while the same ratio goes to 2 in the theoretical Kataura plot [36]. The ratio problem

is an indication of the many-body interactions related to the excitons, that will be discussed

in the next chapter. In the small dt limit, the families of constant 2n + m deviate from

the mean Eii energy bands in the experimental Kataura plots, while the family spread in

the theoretical Kataura plot remains relatively moderate [28]. In search for the origin of

the family spread, we reconsider the limitations of the STB model discussed previously.

Within the STB model, the long-range atomic interactions and the σ molecular orbitals

are neglected. Meanwhile, the long-range atomic interactions are known to alternate the

electronic band structure of the graphene sheet and SWNTs. On the other hand, the σ

Fig. 2-12: fig/fch2-pl.pdf
Fig. 2-13: fig/fch2-rrs.pdf
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Figure 2-13: (a) The resonance Raman spectral density map in the frequency range of
the RBM measured on wrapped HiPco SWNTs suspended by SDS surfactant in aqueous
solution[37]. (b) The Kataura plot extracted from the map in (a). The numbers show the
constant 2n+m families.

molecular orbitals are irrelevant in the graphene sheet and large diameter SWNTs as they

lie far away in energy from the Fermi level. In small diameter SWNTs, however, the curvature

of the SWNT sidewall changes the lengths of the interatomic bonds and the angles between

them. This leads to the rehybridization of the σ and π molecular orbitals, which affects the

band structure of π electrons near the Fermi level. Furthermore, the σ-π rehybridization

suggests that the geometrical structure of a small diameter SWNT deviates from the rolled

up graphene sheet. A geometrical structure optimization must thus be performed to allow

for atomic relaxation to equilibrium positions. This in turn affects the Eii energies of the

small diameter SWNTs.

The STB model is now extended by including the long-range atomic interactions and

the σ molecular orbitals, and by optimizing the geometrical structure. The resulting model

is referred to as the extended tight-binding model (ETB). Within the framework of the

ETB model, we use the tight-binding parametrization determined from density-functional

theory (DFT) employing the local-density approximation (LDA) and using a local orbital

Fig. 2-14: fig/fch2-etbkat.pdf
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Figure 2-14: The ETB Kataura plot similar to the STB Kataura plot in Fig. 2-11 as a function
of (a) SWNT diameter dt, and (b) inverse diameter 1/dt. The ETB model takes into account
the long-range atomic interactions, the curvature effects of small diameter SWNTs, and the
optimized geometrical structures of the SWNTs. Black, red, and blue dots correspond to
M-, S1-, and S2 SWNTs, respectively. The constant 2n+m families are connected by lines.

basis set [38]. The ETB model is discussed in detail by Samsonidze et. al [8]. The ETB

Kataura plot shows a similar family spread to the PL and RRS experimental Kataura plots

(see Fig. 2-14). The experimental family spread is concluded to be related to the relaxation

of the geometrical structure of SWNTs. Although the family spread of the ETB model is in

good agreement with the PL and RRS Kataura plots, it still deviates 200 − 300 meV from

the PL and RRS experiments. This deviations originates from the many-body effects and

later can be confirmed in the exciton picture.



38 CHAPTER 2. BASICS OF CARBON NANOTUBES



Chapter 3

Excitons in carbon nanotubes

Exciton effects in SWNTs are very important due to confinement of electrons and holes in the

1D system. Though in the previous chapter we have seen that the single particle (electron)

model within the extended tight-binding (ETB) approximation can partially describe the

optical transition energies, the presence of excitons in the real case cannot be neglected,

as is indicated by the large exciton binding energy measured in the experiments [10, ?].

Moreover, the many-body corrections can only be understood by taking into account the

exciton effects. In this chapter, the methods for calculating the transition energies in the

exciton picture are reviewed and some relevant results will be discussed. The electron-

hole corrections are included via the Bethe-Salpeter equation and the calculation is again

performed within the ETB approximation as the ETB model has been proven to accurately

predict the electronic properties of SWNTs. This framework has been summarized into an

exciton energy calculation package following the work by Jiang et al. [30] and Sato et al. [33].

The computer program is now maintained in our research group.

3.1 Bethe-Salpeter equation

Exciton is an electron-hole pair bound by a Coulomb interaction and thus localized either

in real space or k space. But in solids, all wave functions are delocalized as the Bloch wave

39
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functions. The wave vector of an electron (kc) or a hole (kv) is no longer a good quantum

number. To create an exciton wave function from the electron and hole wave functions, the

electron and hole Bloch functions at many (kc) and (kv) wave vectors have to be mixed.

The mixing of different wavevectors by the Coulomb interaction is obtained by the so-called

BetheSalpeter equation [39, 40, 30]:

∑
kc,kv

[(E(kc)− E(kv))δ(k
′
c,kc)δ(k

′
v,kv) +K(k′ck

′
v,kckv)]Ψ

n(kc,kv) = ΩnΨn(k′c,k
′
v), (3.1)

where E(kc) and E(kv) are the quasi-electron and quasi-hole energies, respectively. The

“quasiparticle” means that a Coulomb interaction is added to the single particle energy and

the particle has a finite life time in an excited state. Ωn and Ψn are the n-th excited state

exciton energy and corresponding wave function.

The mixing term or kernel K(k′ck
′
v,kckv) is given by

K(k′ck
′
v,kckv) = 2δSK

x(k′ck
′
v,kckv)−Kd(k′ck

′
v,kckv), (3.2)

with δS = 0 for spin triplet states and δS = 1 for spin singlet states. The direct interaction

kernel Kd for the screened Coulomb potential w is given by the integral

Kd(k′ck
′
v,kckv) = W (k′ckc,k

′
vkv)

=

∫
dr′drψ∗k′

c
(r′)ψkc(r

′)w(r′, r)ψk′
v
(r)ψ∗kv

(r), (3.3)

and the exchange interaction kernel Kx for the bare Coulomb potential v is

Kx(k′ck
′
v,kckv) =

∫
dr′drψ∗k′

c
(r′)ψk′

v
(r′)v(r′, r)ψkc(r)ψ∗kv

(r), (3.4)

where ψ is the single particle wave function.

The quasi-particle energies are calculated from the single particle energy εsp(k) by in-
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cluding the self-energy corrections Σ(k):

E(kc) = εsp(kc) + Σ(kc), (3.5)

E(kv) = εsp(kv) + Σ(kv), (3.6)

where Σ(k) is expressed as

Σ(kc) = −
∑
q

W [kc(k + q)v, (k + q)vkc], (3.7)

Σ(kv) = −
∑
q

W [kv(k + q)v, (k + q)vkv]. (3.8)

In order to obtain the kernel and self energy, the single particle Bloch wave function ψk(r)

here is approximated by an ETB wave function. The dielectric screening effect is consid-

ered within a random phase approximation (RPA), in which the static screened Coulomb

interaction is given by

W =
V

κε(q)
, (3.9)

with the dielectric function ε(q) = 1 + v(q)Π(q) that describes effects of the polarization of

the π bands. The effect of electrons in core states, σ bonds, and the surrounding materials

are all represented by a static dielectric constant κ. In the later chapter we will see κ is a

very crucial parameter for the environmental effects. By calculating the polarization function

Π(q) and the Fourier transformation of the unscreened Coulomb potential v(q), the exciton

energy calculation can be performed. For 1D materials, the Ohno potential is commonly used

for the unscreened Coulomb potential v(q) for π orbitals [9]. After obtaining the excitation

energy Ωn, the exciton binding binding energy Ebd can be calculated by substracting the

quasi particle energy EQP = Ec(kc)− Ev(kv) with Ω1,

Ebd = EQP + Ω1. (3.10)

Here Ω1, which is the first (lowest) exciton state, is interpreted as the transition energy Eii,
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where an electron and a hole lie on the same i-th cutting line with respect to the K point of

the 2D Brillouin zone of graphene. The difference between Eii and the single particle band

gap gives the many-body corrections Emb which is also the difference between the self energy

and binding energy,

Emb = Σ− Ebd. (3.11)

3.2 Exciton symmetry

To discuss the exciton symmetry, wave vectors K̄ for center-of-mass motion and k for relative

motion are introduced,

K̄ = (kc − kv)/2, k = kc + kv. (3.12)

The exciton state can then be denoted as |k, K̄〉 and the Bethe-Salpeter equation is rewritten

in terms of K̄ and k. Because the Coulomb interaction is related to the relative coordinate

of an electron and a hole, the excitons in SWNTs can be classified according to the 2K̄ value

in the regions shown in Fig. 3-1.

Fig. 3-1: fig/fch3-wfzone.pdf

E A1,2

Figure 3-1: Symmetry of an exciton. If both the electron and hole are from the K (or K′)
region (right side of the above figure), the corresponding exciton is an A1,2 symmetry exciton.
If an electron is from the K region and a hole is from the K′ region (left side of the above
figure), the corresponding exciton is an E symmetry. One more case is not shown here, the
E∗ exciton, which is just an opposite situation of the E exciton.
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There are three inequivalent regions in the 2D Brillouin zone of graphene, i.e., two triangle

regions around K, K′ and a hexagonal region around the Γ point. For SWNTs, the optical

transitions are related to the electron and hole on the cutting lines in the K or K′ regions.

If both the electron and hole are from the K (or K′) region, the corresponding exciton is an

A1,2 symmetry exciton. The center-of-mass momentum 2K̄ lies in the Γ region and k will be

around K (or K′) region. If an electron is from the K region and a hole is from the K′ region,

the corresponding exciton is an E symmetry. The momentum 2K̄ lies in the K region. If an

electron is from the K′ region and a hole is from the K region, their 2K̄ lies in the K′ region,

and this exciton is an E symmetry exciton. The E and E∗ excitons, which have a large

angular momentum for the center-of-mass momentum, are dark excitons because the photon

wave vector is nearly zero. For A excitons, the electron-hole pair |kc,kv〉 = |k, K̄〉 with

the electron and hole from the K region and | − kc,−kv〉 = −|k, K̄〉 with the electron and

hole from the K′ region have the same value for K̄. Here |k, K̄〉 is antisymmetric, whereas

−|k, K̄〉 is symmetric, under the C2 rotation. The corresponding excitons are labeled A2 and

A1 excitons, respectively. The optical dipole moment is defined as

M ∝ P ·D〈Ψ|∇|Ψ0)〉, (3.13)

with 〈Ψ| and |Ψ0〉 denoting the excited and ground states, respectively, and P is the light po-

larization vector. The ground state |Ψ0〉 has an s symmetry and operator ∇ is antisymmetric

under the C2 rotation. In order to get a nonzero M, |Ψ〉 thus should be antisymmetric, too.

Therefore, A1 excitons are dark excitons, and only A2 excitons are bright excitons. Here-

after, only the case of bright excitons is considered for interpreting the experimental results

because the resonance Raman spectroscopy (RRS) and photoluminiscence (PL) spectra are

related to the optical dipole transition of the bright exciton.
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Figure 3-2: Wave vectors of a (6, 1) SWNT nanotube around the K point. The cutting lines
must cross the MlMr line in order to have an Eii within the 3M region. The index µ is
counted from the Γ point.

3.3 Bright excitons

3.3.1 Condition for the cutting lines

For the bright excitons, the cutting lines kii near the K point is important to determine

exciton energies Eii. A triangular region which connects three M points, i.e., Ml, Mr,

and Mm around the K is defined as the 3M triangle as shown in Fig. 3-2. Only in this

region the energy dispersion of the conduction (valence) band for a SWNT has a minimum

(maximum). The remaining region of the Brillouin zone is a hexagonal region which connects

six M points around the Γ point. In the hexagonal region, the conduction (valence) bands

have a maximum (minimum). This gives a singular joint of density of states but a minimum

electron-photon matrix element at the singular point [41]. Thus a cutting line will not

contribute to the optical absorption at Eii if the cutting line lies outside of the 3M triangle.

As for example, a (6, 1) SWNT shown in Fig. 3-2 does not have E33 optical absorption

because the corresponding cutting line cannot lie within the 3M triangle. Therefore, E33 is

skipped, only E11, E22, and E44 are observed in experiments, though all Eii values can be

calculated by theory.
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Figure 3-3: The bright exciton energy Kataura plot as a function of inverse diameter 1/dt
for κ = 2.22. The exciton energies Eii shown here are up to ES

66 and EM
33. Black, red, and

blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The eight diamond symbols
are experimental data by Michel et al. (Ref. [42]). The 2n + m family patterns are clearly
seen for smaller diameter SWNTs. The arrows with A (Z) symbols correspond to the near
armchair (zigzag) SWNTs.

3.3.2 Bright exciton energy

Figure 3-3 shows the calculated results for the lowest bright exciton states but different

cutting lines kii, which then give the exciton energies Eii. The results for higher exciton

states on a given cutting line is beyond the scope of the present discussion. The Kataura plot

in figure 3-3 is given as a function of inverse tube diameter in the range of 0.3 < dt < 3.0 nm.

The Eii calculation is performed by taking a single constant κ = 2.22 which is fitted from

the experimental Eii data of the RRS or PL measurements for SWNT bundle samples. Like

the single particle ETB model, the exciton ETB Kataura plot also shows the 2n+m family

patterns, but unlike the single particle picture this excitonic plot can be adjusted by changing

κ.

The eight diamond symbols are experimental results for suspended SWNTs given by

Fig. 3-2: fig/fch3-mmm.pdf
Fig. 3-3: fig/fch3-exkata.pdf
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Figure 3-4: (a) Exciton wave functions in 1D k space for a (20, 0) semiconducting SWNT.
The states shown here are for E22 and E33. The wave function half-width lk increases with
Eii. (b) lk for many SWNTs as a function of 1/dt. The cutting line spacing 2/dt is shown by
the solid line for comparison. The dashed lines indicate the corresponding Eii states. The
spacing between E33 and E44 is not distinguished clearly.

Michel et al. [42] in which they succeeded with an assignment of (n,m) for SWNTs with

diameters of up to 3 nm. Although their results are for isolated suspended SWNTs, and the

calculation is for bundles, the calculated results for their assigned (n,m) values reproduce

well all eight points within the environmental effect shifts up to 80 meV. This is still much

better than another theoretical calculation without the exciton picture which was previously

by them to interpret their experimental results because they needed to shift the Eii data by

about 0.3− 0.4 eV. For a greater accuracy and general understanding of the exciton model,

the environmental effect will be discussed in the next chapter, so that a general κ expression

is used to construct the Kataura plot.

3.3.3 Exciton size

The localized exciton wavefunction is constructed by mixing many k states in which the

mixing coefficients are determined by the BetheSalpeter equation. In Fig. 3-4(a), the wave

function for a (20, 0) SWNT is shown. The exciton wave function half-width lk indicates the

Fig. 3-4: fig/fch3-lk.pdf
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exciton size in reciprocal space. Since the Fourier transformation of this wave function will

also give a similar localized function, the width in real space gives the exact exciton size or

radius, that is the effective distance between an electron and a hole in the bound electron-hole

pair. The exciton size in real space is thus inversely proportional to lk. To study the wave

function size dependence on chirality, the width lk for the E11 up to E44 states are calculated

for all SWNTs with diameters dt in the same range as in the exciton energy calculation,

0.3 < dt < 3.0 nm, shown in Fig. 3-4. For comparison, the cutting line spacing 2/dt is also

shown in the figure by the solid line. It is clear that lk is always smaller than the cutting line

spacing 2/dt. Because lk measures the extended length of a wave function in k space, this

result indicates that one cutting line is sufficient to describe Eii states. The similar family

patterns observed in the lk plot tells us a proportionality between lk and Eii. Though the

proportionality is not direct, but roughly we can say a large lk means a large Eii or large

binding energy Ebd, and a small lk means a small Eii or small Ebd.

3.4 Many-body effects

To understand whether the single particle spectra or many-body effects contribute to the

large family spread in the exciton Kataura plot, the transition energy E11, the self-energy Σ,

the exciton binding energy Ebd, and the energy correction to the single particle energy (many-

body correction) Σ−Ebd are plotted in the same figure (Fig. 3-5). Although both Σ and Ebd

tend to increase the family spread in smaller diameter SWNTs, the two values almost cancel

each other regarding the family spread, leading to a weak chirality dependence. The large

family spread observed in Eii is thus concluded to originate from the trigonal warping effect

in the single-particle spectra [7]. The net-energy correction (ΣEbd) to the single-particle

energy depends predominantly on dt. The correction has a logarithmic nature, owing to the

effect of the Coulomb interaction on the dispersion of graphene [11],

Elog = 0.55(2p/3dt) log

[
3

(
3dt
2p

)]
, (3.14)
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correspond to S1- and S2-SWNTs, respectively. The dashed line is calculated by Eq. 3.14.

where p is an integer corresponds to the ratio of the distances of the cutting lines for each

Eii transition from the K-point in 2D Brillouin zone of graphene [7], p = 1, 2, 3, 4, 5 stands

for ES
11, E

S
22, E

M
11, E

S
33, and ES

44, respectively. In Fig. 3-5, Elog with p = 1 is plotted as a

dashed line. It can be seen that the many-body correction Σ−Ebd calculated in the exciton

picture follows the logarithmic behavior very well.

However, the cancellation of Ebd and Σ does not work well for higher Eii values. Araujo

et al. observed that for ES
33 and ES

44 and that a universal curve for the many body correction

for ES
33 and ES

44 apparently deviates from that for ES
11 and ES

22 [26], so they claimed ES
33

and ES
44 are not related to the exciton states. Actually this is a wrong conclusion, since the

self-energy becomes much larger than the absolute value of the exciton binding energy with

increasing i for Eii, therefore the cancellation of the family spread for the many-body effect

does not occur anymore for ES
33 and ES

44. This means ES
33 and ES

44 are nothing but exciton

states, too.

Fig. 3-5: fig/fch3-mbe.pdf
Fig. 3-6: fig/fch3-mass.pdf
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Similarity in the family patterns

The family behavior in Eii, Ebd, and lk arises from the same reason, that is, from the trigonal

warping effect. The first van Hove singularities (VHSs) for S1- and S2 SWNTs are outside

(that is, along the KM line), and inside (along the ΓK line) of the first Brillouin zone of

graphene. The situation is opposite for the second VHSs. Around the K point, the energy

bands of graphene are generally more flat inside the Brillouin zone than outside the Brillouin

zone. Thus, the reduced mass µ = (1/m∗e + 1/m∗h)−1 (where m∗e and m∗h are respectively

electron and hole effective mass) is generally larger inside and smaller outside the Brillouin

zone. In this sense, µ exhibits a tube type dependence as shown in Fig. 3-6. This tube type

dependence for µ will bring a similar tube type dependence for lk and Ebd. For example,

for E22 states, µ is larger for S2-SWNTs than that for S1-SWNTs and thus lk and Ebd are

longer and larger, respectively. The effective mass also shows family patterns, the similar

family patterns appear in lk and Ebd.
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Chapter 4

The environmental effect

The transition energies Eii are now understood in terms of the bright exciton energy within

the extended tight-binding (ETB) calculation which includes curvature optimization [8],

and many-body effects [30]. Experimentally, the assignments of Eii for SWNTs over a

broad range of diameter (0.7 < dt < 3.8 nm) and energy (1.2 < Eii < 2.7 eV), and also

for a variety of surrounding materials are now available [43]. This makes it possible to

accurately determine the effect of the general dielectric constant κ on Eii. Here “general”

means that a single κ value, e.g., κ = 2.22 in the previous chapter, is no longer valid because

it is still insufficient to solve the environmental effect. Instead, κ is now expressed in a

certain functional form. In this chapter, a dielectric constant model is developed in order to

reproduce many experimental Eii values for different environmental conditions.

4.1 Energy shift by the environment

In Equation (3.9), κ is introduced to include the screening effect from the environment.

Actually it also includes the tube term, but the change of κ for the same tube indicates only

the materials surrounding the tube is changed. By studying the exciton energy dependence

on κ, we can see how significant is the environmental effect shifts the excitation energy.

By changing the κ value from 3 to 2, the exciton energy is calculated and the energy shift

51
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Figure 4-1: The E11 and E22 transition energy shifts by κ changing from 3 to 2: δEii,κ =
Eii(κ = 2)−Eii(κ = 3). Red and blue dots correspond to S1- and S2- SWNTs, respectively.

δEii,κ = Eii(κ = 2) − Eii(κ = 3) is obtained. The results are shown in Fig. 4-1. In the

figure, it is clear that there are also tube type and 2n + m family dependences for δEii,κ.

Comparing these results with the Eii and lk patterns in Figs. 3-3 and 3-4, respectively, it

is seen that the tube type dependence here is different from that in Eii and lk. For δE11,κ

within the same 2n+m family, the value of δE11,κ increases with the increase of chiral angle

θ for S1-SWNTs, while it decreases with θ for S2-SWNTs. In contrast, for δE11,κ case, its

value decreases with θ for S1-SWNTs and increases with θ for S2-SWNTs. These trends are

consistent with the experimental observation by Ohno et al. [44].

The excitation energy shifts δEii are generally up to 80 meV [16, 45], and in some rare

cases are up to 100 meV [31]. These facts are in good agreement with the calculation results

given in Fig. 4-2, in which the difference between Eii with κ = 1 and κ = 5 is about 80 meV.

The example nanotube is (6, 5), and the plotted energy dependences are for E11 and E22. It

Fig. 4-1: fig/fch4-dex.pdf
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Figure 4-2: Exciton energy Eii versus κ for a (6, 5) SWNT.

can be seen that Eii is inversely proportional to κ, approximately. In the experimental point

of view, the environmental dielectric constants can be varied with the value from close to 1

up to a large value. When κ is large, for example κ > 5, the excitation energy will approach

the single particle energy.

4.2 Optimized dielectric constant

Fig. 4-2: fig/fch4-kapp.pdf
Fig. 4-3: fig/Fig01.pdf
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Since the use of a single constant κ is not sufficient to accurately reproduce all experimental

Eii values [30], we need to adjust the κ value to the experimental Eii value of a given

(n,m) SWNT including its environment. To fully account for the observed energy-dependent

Eii redshift, the total κ values, 1/κ = Cenv/κenv + Ctube/κtube [18], are fitted to minimize

Eexp
ii − Ecal

ii . In Fig. 4-3, E22 versus κ is plotted for a (9,7) SWNT. From the plot, one can

get an “optimized” κ which reproduces the experimental E22 value (Eexp
22 ). The plot also

gives the related lk (l−1k ) denoting the respective exciton size value in reciprocal (real) space.

Repeating this procedure for many (n,m) and Eii values for several samples, we obtain a set

of optimized κ values for the different samples.

4.3 Dielectric constant model

Using the optimized κ values, a general κ function is modeled to have the functional form

κ ≈ Cκ
[
pa(1/dt)

b(1/lk)
c
]
, (4.1)

where the integer p corresponds to the ratio of the distances of the cutting lines for each Eii

transition from the K-point in 2D Brillouin zone of graphene [7], and p = 1, 2, 3, 4, 5 stands

for ES
11, E

S
22, E

M
11, E

S
33, and ES

44, respectively. The variable lk is involved in the κ function

because of the screening by the different environments that modify the exciton size. The

parameters (a, b, c) that are thus determined are common for all different samples so as to

both optimize the correlation between κ and (p, dt, lk), and to minimize differences between

theory and experiment. The experimental Eii data considered here are based on resonant

Raman excitation profiles for the SG [31, 32], ACCVD [26, 32] and HiPco SWNTs wrapped

by SDS [16].

In Fig. 4-4, it is shown a series of results for the κ function for different samples. For

each sample, the κ functions for the lower transitions (ES
11, E

S
22, E

M
11 ) and higher transi-

tions (ES
33, E

S
44) can be unified, and it is noted that this unity was missing in the previous

Fig. 4-4: fig/Fig02.pdf



4.3. DIELECTRIC CONSTANT MODEL 55

HiPco

SG

ACCVD

(d)

κ

1
2
3
4
5
6
7

p0.8(1/dt)1.6(1/lk)0.4
1 2 3 4 5 6 7

(e)

~
Cκ (SG : ACCVD : HiPco)
 = 1.00:1.42:1.52~

(κ
 - 

1)
/ C

κ

0
1
2
3
4
5
6

p0.8(1/dt)1.6(1/lk)0.4
1 2 3 4 5 6 7

(a) SG

κ

1
2
3
4
5
6
7

p0.8(1/dt)1.6(1/lk)0.4
1 2 3 4 5 6 7

(b) ACCVD

p0.8(1/dt)1.6(1/lk)0.4
1 2 3 4 5 6 7

(c) HiPco

p0.8(1/dt)1.6(1/lk)0.4
1 2 3 4 5 6 7

Figure 4-4: The κ function for: (a) SG, (b) ACCVD, and (c) HiPco samples. (d) Data for the
three samples are plotted on the same figure with fitted slope Cκ for each sample. (e) All the
κ functions collapse on to a single line after dividing each function with the corresponding
C̃κ. The following symbols are used: E11(◦), E22(×), E33(4), E44(�). Black, red, and blue
colors, respectively, denote M-, S1-, and S2-SWNTs.

work [32]. Considering lk explicitly in the present work is important to properly describe

the environmental effect. Indeed, the exciton size is a key variable in the dielectric screening

of excitons. Keeping dt constant, the κ values for higher Eii are smaller than that for lower

Eii. Thus l−1k (the exciton size in real space) is also smaller because only a small amount

of the electric field created by an electron-hole pair will influence the surrounding materials.

If lk for a particular Eii is kept constant, tubes with a smaller dt will experience a stronger

dielectric screening effect because the electric field lines from the electron-hole pair can easily

go outside of the tube, thus explaining why both dt and lk are taken into account in the κ

formulation. The values of (a, b, c) from the best fitting result are found to be (0.80± 0.10,
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Figure 4-5: κ as a function of (p, dt, µ). Two different functions are needed, each of which
for M- and S-SWNTs, respectively. The data plotted here are based on the ACCVD sample.
The following symbols are used: E11(◦), E22(×), E33(4), E44(�). Black, red, and blue
colors, respectively, denote M-, S1-, and S2-SWNTs.

1.60 ± 0.10, 0.40 ± 0.05), respectively. This result is somehow indicating another scaling

relation of excitons similar to the previously reported scaling law which relates Ebd with dt,

κ, and the “effective mass” µ [13]. If we adopt Ebd ∝ µα−1dα−2t κ−α with α = 1.40 as is

given by Eq. (7) in Ref. [13], we can obtain the form of Eq. (4.1) by making a conversion of

variables from Ebd(µ, dt, κ) to κ(p, dt, lk). It is also found that if we replace lk in Eq. (4.1) by

µ, two scaling relations will be needed, one for M-SWNTs and another for S-SWNTs, as can

be seen in Fig. 4-5. This is because Ebd for an M-SWNT is screened by free electrons even

for a similar µ value for the photo-excited carriers. Using lk in the κ function thus gives us

a unified scaling relation for both M- and S-SWNTs. The scaling law itself originates from

the nature of the Coulomb potential that always scales with some size parameters.

Looking carefully at the plots for each sample in Fig. 4-4, the only difference we can

find between the various plots is the slope or gradient Cκ of the κ function. Values Cκ for

the SG, ACCVD, and HiPco samples are 0.84, 1.19, and 1.28, respectively, where omit the

units of Cκ are omitted. We expect that such differences arise from the environmental effects

on the exciton energies. Therefore, we can assume each Cκ characterizes the environmental

Fig. 4-5: fig/fch4-wemass.pdf
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dielectric constant κenv of each sample. The argument is as follows. As discussed in Ref. [18],

κ can be modeled in analogy to a series connection of two capacitors, one for the tube (κtube)

and another one for the environment (κenv). For a given SWNT, the tube term κtube remains

the same and the environment term κenv is modified when κ changes. The difference in Cκ

must then come from the difference in κenv. The SG sample has the largest Eii and hence

the smallest κ relative to any other samples discussed in the literature [31], so for simplicity

we normalize Cκ of the SG sample to be C̃κ(SG) = 1.00. The values of C̃κ for the other

samples can then be determined by taking the ratio of their Cκ to that for the SG sample.

Thus C̃κ for the SG, ACCVD, and HiPco samples becomes 1.00, 1.42, and 1.52, respectively.

If we now plot the ratio κ/C̃κ for each sample, it is found that all points collapse on to a

single line, as shown in Fig. 4-4(e). This fact gives further support for the use of C̃κ as a

unique parameter for each environment.

4.4 Energy shift formula

With the knowledge of C̃κ for several types of environments, we are now ready to use these

results in practical applications. To a first approximation, the energy shift δEenv
ii due to

different environments (Fig. 4-6) is fitted by

δEenv
ii = ESG

ii − Eenv
ii ≡ C̃κ

[
A+B

(
p

dt

)
+ C

(
p

dt

)2
]
, (4.2)

where A, B, C, are parameters common to all types of environments and Eenv
ii is calculated

with the κ function obtained previously. The best fits for A, B, and C were found to be

−42.80± 1.26 meV, 46.34± 1.32 meV · nm, and −7.47± 0.65 meV · nm2, respectively. The

SG sample is then fixed as a standard, and all Eii values for the other environments can be

calculated simply by

Eenv
ii = ESG

ii − δEenv
ii . (4.3)
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Figure 4-6: δEenv
ii versus dt, scaled by C̃κ. Circles and triangles, respectively, denote ACCVD

and HiPco samples. Many square symbols on the zero line denote the SG sample which is
taken as the standard. The inset shows differences between experimental (exp) and calculated
(cal) Eii values for all samples, showing good agreement between experiment and our model.

This treatment thus provides a general way to obtain the Kataura plot for SWNTs in any

type of environment within an accuracy of 50 meV for all energy regions and dt as shown in

inset of Fig. 4-6).

4.5 Confinement of excitons

In the previous sections, the experimental samples used for the environmental effect analysis

were based only on resonance Raman spectroscopy (RRS) data. The same treatment can also

be applied for the photoluminiscence (PL) Eii data. However, when we focus our attention to

the lowest transitions, E11 region, we can find a systematic deviation of the κ values for type-

I and type-II S-SWNTs (or also denoted S1- and S2-SWNTs, respectively). It is suggested

that the E11 energies observed by photoluminescence are upshifted to the calculated E11

energies due to the confinement of excitons in the SWNTs. Considering this effect, the

Fig. 4-6: fig/Fig03.pdf
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Table 4.1: List of C̃κ values obtained for different samples.

Measurement RRS
Synthesis method SG ACCVD HiPco

(Environment) (as-grown) (as-grown) (SDS)

C̃κ 1.00± 0.08 1.42± 0.03 1.52± 0.05

Measurement PL
Synthesis method HiPco ACCVD ACCVD

(Environment) (SDS) (HEX) (CL)

C̃κ 1.54± 0.05 1.77± 0.04 2.06± 0.06

same energy shift formula for the environmental effect as that for the the RRS, that is

Equation 4.2, can be used to reproduce experimental Eii values from PL spectroscopy within

a good accuracy, too. For the PL treatment, we can use Eii data from the work by Weisman

et al. [28] and Ohno et al. [45] which give SWNTs under three different environments:

(i) HiPco SWNTs dispersed in sodium decodyl sulfate (SDS) aquaeous solution [28], (ii)

ACCVD trench-suspended SWNTs immersed in hexane (HEX) [45], and (iii) ACCVD trench-

suspended SWNTs immersed in chloroform (CL) [45].

In PL spectra, E11 energies are given by the emission spectra, while the other higher

Eii energies (i = 2, 3, 4, . . .) are given by the absorption spectra. Since there are no PL

spectra for M-SWNTs, only S-SWNTs are considered here. As were obtained previously for

the RRS Eii data, in Fig. 4-7 it is now given a series of fitted κ as a function of (p, dt, lk)

obtained from the PL Eii data. For each sample, all the Eii transitions are unified into a

single linear κ function with a slope Cκ as indicated by the violet lines in Fig. 4-7(a)-(c).

The normalized slope values C̃κ are also mentioned in the figure and they are compared

to the RRS data as are given in Table 4.1. In particular, since it is known that the κenv

value for chloform is higher than that for hexane [45], the C̃κ values obtained for these two

samples also follow the same behavior. This fact strengthens the previous assumption that

Cκ (or C̃κ) characterizes the environmental dielectric constant of the samples. The physical

assumption of C̃κ can also be justified by dividing κ of each sample with its respective C̃κ

Fig. 4-7: fig/fig1.pdf
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Figure 4-7: The κ function obtained from the PL Eii data. Panel (a) is for the HiPco SWNTs
dispersed in SDS aqueous solution. Panels (b) and (c) are for the ACCVD trench-suspended
SWNTs immersed in hexane and chloroform, respectively. Circle (cross) symbols are for E11

(E22). Red (blue) colors denote S1-(S2-)SWNTs. A green line in each plot is a fitted line for
the SG sample as a reference. This line is also a guide for eyes to distinguish the slope for
different sample. The effective κ values in (a) are determined from the Eii data in Ref. [28],
whereas for those in (b) and (c) are determined from the Eii data in Ref. [45]. Panel (d)
shows all κ values from (a)-(c) divided by their corresponding C̃κ. Squares, triangles, and
stars are for SDS, HEX, and CL, respectively.

as shown in Fig. 4-7(d), in which all κ data collapse on to a single line. Another point to

note is that the C̃κ values for HiPco SDS samples measured by PL and RRS spectroscopy

are similar to each other, indicating the κ model developed in this thesis can be safely

used for both PL and RRS. Using Equation 4.2, A, B, C, for the PL data are found to be
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Figure 4-8: Evaluation of the differences between experimental (exp) and calculated (cal) Eii
values for all samples, showing good agreement between experiment and our model. Open
and filled squares are for PL and RRS data, respectively.

−40.10 ± 1.08 meV, 47.22 ± 1.47 meV · nm, and −6.87 ± 0.36 meV · nm2, respectively. A

good accuracy of Eexp
ii − Ecal

ii is obtained again within 50 meV for all energy regions (about

0.9− 3.0 eV) and diameter (0.7 < dt < 2.5 nm), as shown in Fig. 4-8.

Unlike the RRS measurements that can give a set of (ES
11, E

S
22, E

M
11, E

S
33, E

S
44), the PL

data shown in Fig. 4-7 only give ES
11 and ES

22, but the number of ES
11 data observed in PL

measurements are much more than those in RRS measurements. We can then analyze the

ES
11 data more carefully. Especially, when we look at the ES

11 region, denoted by circles in

Fig. 4-7, there is a deviated tendency of the κ values for S1- (red circles) and S2- (blue circles)

SWNTs. Just to remind, here S1- and S2-SWNTs stand for semiconducting SWNTs with

mod(2n+m, 3) = 1 and mod(2n+m, 3) = 2, respectively [7]. For ES
11, since the S1-SWNTs

have larger effective mass than S2-SWNTs [7], we expect a smaller exciton size for S1-SWNTs

in real space. This means the S1-SWNTs must have smaller κ values related to the previous

explanation about the electric field lines created by excitons. In fact, if the exciton size is

small, only small amount of the electric field can be affected by the environment. However,

in Fig. 4-7, especially in panels (b) and (c), it is clear that S1-SWNTs tend to have larger

Fig. 4-8: fig/fig2.pdf
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κ values compared to S2-SWNTs. This opposite behavior suggests that the exciton might

be thermally activated by the center-of-mass motions in a finite SWNT length coupled with

phonons, so that the ES
11 energies obtained from PL measurements are upshifted from the

calculated ES
11 energies. The upshift value should be larger (smaller) for smaller (larger)

effective mass, which will be shown as follows.

In the PL process, the excitons are relaxed from the ES
22 states to the ES

11 states by the

exciton-phonon interaction. This interaction might not perfectly relax the excitons to the

lowest exciton states before the electrons and hole recombination gives the emitted light.

The exciton state before the recombination is thus slightly upshifted in energy than the real

lowest exciton state considered in the calculation because of the quantum confinement of an

exciton. This energy difference is denoted by ∆ES
11 that can be understood as the energy

upshift of the ES
11 in the plot of κ.

Since κ is obtained from the experimental ES
11 energies, the ∆ES

11 values should shift the

effective κ depending on the tube type. A good parameter for this situation is the center-

of-mass MCM = (m∗e + m∗h)/2 (here m∗e and m∗h are the electron and hole effective masses,

respectively), because MCM of a S1-SWNT is generally larger than that of a S2-SWNT for

a similar dt. Then, it is expected that ∆ES
11 ∼ ~2kCM/2MCM for the S1-SWNTs should be

smaller than that for the S2-SWNTs, so that the κ values for S1-SWNTs will be upshifted

smaller. This will result in the correct tendency of the κ values, that is, the κ values for

S1-SWNTs are smaller than those for S2-SWNTs, or at least if we cannot make it, the κ

values for both S1- and S2-SWNTs are not separated too much.

We can make a model for ∆ES
11 by considering the exciton motion is restricted in a finite

length, analogous to the problem of a particle in a box. ∆ES
11 is expressed as

∆ES
11 =

∫ ∞
0

ED(E)f(E)dE∫ ∞
0

D(E)f(E)dE

, (4.4)

where D(E) is the electronic density of states and f(E) = e−(E/kBT ) is the phonon distribu-
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tion function, kB is the Boltzmann constant, and T is temperature. If we approximate D(E)

with the 1D nanotube DOS, D(E) ∝ 1/
√
E, it will result in a constant ∆ES

11 =
1

2
kBT at a

given temperature, independent of MCM, which does not explain the phenomena. Thus we

have to model the exciton motion quantum mechanically as a particle in a box which gives

discrete energy states En as a function of center-of-mass:

En =
~2π2

2MCML2
n2, (4.5)

where L is length in which the exciton is confined. The DOS in Equation (4.4) becomes a

delta function and thus the integral turns to a summation:

∆ES
11 =

∞∑
n=0

Ene−(En/kBT )dE

∞∑
n=0

e−(En/kBT )dE

. (4.6)

Since En is inversely proportional to MCM, ∆ES
11 is also roughly inversely proportional to

MCM, as shown by a solid line in Fig. 4-9.

Therefore, we can achieve the expectation to have smaller (larger) ∆ES
11 for the S1- (S2-)

SWNTs because MCM for the S1- (S2-) SWNTs is larger (smaller). A plot of ∆ES
11 calculated

from Equation (4-9) for the hexane data is given in Fig. 4-9 with a fixed L = 20 nm and

T = 300 K. The ∆ES
11 correction can then be applied to the determination of κ from ES

11

original data,

ES
11 = ES

11(exp)−∆ES
11, (4.7)

where ES
11 is now the exciton state free of the center-of-mass motion, that can be used to

determine the effective κ.

With the use of L = 20 nm, ∆ES
11 for S1- and S2-SWNTs are about 20 − 30 meV and

25−35 meV, respectively. The corresponding κ upshifts are then about 0.4−0.6 and 0.5−0.7

Fig. 4-9: fig/fig3.pdf
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Figure 4-9: ∆ES
11 as a function of MCM for the hexane PL data, where MCM is in the unit

of m0 (electron mass). To get the values shown in the horizontal axis, 1/MCM should be
multiplied by a factor (~2π2/2m0L

2)/kBT . Red and blue circles denote S1- and S2-SWNTs,
respectively. L = 20 nm and T = 300 K are used in this calculation.

for S1- and S2-SWNTs, respectively. If we use larger L, for example L = 200 nm similar to a

typical nanotube length found in experiments, ∆ES
11 will be close to a constant

1

2
kBT . It is

concluded that the exciton motions are very restricted in a short finite length L in the center

part of the nanotube axis. We do not have a clear image why the exciton is confined in

such a short region. A possible explanation is that the exciton is self-trapped by the lattice

deformation or defects of a SWNT. These are open issues for the future work.



Chapter 5

Conclusion

In this thesis, it has been shown that the experimental optical transition energies Eii can be

reproduced consistently by considering a simple theoretical functional form of the dielectric

constant κ, which depends on the nanotube diameter dt and the exciton size lk in reciprocal

space. It works well for the experimental samples presented here and for the dominant

excitonic transitions observed in the experiments: ES
11, E

S
22, E

M
11, E

S
33, and ES

44.

The functional form of κ is universal so that it can describe a general environmental

dielectric screening effect. The results also show a consistent picture for the exciton scaling

law in carbon nanotubes. The empirical parameter Cκ (or C̃κ) obtained in this work is

found to characterize the environmental effect on Eii in a sense that it specifies the different

environments around SWNTs. Using a diameter- and environmental-dependent energy shift

formula, many Eii values can be reproduced within an accuracy of 50 meV for SWNTs found

in different environments. A careful analysis using the κ function for the photoluminescence

Eii data then suggests a confinement effect of excitons in the lowest optical transitions.
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Appendix: calculation program

There are several programs used to perform the exciton environmental effects calculation.

The main program is to calculate exciton energies for many different dielectric constants κ.

This is based on the work by Jiang et al. [30] and Sato et al. [33]. The results of the program

are then stored in a single database file that will be called by other programs for making the

κ model and calculating δEenv
ii . All the necessary programs can be found under the following

directory in FLEX workstation:

~nugraha/for/enveffect/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detail explana-

tions about how to use the programs are given in the 00README file in each subdirectory of

ROOT.

Exciton energy

Main program: ROOT/envkata/envkata.f90

Database maker: ROOT/util/makeEii.f90

Using envkata.f90, Eii energies are calculated for all (n,m) SWNTs within 0.5 < dt <

3.0 nm and 0 ≤ κ ≤ 8 for E11 up to E44. In a single run of the program, the necessary inputs

are only an (n,m) value, an index i of Eii, and a κ value. However, since we want to have

a unified database for many parameters, the program is then run many times so that the
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desired dt and κ ranges are satisfied. The diameter range is controlled by variables dtmin

and dtmax in envkata.f90 for minimum and maximum diameter, respectively. Here we

fix dtmin = 0.5d0 and dtmax = 3.0d0. The envkata.f90 program needs MPI (message

passing interface) for parallel computation. The program is then run by some batch files.

An example of the batch files is shown below for calculations of E11 up to E44 for S1-SWNTs

(or type-I S-SWNTs).

#!/bin/bash

for Eii in 1 2 3 4; do

for x in 0 2 3 4 5 6 7; do

for y in 0 1 2 3 4 5 6 7 8 9; do

mpirun -np 5 ./envkata.out s1 $Eii $x$y

done

done

done

echo "finish all"

In the above script, S1-SWNTs is denoted by the parameter s1, and κ is denoted by xy. In

this notation, xy = 10 stands for κ = 1.0, xy = 20 stands for κ = 2.0, and so on. If we want

to calculate Eii for M-SWNTs and S2-SWNTs, the parameter s1 should be replaced by s0

and s2, respectively.

The makeEii.f90 program is useful for collecting all the separate datafiles resulted by

envkata.f90 into a single database file, namely eii.dat. The Eii energies and exciton size

lk are arranged in arrays. The diameters and chiral angles are also stored in this database

file. There are two main arrays in that file:

Eii(n,m,i,nkappa,flagEii)

dttheta(n,m,flagdt)

where nkappa is an integer defined by 10(κ− 1) + 1. In the Eii array, flagEii = 1 returns

Eii, while flagEii = 2 returns lk. In the dttheta array, flagdt = 1 returns dt, while
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flagEii = 2 returns θ. So, for example, if we want to get E11 for a (6, 5) SWNT with

κ = 2.2, we have to give the argument Eii(6,5,1,13,1). The arrays Eii and dtttheta are

extensively used in the other programs since we do not have to calculate again envkata.f90,

so the arrays can save much computational time.

For a given κ, the envkata.f90 program also gives other constituents of Eii, i.e., single

particle energy (Esp), exciton binding energy (Ebd), self energy (Σ), many-body energy

(Emb = Σ − Ebd), so that Eii is given by Eii = Esp + Emb. An example of the outputs is

given here only for a single dielectric constant value, κ = 2.2, and a subband i = 1 (hence

E11) for S1-SWNTs. This output is a small part of the larger database file.

n m dt (nm) θ (rad) E11 (eV) ε (eV) Σ (eV) Ebd (eV) Emb (eV)
6 1 0.5252 0.1325 1.8666 2.7476 1.1223 0.8810 0.2413
6 4 0.6893 0.4086 1.3792 2.0554 0.9281 0.6762 0.2518
7 2 0.6492 0.2132 1.4886 2.2139 0.9602 0.7253 0.2349
7 5 0.8226 0.4277 1.1762 1.7379 0.7986 0.5618 0.2368
8 0 0.6356 0.0000 1.5544 2.2928 0.9665 0.7385 0.2281
8 3 0.7773 0.2669 1.2556 1.8559 0.8314 0.6003 0.2310
8 6 0.9564 0.4413 1.0250 1.5078 0.7033 0.4827 0.2205
...

...
...

...
...

...
...

...
...

Example of the output format from the exciton energy program.

Only the case of κ = 2.2 is given here.

Optimized κ

Main program: ROOT/diel/calkapp.f90

The optimized κ values are obtained by matching Eii for a given (n,m) SWNT and subband

i from experiments with the Eii calculation database. Because it is not possible to exactly

have Eexp
ii = Ecal

ii , we search for the optimized κ that gives the smallest difference between

Eexp
ii and Ecal

ii . The important parameters to be saved are n, m, p, i, Eii, and corresponding

optimized κ. The program needs to call the Eii and dttheta arrays created by the previous

makeEii.f90 program. Since we only have κ step in the database equal to 0.1 (or one

decimal point), we increase the accuracy for finding an optimized κ between two κ points
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by interpolating the corresponding Eii values, so that the output for the optimized κ will

return the value up to four decimal points. In the input of the program, we give a set of

(n,m) values, experimental Eii values, p (cutting line index), and i (subband index). In the

following example, some lines of the input for the alcohol-assisted CVD sample are shown.

#Alcohol-assisted cvd

10 7 2.050 3 1

11 0 1.560 2 2

20 0 1.924 5 4

17 1 2.292 4 3

Linear regression of κ

Main program: ROOT/diel/linkapp.f90

The optimized κ obtained previously are then modeled to satisfy a functional form:

κ = Cκ

[
pa
(

1

dt

)b(
1

lk

)c]
+ Cx

For a particular sample, we can find the best fit for (a, b, c), Cκ and Cx of that equation

by the least square method. The result is then coupled to other experimental samples for

checking that the same (a, b, c) can be used. After finding the best (a, b, c) values, which

are found to be (a, b, c) = (0.80 ± 0.10, 1.60 ± 0.10, 0.40 ± 0.05), the value of Cκ for each

sample is recalculated by fixing a common Cx value for all samples that determines the

crossing point between different fitting lines. In this calculation, we have to make sure that

the difference between experimental and calculated Eii by κ should be minimum. Also, the

correlation coefficient R2 of the linear regression should be maximum. By these treatments,

the κ values for (ES
11, E

S
22, E

M
11, E

S
33, E

S
44) in every experimental sample can be fitted to a

single κ function line, and only the Cκ values are different from sample to sample. Using

the linkapp.f90 program, we can then know the Cκ value of a particular input file such
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like shown in the previous section for the optimized κ calculation. The normalized Cκ, that

is C̃κ, is obtained by dividing the Cκ of a given sample with that of the super-growth (SG)

sample.

Energy shift (δEenv
ii )

Main program: ROOT/diel/eshift.f90

The environmental energy shift is expressed as in Eq. (4.2):

δEenv
ii = ESG

ii − Eenv
ii ≡ C̃κ

[
A+B

(
p

dt

)
+ C

(
p

dt

)2
]
.

Coefficients A, B, and C can be found by the so-called multiple linear regression method.

The above equation can be rearranged to:

δEenv
ii

C̃κ
= A+B

(
p

dt

)
+ C

(
p

dt

)2

,

or we can expressed it as

Y = β1X1 + β2X2 + β3X3,

where X1 = 1, X2 = p/dt and X3 = (p/dt)
2 are three independent variables in the fitting;

and β1 = A, β2 = B, and β3 = C are constants as the regression coefficients. In the matrix

notation, if we have n data of δEenv
ii in a particular sample, we can write Y = Xβ, where:

Y =


y1

y2
...

yn

 ; X =


x11 x12 x13

x21 x22 x23
...

...
...

xn1 xn2 xn3

 ; β̂ =


β1

β2

β3

 .
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The coefficients A, B, and C can then be determined by evaluating

β̂ = (XTX)−1XTY.
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