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Chapter 1

Introduction

1.1 Preface

In theory of electromagnetic radiation, near field is the name used to call the solution

of the Maxwell’s equations that is localized near the radiating source. The amplitude

of the near field diminishes by 1/r3 as distance r from the source increases. Therefore,

the energy of the near field does not propagate out from the source, but it merely

decays. Unlike the near field, far field refers to the solution of Maxwell’s equations

which behaves as the radiation field carrying the energy out of the source. The

amplitude of the far field is proportional to 1/r, thus it is weak in the region near the

source. We call the region of kr ≪ 1 as near field region. In the near field region, the

localized near field plays a more important role than the far field because its amplitude

is large compared to that of the far field. The experiment called tip-enhanced Raman

spectroscopy (TERS) makes use of the near field generated by a metallic tip (e.g., Ag

or Au tip) to make a spectroscopic image of a single wall carbon nanotube (SWNT)

[13, 14]. A SWNT is a rolled up hexagonal sheet of carbon atoms, which becomes a

one-dimensional material with the small diameter about 1-2 nm [16]. It is impossible

to make an image of the SWNT in conventional spectroscopic experiments due to

the diffraction limit of light, which gives that the spatial resolution ∆x can not be

smaller than λ/2 [15].

Another important result from TERS experiment besides imaging is that the
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Raman signal becomes enhanced [13, 17]. Hartschuh et al. has shown that the

enhancement of the Raman signal resulting from the near field localized at the tip

apex by changing the distance between the metallic tip and the SWNT [13]. The am-

plitude of the near field scattered from the metallic tip is very large compared to the

amplitude of the external laser light which have been shown by solving the Maxwell’s

equations for the cone shape of the metallic tip using the numerical method called

finite difference time domain method (FDTD) [18]. Therefore, it is believed that

the enhancement of the Raman signal is due to the enhancement of the near field.

However, the quantitative calculation of the enhancement of the Raman spectra have

not been discussed much yet. Thus it is important to quantitatively calculate the

enhancement of the Raman signal and the optical matrix element of the interaction

between the near field and the exciton in carbon nanotube. The near field radiated

from the metallic tip due to the excitation of the laser light should be modeled and

calculated to optimize the appropriate wavelength of the laser light and the appro-

priate size of the tip apex, because it has been shown experimentally and numerically

that the near field enhancement depends on the radius of the tip apex [19, 18].

1.2 Purpose of the study

The purpose of this thesis is (i) to model a metallic tip as a metallic sphere with the

same radius as the tip apex, and then to calculate the near field enhancement of the

scattered wave radiating out from the metallic spheres (e.g., Ag and Au), and (ii) to

calculate the near field enhancement of optical transition in SWNTs. The near field

is obtained by solving Maxwell’s equations in the spherical coordinate, and the near

field enhancement of various wavelength and several diameters of Ag and Au spheres

are given. The exciton-photon matrix element proposed by Jiang et al. [8] has been

modified for the near field. The enhancement of optical matrix elements are discussed

and compared with TERS experiment.
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1.3 Organization

The organization of this thesis is as follows: The basic backgrounds, that are, (i)

review of carbon nanotubes (SWNTs), (ii) concept and experimental facts of excitons

in SWNTs, (iii) TERS experiment, (iv) effective enhancement factor, (v) scattering of

light by a metallic sphere, and (vi) optical properties of noble metals are reviewed in

the remaining part of the chapter 1. In chapter 2, the classical theory of the scattering

of light by a metallic sphere known as Mie’s theory is explained systematically. The

quasi-static approximation and the dynamic depolarization are also added in the

chapter 2 in order to understand the near field enhancement from Mie’s theory. The

exciton theory in carbon nanotube is also described in the chapter 2. In chapter 3,

the formulation of the exciton-near field matrix element is described. In chapter 4,

the calculation results of the exciton-near field matrix elements of SWNTS have been

discussed.

1.4 Background

This section gives a review of SWNTs, basic of excitons in SWNTs, the experimental

results of TERS experiment, the definition of effective enhancement factor, concept

of Mie’s theory, and lastly the optical properties of noble metals.

1.4.1 Review of carbon nanotube

A single wall carbon nanotube (SWNT) is a one-dimentional carbon material whose

structure is considered as the rolled up sheet of graphene. One 2s valence electron and

two 2p valence electrons of a carbon atom in the unrolled graphene sheet make sp2

hybridization giving three sp2 orbitals. Then each carbon atom forms three covalent

bonds with three nearest neighbor atoms in the graphene plane [1]. The properties

of a SWNT are determined by the chirality indices n and m of the chiral vector Ch

defined as Ch = na1 +ma2 = (n,m), where a1 = (
√
3
2
, 1
2
)a and a2 = (

√
3
2
,−1

2
)a are

lattice unit vectors of the graphene lattice, with the lattice constant a = 0.246 nm as
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Figure 1-1: Chiral index Ch and the unrolled unit cell of (4, 2) carbon nan-
otube [2]. x and y axes are defined in armchair and zigzag direction. a1 and a2 are
unit lattice vectors of graphene lattice. The rectangle bounded by vectors Ch and T

is the unrolled unit cell of the carbon nanotube.

shown in Fig. 1-1 [16]. The chiral vector Ch = (4, 2) is shown in Fig. 1-1. Other

important quantities of a SWNT are tube diameter dt and chiral angle θ, whose

values can be obtained from the chirality indices as dt = a
√
n2 + nm+m2/π and

tan θ =
√
3m/(2n+m), respectively. If n = m, a SWNT is called an armchair carbon

nanotube , with corresponding chiral angle θ = π/6. If n 6= 0 and m = 0, chiral angle

becomes θ = 0 and a SWNT is called a zigzag carbon nanotube. Armchair and zigzag

carbon nanotubes are both called achiral carbon nanotubes. However, if the chiral

angle θ is in between these two values (0 < θ < π/6), a SWNT corresponding to this

chirality is called a chiral carbon nanotube [16]. The unit cell of the carbon nanotube

is translated periodically along tube axis by a translational vector T = t1a1+ t2a2 =

(t1, t2) where t1 =
2m+n
dR

and t1 = −2m+n
dR

. dR is obtained by dR = gcd(2n+m, 2m+n)

where gcd is an integer function of the greatest common divisor. For example, the

armchair carbon nanotube (n, n) has dR = (3n, 3n) = 3n, thus the translational

vector becomes T = (1,−1). The unrolled carbon nanotube unit cell is the rectangle

bound by the chiral vector Ch and the translational vector T , as shown in Fig. 1-1

for a (4, 2) chiral carbon nanotube. The number of graphene lattices in the carbon

nanotube unit cell N is calculated by the area of the carbon nanotube unit cell

Fig. 1-1: fig:/fig:SWNT-Ch.eps
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Figure 1-2: Reciprocal lattice of graphene and cutting lines of (4,2) carbon
nanotube [2]. b1 and b2 are the reciprocal lattice unit vectors of graphene lattice.
Four symmetry points, Γ, M, K and K’, are defined as the center, the middle and the
corners points of the first Brillouin zone of graphene lattice, respectively. K1 and K2

are the reciprocal lattice unit vectors of carbon nanotube in circumferential and tube
axis directions, respectively. The cutting line index µ runs from -13 to 14 passing
through the Γ point at µ = 0. The number of cutting lines is the same as the number
of graphene lattices in carbon nanotube unit cell.

|Ch × T | divided by the area of the graphene lattice |a1 × a2| =
√
3a/2, and is

N = 2(n2 + nm +m2)/dR. Because there are two inequivalent carbon atoms in the

graphene lattice, the number of carbon atoms in the carbon nanotube unit cell is 2N .

For the (4, 2) carbon nanotube corresponding to dR = 2, we have N = 28 and the

number of carbon atoms is 56.

The electronic properties of the carbon nanotube are discussed in the reciprocal

space which can be constructed from the reciprocal space of graphene as shown in

Fig. 1-2. b1 and b2 are the reciprocal lattice unit vectors of graphene obtained from

the definition ai · bj = 2πδij, which are then expressed as b1 = ( 2π√
3
, 2π) 1

a
and b2 =

( 2π√
3
,−2π) 1

a
[16]. The reciprocal lattice unit vectors of carbon nanotube K1 and K2

are obtained by the definition : Ch ·K1 = T ·K2 = 2π and Ch ·K2 = T ·K1 = 0.

Then, K1 directs in circumferential direction with length |K1| = 2/dt, and K2 directs

in tube axis direction with length |K2| = 2π/T . By applying periodic boundary

condition to the circumferential direction, N finite wave vectors along tube axis are

obtained, where N is number of graphene lattices in the carbon nanotube unit cell.

The index µ varying from 1−N/2 to N/2 are defined to denote these vectors as µK1.

The wave vector along tube axis is continuous varying from −π/T to π/T in the first

Fig. 1-2: fig:/fig:SWNT-reciprocal.eps
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Brillouin zone. Therefore, the Brillouin zone of a SWNT is composed of N discrete

lines of wave vectors along the circumferential direction, and each line is elongated

continuously in the tube axis direction. These lines are called the cutting lines as

shown in Fig. 1-2 for a (4,2) SWNT. The wave vectors in the Brillouin zone of a

SWNT are then expressed as [16] :

k = µK1 + k
K2

|K2|
with µ = 1−N/2, ..., N/2 and− π

T
≤ π

T
. (1.1)

N pairs of the electronic energy dispersion of carbon nanotube are cross-sections

of the electronic energy dispersion of graphene, obtained by applying the zone-folding

scheme [1]. The electronic energy dispersion along the cutting line µ of carbon nan-

otube is expressed as [16] :

Eµ(k) = Eg2D

(

µK1 + k
K2

|K1|

)

,
(

µ = 0, ..., N − 1and− π

T
< k <

π

T

)

, (1.2)

where Eg2D is the electronic energy dispersion of graphene. The electronic dispersion

of graphene can be calculated by the simple tight binding approximation (STB),

which takes into account the interaction of a carbon atom with its nearest neighbor

atoms. The valence band (π band), the conduction band (π∗ band) of graphene, and

the cross-sections obtained by applying the zone-folding scheme to the cutting lines of

a (4,2) carbon nanotube are shown in Fig. 1-3(a) [2]. The electronic energy dispersion

and the calculated electronic density of state (DOS) of (4,2) carbon nanotube obtained

from the zone-folding scheme are shown in Fig. 1-3(b) and Fig. 1-3(c), respectively. If

there is a cutting line of a particular nanotube (n,m) that passes through the K point

where π and π∗ bands are degenerate, then the carbon nanotube is metallic because

the energy gap is zero. However, if a (n,m) carbon nanotube has no cutting line

passing through the K point, the carbon nanotube becomes semiconductor because

of finite band gap. Two types of semiconducting carbon nanotube, S1 and S2, are

defined as mod(2n+m, 3) = 1 and mod(2n+m, 3) = 2, respectively, and the metallic

carbon nanotube corresponds to mod(2n+m, 3) = 0 [1]. Therefore, the (4,2) carbon

nanotube as shown in Fig. 1-3 is S1 semiconducting carbon nanotube. The sharp
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Figure 1-3: The electronic energy dispersion and DOS of (4,2) carbon nan-
otube from zone-folding scheme [2]. (a) Valence band (π band) and conduction
band (π∗ band) of graphene in the Brillouin zone. The thick lines are the cutting lines
of (4,2) carbon nanotube by applying zone-folding scheme, and the solid dots denote
the end of the cutting lines. (b) The electronic energy dispersion of (4,2) carbon
nanotube obtained by zone-folding scheme. (c) The electronic density of state (DOS)
per energy per carbon atom of (4,2) carbon nanotube. The peak of DOS is known as
van Hove Singularity (vHS).

peak of DOS is known as the van Hove singularity (vHS) [1]. The vHS occurs at the

touching point of the cutting line with the equi-energy contour of π electron (energy

difference between π and π∗ bands) [3]. If the energy of laser light matches the

energy difference between valence and conduction bands at the vHS, the electron can

absorb light and transit from the valence band to the conduction band. If the laser

light is polarized parallel to the tube axis, the electrons make the vertical transitions

with the same cutting line index µ between two bands, which is simply called Eµµ

transition. However, if the laser light is polarized perpendicular to the tube axis, the

electrons in the valence band with the cutting line index µ transit to the adjacent

cutting lines index µ±1 in the conduction band [3]. We specify the vertical transition

of electron in the cutting line which is closet to K point (without passing through K

point) as E11, and higher energy vertical transitions in visible region are called E22

and E33. The plot of the Eii as a function of tube diameter dt or the inverse of tube

diameter is called the Kataura plot [7]. An accurate Kataura plot which reproduces

Fig. 1-3: fig:/fig:SWNT-dispersion.eps
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(e)

(d)

Figure 1-4: Transition energy Eii and binding energy Ebd Kataura plot. (a)
Exciton transition energy Eii calculated from STB nethod as a function of inverse
of diameter dt. Open, filled and crossed circles are for S1, S2 and metallic SWNTs,
respectively [7]. (b) Binding energy Ebd calculated from the STB method as a
function of inverse of diameter dt. Open and filled circles are S1 and S2 SWNTs,
respectively [7]. (c) Binding energy Ebd of metallic SWNTs calculated from the STB
method as a function of inverse of diameter dt [7]. (d) Exciton transition energy
Eii calculated from the ETB method as a function of inverse of diameter dt. Open,
filled and crossed circles are for S1, S2 and metallic SWNTs, respectively [7]. (e)
The correction of transition energy Eii by the exciton theory. The energy gap Eg of
single-particle model is added by positive self energy Σ, and then is subtracted by
the binding energy Ebd [10].

the experiemtal result relies on the exciton theory which is briefly reviewed in the

next section.

1.4.2 Concept and experimental facts of excitons in SWNTs

An exciton is the bound state of a photo-excited electron and a hole due to the

Coulomb interaction. It can be formed at room temperature for carbon nanotube

Fig. 1-4: fig:/fig:exciton-Eii-Jiang.eps
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because of the large binding energy, which can be as large as 1 eV [1, 7]. The

exciton is a many-body system in which many wave vectors on the cutting lines are

mixed. The exciton theory in carbon nanotubes has been proposed to explain the

ratio problem in which the ratio E22/E11 of semiconducting SWNTs are not equal

to two as predicted by STB model, but it is always less than two from experiment

[9]. Another reason is because of the weak dependence of the transition energy Eii

on the chiral angle calculated from the STB method [9], which is not consistent with

the experimental observation of the Kataura plot showing the large (2n+m)-family

spread [11]. From the exciton theory, the transition energy Eii is corrected by the

electron-electron and electron-hole interactions giving rise to the positive self-energy

Σ and the binding energy Ebd, respectively, as shown in Fig. 1-4(e) [10]. However, it

has been shown by J. Jiang et al., that the excitonic transition energy Eii calculated by

the STB method also shows weak spread of Eii on the chiral angle as shown in Fig. 1-

4(a) [7]. This problem has been solved by using the extended tight binding method

(ETB) in which the mixing of π orbitals with σ orbitals, and the optimization of bond

length or the tube structure, are taken into account [1]. The transition energy Eii

calculated from ETB method by J. Jiang et al., as shown in Fig. 1-4(d), shows a large

(2n+m)-family spread which is consistent with experiment [11]. The binding energy

Ebd of semiconducting and metallic SWNTs are shown in Fig. 1-4(c) and Fig. 1-4(d),

respectively, showing the dependence of Ebd on diameter and chiral angles of SWNTs.

The elegant experiment confirming the excitonic effect in the optical transitions

of SWNTs is the two-photon photoluminescence (PL) experiment by J. Maultzsch

et al. [12]. The schematic processes of one-photon PL in the one-particle picture

and the exciton picture are shown in Fig. 1-5(a). In the one-particle picture, the

electron is excited to make an E22 transition to the conduction band. The photo-

excited electron then relaxes, and then makes E11 emission to the valence band. In

the exciton-picture, the one-photon energy gets absorbed by the 1u exciton of a E22

transition. After that, the 1u exciton of the E22 transition relaxes to the 1u state of

Fig. 1-5: fig:/fig:exciton-2photon.eps
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(c)

Figure 1-5: Two-photon photoluminescence (PL) experiment of SWNTs,
after [12] (a) Left picture shows one-photon PL process schematically in one-particle
picture. Right picture shows the one-photon PL process schematically in exciton
picture in which the 1u exciton of optically allowed. (b) Schematic process of two-
photon PL experiment in which 2g exciton becomes optically allowed. 2g exciton is
not optically allowed in one-photon PL experiment. (c) Luminescence intensity as a
function of two-photon excitation energy of (7,5), (6,5) and (6,4) SWNTs. The black
arrows indicate the one-photon emission energy of 1u exciton E1u

11 , the red arrows
indicate two-photon absorption maximum identified as E1g

11 .

an E11 transition and then make the E11 one-photon emission by recombining process

between the photo-excited electron and the hole. However, in the two-photon PL

experiment as shown in Fig. 1-5(b), the 2g exciton of the E11 transition, which is not

optically allowed (dark) in one-photon PL, is excited. Then, the 2g exciton relaxes

to the 1u exciton of the same energy transition to make E11 one-photon emission

by recombining process. The energy difference between the 2g and 1u excitonic

states indicates the strength of the Coulomb interactions. If there were no Coulomb

interactions due to the excitonic effect, the two-photon and one-photon allowed states

would have approximately the same energy [12]. However, by plotting the emission

10



(a) (b)

Figure 1-6: The schematic experimental setting up of TERS experiment (a)
On-axis illumination of the metallic tip using radially polarized laser beam passing
through the transparent sample. This near field experiment can’t be done with a
nontransparent sample [15]. (b) Side illumination of the metallic tip using the lin-
early polarized laser light. This configuration can be utilized with the sample on the
nontransparent substrate [18].

intensity as a function of Eex − E1u
11 where Eex is an excitation energy as shown in

Fig. 1-5(c), the intensity peak of each chiralrity has been observed in range 240 - 325

meV, which is identified as the two-photon allowed E2g
11 state. The exciton binding

energy Ebd = E2g
11−E1u

11 is then determined at this maximum point, which is consistent

with the first principle calculation [12].

1.4.3 Tip-Enhanced Raman Spectroscopy (TERS)

In TERS experiment, a sharp metallic tip with a cone shape is put at a small distance

above the sample. TERS experiments can be categorized into two types based on the

transparency property of the sample [20] as : (i) on-axis illumination shown in

Fig. 1-6(a) and (ii) side illumination shown in 1-6(b). Here, the TERS experiment

in the on-side illumination scheme utilized by L. G. Cancado et al. [15] is reviewed

firstly. According to the schematic experimental setting up in Fig. 1-6(a), the gold

tip ended with a sphere of about 20 nm diameter produced by the electrochemical

etching scans the sample on the x,y stage. The separation distance between the tip

Fig. 1-6: fig:/TERS-setup.eps
Fig. 1-7: fig:/TERS-result-Cancado.eps
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Figure 1-7: experimental results from TERS in on-axis illumination
scheme [15] (a) Topographic image of the carbon nanotube bundle on glass. (b)
TERS image of carbon nanotube bundle on glass. (c) Height profile of the carbon
nanotube bundle taken along the dashed blue line of the topographic image. (d)
Raman intensity profile of the carbon nanotube bundle measured along the dashed
blue line of the TERS image. (e) The Raman intensities as a function of Raman shift
measured by with and without the gold tip are indicated by the red and black spectra,
respectively. The integration region of the G band Raman intensities is indicated by
the vertical dashed lines.

apex and the sample is controlled by a quartz tunning fork attached to the tip. The

radially polarized laser beam or a linearly polarized beam is focused onto the sample

using a high numerical aperture objective (1.4NA), and the gold tip is positioned in

the focused beam. The optical signal is then collected by the same objective and

detected either using a single-photon counting avalanche photodiode (APD), or by

the combination of a spectrograph and a cooled charge-coupled device (CCD) [15].

In both cases, the tip-enhanced Raman image is obtained simultaneously with the

topographic image by raster-scanning the sample [15]. By using a linearly polarized

laser with wavelength 632.8 nm and positioning the gold tip about 2 nm above a

12



m 4 P nm 200

Figure 1-8: Conventional and tip-enhanced Raman images of a self-
organized semiconducting carbon nanotube serpentine done by L. G. Can-
cado et al. [14] (a) Conventional Raman image acquired from the G band intensity.
(b) Tip-enhanced Raman image acquired from the G band intensity by raster scan-
ning the gold tip at distance 2 nm above the carbon nanotube within the square area
enclosed by dashed square in the conventional Raman image. (c) Raman intensity
profile taken along the dashed line in the tip-enhanced Raman image.

carbon nanotube bundle on glass, the topographic image and the tip-enhanced Raman

image are acquired simultaneously by line scanning of the gold tip, as shown in

Fig 1-7(a) and Fig 1-7(b), respectively. The height profile of the carbon nanotube

bundle taken along the dashed blue line in the topographic image is shown in Fig 1-

7(c). From the height profile of the topographic image, the diameter of the carbon

nanotube bundle can be estimated to be about 2.5 nm. The Raman intensity profile

measured along the dashed blue line of the TERS image is shown in Fig 1-7(d). From

the Raman intensity profile, the spatial resolution of the near field is obtained to

be about 18 nm, and the resolution of the far field fitted with Gaussian function is

about 290 nm. The resolution of the TERS image is close to the diameter of the

tip. Finally, the measured Raman intensities as a function of Raman shift with tip

indicated by the red spectrum and without tip indicated by the black spectrum are

shown in Fig 1-7(e). The near field enhancement of the Raman intensity can be seen

from this figure, and the enhancement factor will be given in the next section. From

the energy of RBM mode ωRBM = 245 cm−1, the chirality of the SWNT is specified

as (10,3) semiconducting SWNT, whose E22 transition resonances with the energy of

laser light.

13



(a) (b)

Figure 1-9: Tip-enhanced Raman intensity of a carbon nanotube bundle
produced by HipCO method done by N. Peica et al. [17] (a) AFM topo-
graphic image of a carbon nanotube bundle with the height profiles at six different
positions. (b)Tip-enhanced Raman intensity as a function of Raman shift indicated
by the red spectrum and the conventional Raman intensity as a function of Raman
shift indicated by the black spectrum. The stars denote peak of the substrate. The
Raman intensities are taken at the position P4.

The same TERS experiment have been done for a self-organized semiconducting

carbon nanotube serpentine by L. G. Cancado et al. [14]. The conventional and

tip-enhanced Raman images acquired from the G band intensity are shown in Fig. 1-

8(a) and Fig. 1-8(b), respectively. It can be seen that the tip-enhanced Raman image

has much higher resolution than the conventional Raman image which has a low

resolution. The spatial resolution of the tip-enhanced Raman image can be estimated

as about 25 nm from the Raman intensity profile taken along the dashed line in the

tip-enhanced Raman image as shown in Fig. 1-8(c).

Lastly, the TERS experiment in the side illumination scheme as shown in Fig 1-

6(b) done by N. Peica et al., is reviewed. A carbon nanotube bundle is prepared

by high-pressure gas-phase decomposition of CO (HipCO), and it is deposited on a

Si/SiO2 substrate. The laser light with wavelength 532.2 nm is linearly polarized along

the tip axis incident on the gold tip produced by depositing gold on the triangular

silicon nitride tip. The AFM topographic image of the carbon nanotube bundle with

the height profiles at six different positions is shown in Fig. 1-9(a). The conventional

Fig. 1-8: fig:/TERS-result-Cancado2.eps
Fig. 1-9: fig:/TERS-result-Peica.eps
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and tip-enhanced Raman intensities as a function of Raman shift indicated by the

black spectrum and red spectrum, respectively, acquired at the position P4 are shown

in Fig. 1-9(b). The near field enhancement of the Raman signal can be seen from the

Raman spectra. The enhancement factors are 3.4× 103, 3.7× 103, and 4.8× 103, for

the 2D, D , and G modes.

1.4.4 Effective enhancement factor

Enhancement factor of Raman signals measured by TERS is calculated using different

definition by different research groups. Therefore, there is difficulty to compare the

reported enhancement factors [23]. For SWNTs, the effective enhancement factor (γ)

is introduced to describe the enhancement of Raman intensities obtained from TERS

experiment [15, 22, 24]. In addition to measured Raman signals, the areas probed by

near field and far field are taken into account in γ because near field strongly interacts

with SWNTs only within small extent, but it weakly interacts with SWNTS outside

this region.

There are two approaches used to calculate the relative intensities or contrast

[23] in TERS. In the first approach, the contrast is obtained by the ratio between

integrated Raman intensities of a particular band measured with tip and without tip,

Iwith tip and Iwithout tip, respectively. The Raman intensities in this case are mixing of

near field and far field components. This approach has been utilized by L. G. Cancado

et al., to compare the experimental normalized Raman intensities measured by TERS

as a function of separation distance between tip apex and SWNTS [14] with theoretical

model. Another approach treats far field signal Iwithout tip as the background, and then

near field signal Inf is obtained by the difference between Iwith tip and Iwithout tip. The

contrast in this approach is calculated by the ratio of Inf and Iwithout tip. This approach

has been used by A. Hartschuh et al. [22]. The contrast obtained by two approaches

are expressed as follows [23] :

approach 1 : contrast =
Iwith tip

Iwithout tip

(1.3)
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approach 2 : contrast =
Inf

Iwithout tip

=
Iwith tip − Iwithout tip

Iwithout tip

. (1.4)

When we consider the areas, we will call the area probed by near field and far

field as near field area (Anf) and far field area (Anf), respectively. Then, γ is defined

as the ratio between the contrast normalized by the ratio between near field and far

field areas (Anf/Aff), expressed as [23]

γ =
contrast

Anf/Aff

, (1.5)

where contrast is in Eqs. (1.3) or (1.4). The near field area (Anf) is estimated by the

product of full width at half maximum (FWHM) of near field and circumference of

SWNTs, and the far field area (Aff) is calculated by the product of diameter of focus

of laser light (f) and circumference of SWNTs [22].

For example, Iwith tip and Iwithout tip of G band in Fig. 1-7(e) obtained by integrating

intensities within the spectral window indicated by dashed vertical lines are 5.9× 105

and 1.2×105 count/cm (approach 1), respectively [15]. (Aff) = 725π nm2 is calculated

by diameter of nanotube bundle 2.5 nm and f = 290 nm. The FWHM of near field

is about 18 nm, then Anf = 45π nm2. Therefore, the effective enhancement factor γ

og G band is about 79.

1.4.5 Tip-sample distance dependence of the relative Raman

intensity

The localization of the near field Raman intensity in the vertical direction can be

demonstrated by the relative Raman intensity as a function of the tip-sample distance.

A Hartschuh et al. [13] have shown that the ratio between the Raman intensity of the

G′ band measured with the tip at the distance ∆z above a SWNT, I(∆z), and the far

field Raman intensity of the G′ band measured without the tip decays exponentially

with the decay length, the distance at which the Raman intensity decreases by 1/e,

about 11 nm as shown in Fig. 1-10(a). The decay length is close to the tip radius. It

Fig. 1-10: fig:/relInten.eps
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(a) (b)

Figure 1-10: Relative Raman intensity as a function of tip-SWNT distance
(a) The solid points are the experimental ratio between the Raman intensity of the G′

band measured with the tip positioned at the distance ∆z above a SWNT, I(∆z), and
the far field Raman intensity of the G′ band measured without the tip, I,as a function
of the distance ∆z [13]. The solid line is the exponential fitting function with the
decay length 11 nm. The tip is made from silver with the tip radius about 10-15 nm.
The He-Ne laser light with the wavelength 633 nm excites the SWNT and the silver
tip simultaneously in the on-axis illumination scheme as shown in the Fig. 1-6(a).
The SWNT is produced by the CVD method deposited on the SiO2 substrate. (b)
The solid points are the experimental ratio between the I(∆) and Raman intensity
measured with the tip positioned at the distance about 2 nm above the SWNT, Imax,
as a function of the distance ∆ [14]. The solid line is the fitting function in Eq. (1.6).
The tip is made from gold with the tip radius about 15 nm. The He-Ne laser light with
the wavelength 633 nm is used to excite the SWNT and the gold tip simultaneously
in the on-axis illumination scheme. The SWNT is a self-organized carbon nanotube
serpentine as shown in Fig. 1-8.

should be noted that I(∆z) is the mixing of the near field Raman intensity and the

far field Raman intensity, I(∆z) = Inf(∆z) + Iff . The exponential fitting function in

the Fig. 1-10(a) can be obtained by using the values of I(∆z) at the large distance

(∆z > 60 nm), and at the closet distance (∆z ≈ 1 nm). In 2009, L. G. Cancado et al.

[14] has performed similar TERS experiment using the gold tip with the tip radius

ρtip about 15 nm. The sample is the self-organized carbon nanotube serpentine as
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shown in Fig. 1-8. They have shown that the experimental ratios between the Raman

intensities of the RBM, IFM, G− and G+ measured with the gold tip at the distance

∆ above the SWNT and those measured with the gold tip at the distance 2 nm above

the SWNT, Imax, are inversely proportional to the 10th power of ∆+ρtip as expressed

in Eq. (1.6).
I(∆)

Imax

=
1

M
+

C

(∆ + ρtip)
10 , (1.6)

where M = 16, C = 4.5 × 1015 nm10 and ρtip = 35 nm are obtained by fitting with

the experimental data as shown in Fig. 1-10(b). It can be seen that the tip radius

in the fitting function is about two times larger than the exact tip radius obtained

by the scanning electron microscopy (SEM) measurement because of the limitation

of the point dipole model that they have employed [14]. Moreover, they have found

the similar behavior as Fig. 1-10(b) for the SWNTs of other chiralities with the same

tip. Therefore, the maximum enhancement M is affected only by the tip properties

but not by the tube structure [14]. In addition to the fitting function in Eq. (1.6),

we may write the fitting function for the ratio between I(∆) and the far field Raman

intensity Iff by considering Eq. (1.6) at the large distance where the Raman intensity

has only the far field component. Then, from Eq. (1.6), we can have the relation

(M−1)Iff = Iamx
nf , where Imax

nf is the near field Raman intensity at the closet distance.

By substituting Imax
nf in terms of Iff into Eq. (1.6), the fitting function of I(∆)/Iff can

be expressed as
I(∆)

Iff
= 1 +M

C

(∆ + ρtip)
10 . (1.7)

We can also obtain the fitting function of Inf(∆)/Iff by substituting I(∆) = Inf(∆)+Iff

into Eq. (1.7). Then, the relative Raman intensity of the near field and the far field

as a function of the tip-SWNT distance can be expressed as

Inf(∆)

Iff
=M

C

(∆ + ρtip)
10 . (1.8)

Eq. (1.8) shows that the enhancement of the near field Raman intensity is inversely

proportional to the 10th power of summation between the separation distance and
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Figure 1-11: The illustration of the scattering of light by a spherical particle
[26] (a) Real part of the incident electric field traveling from the left side to the right
side in nonabsorbing dielectric medium. (b) Real part of total electric field which is
the summation of the incident electric field and the scattered electric field radiated
from the spherical particle with real refractive index n=2.8 at the center of the figure.
(c) Real part of the scattered electric field radiated by the spherical particle at the
center of the figure.
Note : Color scale of each figure is different.

the tip radius. It also implies that the near field Raman intensity at the distance ∆

dramatically increases by decreasing the tip radius. Eq. (1.8) will be used to compare

with the tip-SWNT distance dependence of the relative Raman intensity obtained

from this thesis in chapter 4.

1.4.6 Scattering of light by metallic sphere

Because metallic tip employed in TERS experiment is ended with the finite volume

sphere and the near field is localized near the tip apex, the near field may be obtained

by considering the scattering of laser light by the metallic sphere with the same radius

as the tip apex. Then, the solutions of Maxwell’s equations can be solved analytically

in the spherical coordinate given firstly by Gustav Mie in 1908 [25] by means of the

separation of variables method used for solving the vector Helmholtz equations. Mie’s

theory was later modified in terms of so called vector spherical wave function (VSWFs)

by J. A. Stratton in 1941 [27, 28]. Both cases treat the incident light as a linearly

polarized plane wave. If the laser light is in another form (e.g., a focused Gaussian

Fig. 1-11: fig:/Mie.eps
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Figure 1-12: Absorption spectra of single silver sphere [31] The extinction
cross-section σe is approximately the same as the absorption cross-section σa, σe ≈ σa.
The silver sphere has diameter 31 nm deposited on glass. The open circle is the
absorption spectrum of the silver sphere on glass substrate without PVOH, the solid
square is the absorption spectrum of the silver sphere on glass substrate with PVOH,
and the dashed line is the absorption spectrum calculated from Mie theory.

beam), the solutions are called the generalized Mie’s theory [29]. In this thesis, we

will use the linearly polarized plane wave as the incident light, and the separation

of variables method which is straightforward and simpler than VSWFs will be used.

The solutions of Mie’s theory are general for any kind of dielectric material with

the spherical shape. The concept of the scattering of light by a dielectric spherical

particle is illustrated in Fig. 1-11. The amplitude of the real part of the incident light

traveling in the nonabsorbing dielectric medium is illustrated in Fig 1-11(a). When

the finite volume of the spherical particle is put at the center of Fig 1-11(a), it will

be excited by the plane wave to radiate the scattered wave propagating out from the

particle. The amplitude of the total electric field in the scattering process is shown in

Fig 1-11(b). It can be seen that the total electric field near the particle is spherical

wave due to the superposition of the incident light and the spherically scattered wave.

In Fig 1-11(c), the spherically scattered electric field is shown without the incident

electric field.
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Experimentally, the absorption spectra is measured in far-field region. The absorp-

tion spectra calculated from so called quasi-static approximation gives good agree-

ment with the experiment of a single gold nanoparticle with diameter 17.6 nm, which

is small compared to the wavelength of incident light in visible region [30]. Mie’s the-

ory also reproduces experimental absorption spectra of small metallic nanoparticle

and larger diameter but finite volume of metallic nanoparticle as shown in Fig 1-12

for single silver nanoparticle with diameter 31 nm [31]. In Fig. 1-12, the extinc-

tion cross-section σe spectrum which is approximately the same as the absorption

cross-section σa spectrum for silver sphere with radius 31 nm deposited on glass sub-

strate embedded in polyvinyl alcohol (PVOH) is shown by solid squares. The dash

line is the extinction cross-section calculated from Mie’s theory. The open circles

are the extinction cross-section of silver sphere on glass substrate without PVOH.

The peak position in the absorption spectrum is known as surface plasmon resonance

(SPR). The surface plasmon is understood as the collective oscillation of free elec-

trons in metal especially in noble metals (e.g., gold and silver). It can be seen that by

changing the dielectric constant, the absorption peak is shifted and the broadening is

changed. In this case, the absorption peak of the open circle spectrum is red shifted to

the solid square spectrum by increasing dielectric constant of the environment around

the single silver sphere. The full width at half maximum (FWHM) of the open circle

spectrum is about 65 nm, and the FWHM of the solid square spectrum get sharper

about 30 nm. This experiment implies that the near field enhancement and width

generated by a metallic sphere are sensitive to the dielectric constant of the medium.

The dielectric constants of noble metals are reviewed in next sections.

1.4.7 Optical properties of noble metals

The simplest model describing the response of electrons in solid metals classically

is the Drude model or the free electron model. This model treats electrons in solid

metal as free electrons gas moving with respect to positively ionic cores. The free

electrons scatter with each other after exciting by the external light. This model

Fig. 1-12: fig:/Mie-absorption-spectra.eps
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is well suited to describe the optical response of a silver and a gold with external

light in visible region. However, when the energy of the external light is increased,

the electrons make the interband transition from the valence band to the conduction

band at definite wavelength depending on the band structure of each metal. The

classical model that can describe the interband transition is the so called Lorentz

model. The behavior of electrons in a metal solid is therefore mainly contributed

by the free electrons model and the interband transition. The experimental data of

the bulk dielectric constant of noble metals is well fitted with the sum of this two

contributions.

Drude model

The Drude model assumes that the free electrons have finite value of the average

relaxation time τ after the scattering with each other. The equation of this model is

written as
dp(t)

dt
+

p(t)

τ
= f(t), (1.9)

where ~p(t) is the average momentum and ~f(t) is a driving force which can be either

static or time-varying. The typical value of the average relaxation time τ of electron

can be estimated from the DC resistivity ρ0 by using the relation τ = m
ne2ρ0

, where m

is electron mass, n is conduction electron density and e is electronic charge [33]. This

formula is obtained by giving the driven force ~f in Eq. (1.9) as the static electric field.

At T = 373 K the approximated relaxation time τ of Ag and Au are τAg = 2.8×10−14s

and τAu = 2.1× 10−14s, respectively [33]. Now, let’s us derive the dielectric constant

ε from the Drude model when time-harmonic external light E0e
−iωt is incident on

the surface of metal. The electric field inside the metal E is then oscillating with

time with the same frequency as the external light, that is, E(t) = Ee−iωt. The

driving force f(t) acting upon the electron become f(t) = −eEe−iωt. Then, Eq. (1.9)
becomes

m
d2r(t)

dt2
+
m

τ

dr

dt
= −eE0e

−iωt, (1.10)
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where r(t) is the average electronic displacement. Eq. (1.10) can be solved by assum-

ing that the average electronic displacement has the same time-harmonic response as

the driving force, that is, r(t) = r0e
−iωt. By substituting this assumed time-harmonic

average displacement into Eq. (1.10), the amplitude r0 can be found. The displace-

ment of the electron relative to the positive background gives rise to the electronic

polarization P (t) defined as number of electric dipole moments µ per unit volume,

that is, P (t) = nµ(t) = −ner0e−iωt, where n is electronic density. Then, the elec-

tronic polarization can be written in term of the electric field inside the metal E0 as

:

P = −(ne2/m)E0

ω2 + iω/τ
. (1.11)

The polarization of the positive background Pb which is non-resonant may be included

in the constitutive relation D = ε0εE = ε0E +P +Pb, where E is the local electric

field inside the metal. Then, the electronic polarization P is written in term of the

local electric field E as P = ε0(ε − ε∞)E, where ε∞ is defined as the dielectric

constant of the positive background. By making some algebra, the dielectric constant

ε is written as :

ε̃ = ε∞ −
ω2
p

ω2 + iωΓ
, (1.12)

where the tilde denotes that the dielectric constant is a complex number. Hereafter,

the tilde will always be used to denote the complex number. The real part and

the imaginary part of ε̃ as a function of frequency is explicitly written in following

equation.

ε1 = ε∞ −
ω2
p

ω2 + Γ2
, ε2 =

ω2
pΓ

ω(ω2 + Γ2)
, (1.13)

where ωp =
√

ne2

ε0m
is so called the plasma frequency which corresponds to the oscil-

lation frequency of the free electrons in vacuum and Γ = 1/τ is called the damping

constant representing the scattering rate of the free electrons. The plasma frequencies

and the damping constants of Ag and Au are shown in table 1.1. It can be seen that

the plasma frequencies of gold and silver are very close to each other because number

of conduction electrons per unit volume of gold and silver are nearly the same about

23



-60

-50

-40

-30

-20

-10

 0

 300  400  500  600  700  800  900 1000

ε 1

Wavelength (nm)

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 300  400  500  600  700  800  900  1000

ε 2

Wavelength (nm)

(b)

Figure 1-13: Dielectric constant of Ag and Au from Drude model repre-
sented by solid and dashed lines, respectively : (a) Real part of dielectric
constant of Ag and Au using parameters from table 1.1 (b) Imaginary part of dielec-
tric constant of Ag and Au using parameters from table 1.1.

5.86× 1028 m−3 and 5.90× 1028 m−3, respectively [33]. The plasma frequencies ωp of

these two metals are in ultraviolet region. The damping constants of both two metals

is small compared to the plasma frequency. Using parameters in table 1.1, ε1 and ε2

Table 1.1: The approximated relaxation time calculated from the DC resistivity at T
= 373 K [33], the plasma frequencies and damping constants of Ag and Au

metal τ(s) ωp(eV ) Γ(eV )

Ag 2.8× 10−14 8.99 0.148
Au 2.1× 10−14 9.02 0.197

of Ag and Au from the Drude model calculated by Eq. (1.13) are shown in Fig 1-13.

Here we plot the dielectric constants as a function of wavelength which is useful in

spectroscopy. The range of the wavelength covers the visible region and extends to

lover energy in near infared region and extends to higher energy in near ultraviolet

region.

The ε1 of Ag and Au is negative in visible and infrared regions and negatively

decreasing as increasing the wavelength because the energy is more less than the

plasma frequency ωp. If the energy becomes larger than the plasma frequency ωp as

Fig. 1-13: fig:/eps1Drude.eps
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given in table 1.1, the ε1 becomes positive, and it is zero when the energy of laser light

is the same as the plasma frequency. If the energy of laser light is large compared

to the plasma frequency ωp, the ε1 becomes ε∞ which corresponds to the dielectric

constant of the background. It should be noted that the ε1 of Ag is nearly the same

as Au in infrared region including higher energy regions, and it is also the case for low

energy region of wavelength in micron scale. The sign of ε2 is opposite to the sign of

ε1 ,and it always be positive in the whole spectrum because there is no the negative

term in the expression of ε2. The ε2 vanishes in the energy region much greater than

the plasma frequency ωp. The absolute value of ε2 is small compared to the absolute

value of ε1 because the value of ε2 can be approximately determined by ε2 ≈ (
ω2
p

ω2 )(
Γ
ω
)

when the damping constant is neglected. If we consider in the visible region in which

the energy is less than the plasma frequency, the multiplication of two parentheses of

the approximated ε2 becomes very small compared to the amplitude of ε1 which can

also be approximated as ε1 ≈ (
ω2
p

ω2 )− 1 with neglecting the damping constant. These

behaviors of the dielectric play a role in the resonance of surface plasmon in metals.

However, the Drude model is the classical model describing the free electrons in solid.

When the energy of the incident light is increased and the electrons are strongly

excited, we expect that the quantum effect contributes to the dielectric constant by

the electronic transition of the free electrons from valence band to conduction band

so called the interband transition. The interband transition can also be understood

by simple model namely Lorentz model described in next the section.

Interband transition and Lorentz model

Electrons in noble metals can make the interband transition from filled valence band

(d-band) to empty conduction band (s-band) if the excitation energy of the laser light

matches with the energy gap. Therefore, the contribution of interband transition to

the dielectric constant depends on the band structure of each metal. The transition

edges of Ag calculated from the relativistic augment plane wave method are at 3.98

eV (311.6 nm) and 3.45 eV (359.4 nm) [34] which means that the interband transition

does not contribute to the dielectric constant of Ag in visible and lower energy regions.
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Figure 1-14: The geometry of the Lorentz model. The electron is connected to the
nucleus by the spring forming the Lorentz oscillator. The oscillator starts vibration
when there is the time-harmonic driving force due to the electric field E0e

−iωt applied
to the atom.

However, the absorption edges of Au are at wavelength about 470 nm and 330 nm

[38]. Therefore, the effect of the interband transition can not be neglected in visible

region for Au.

The Lorentz model is a simple model that can describe the interband transition

effect. This model considers that the electron is connected with the nucleus by the

spring with the force constant k = meω
2
0 forming the dipole oscillator or the Lorentz

oscillator. The dipole oscillates at natural frequency ω0 and can be damped because

the electron has finite life time through the collisional processes. When the laser light

with frequency ω hit the atom, the electron is displaced from its equilibrium position

by the driving force −eE(t) while the nucleus is considered to be fixed relative to the

electron because its mass is much higher than the mass of the electron. The electron

then feels the restoring force according to Hook’s law −meΓ
dx
dt

and damping force

−meω
2
0x, and it starts to vibrate at the same frequency as the external light wave.

The geometry of the Lorentz model is shown in Fig. 1-14. The equation of motion

for the electronic displacement x is expresses as :

me
d2x

dt2
+meΓ

dx

dt
+meω

2
0x = −eE(t), (1.14)

Fig. 1-14: fig:/Lorentz-model.eps
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where me is mass of the electron, Γ is the damping constant, e is the electronic charge

and E(t) is time-harmonic electric field. We assume the time-harmonic dependence

of the electric field as e−iωt. Thus, the electric field is E(t) = E0e
−iωt. The further

assumption is that the electron oscillates at the same frequency as the external light

wave, that is, x(t) = x0e
−iωt. We can obtain the amplitude x0 by substituting x(t)

and E(t) into the Eq. (1.14) The solution of the displacement is then obtained as :

x(t) =
−e/me

ω2
0 − ω2 − iΓω

E(t). (1.15)

There is the induced electric dipole moment µ(t) = −ex(t) due to the electronic

displacement x(t) written in in Eq. (1.15). Then, the electronic resonant polarization

P is obtained as the product of the electronic density n and the electric dipole moment

µ(t): P = nµ(t). From the constitutive relation, ~D = ε0ε ~E = ε0ε∞ ~E + ~Presonant,

where we introduce ε∞ as the dielectric constant of non-resonant background, the

complex dielectric constant ε̃ can be obtained as :

ε̃ = ε∞ +
ω2
p

ω2
0 − ω2 − iΓω

, (1.16)

where ωp is the plasma frequency defined as ωp =
√

ne2

ε0m
. The real and imaginary

parts of ε̃, that are, ε1 and ε2, respectively, are :

ε1 = ε∞ +
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + (Γω)2

, ε2 =
ω2
pΓω

(ω2
0 − ω2)2 + (Γω)2

. (1.17)

The dielectric constant ε̃ at low frequency or static dielectric constant denoted by εs

is obtained by taking the angular frequency ω as zero, and so εs = ε∞ + ω2
p/ω

2
0. At

high frequency, the dielectric constant becomes the dielectric constant of the back-

ground ε∞. Furthermore, it is convenient to express the dielectric constant in terms

of wavelength for spectroscopic purpose. The ε1(λ) and ε2(λ) can be obtained by re-

calling the relation ω = 2πc/λ. We also introduce two new parameters:(i) wavelength

of the plasma frequency, ωp = 2πc/λp, and (ii) the damping constant in dimension

of wavelength whose will be called the damping length in this thesis, ωΓ = 2πc/λΓ.
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Figure 1-15: Dielectric constant from Lorentz model (a) Real part of the di-
electric constant ε1 as a function of wavelength from Lorentz model (b) Imaginary
part of the dielectric constant ε2 as a function of wavelength from Lorentz model

Then, ε1 and ε2 as a function of wavelength are expressed as

ε1(λ) = ε∞ +
(1/λ2p)(1/λ

2
0 − 1/λ2)

(1/λ20 − 1/λ2)2 + (1/λ2Γ)(1/λ
2)

(1.18)

ε2(λ) =
(1/λ2p)(1/λΓ)(1/λ)

(1/λ20 − 1/λ2)2 + (1/λ2Γ)(1/λ
2)
. (1.19)

Fig. 1-15 shows ε1 and ε2 from the Lorentz model as a function of wavelength by

assuming parameters as: λ0 = 700 nm, λp = 137.9 nm and λΓ = 11.4 µm. The

imaginary part ε2 get maximum at λ = λ0, and then sharply decrease to zero with

lowering or increasing wavelength away from λ0. The full width at half maximum

FWHM of the broadening can be determined by considering the wavelength near λ0,

so that it can be approximated that λ ≈ λ0 and 1/λ20−1/λ2 ≈ 2(△λ)/λ30 where △λ =

λ− λ0. Using these approximations, the FWHM can be derived straightforwardly to

be λ20/λΓ as indicated in Fig. 1-15(b). The behavior of the ε1 is more complicate.

The ε1 at long wavelength is εs. It increases by lowering the wavelength toward λ0

and finally get maximum at the wavelength λ = λ0+
λ20
2λΓ

, and then decreases sharply

passing through λ0 until approaching the negative minimum point at the wavelength

Fig. 1-15: fig:/eps1Lorentz.eps
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Figure 1-16: Experimental dielectric constant (a) The experimental ε1 of Au
and Ag are denoted by the solid rectangle and triangle, respectively. The fitting
functions of ε1 of Au and Ag are plotted as the solid and dashed lines, respectively.
(b) The experimental ε2 of Au and Ag are denoted by the solid rectangle and triangle,
respectively. The fitting functions of ε2 of Au and Ag are plotted as the solid and
dashed lines, respectively [36, 37, 38].

λ = λ0 − λ20
2λΓ

. By lowering wavelength more from the minimum point, ε1 becomes

increasing again and reaches ε∞ at very short wavelength.

Experimental dielectric constant of bulk metals

The bulk dielectric constants of Ag and Au in the energy range 0.5 - 6.5 eV at

room temperature have been measured by P.B. Johnson and R. W. Christy in 1972

[36]. These bulk dielectric constants are widely used until now. The experiment

employed by Johnson and Christy is the measuring of the reflectance R and the

transmittance T of a metallic thin film. The R is measured from the reflection at

normal incident. Simultaneously, the T is measured from the transmission at normal

incident and at angle of 60◦. Then, these two quantities are converted into the complex

refractive index ñ of the metal by comparing with the theoretical expressions of R

and T . Theoretically, the reflectance and transmittance are a function of ñ, the

refractive index of the surrounding dielectric mediums, the angle of the incidence

Fig. 1-16: fig:/expeps1.eps
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and the thickness of the metallic film [35]. Unfortunately, there are no analytical

formulae of the conversion from R and T to ñ. The solutions of ñ are thus obtained

numerically by graphical method. After obtaining the complex refractive indices, the

complex dielectric constants ε̃ are obtained by recalling the relation ñ =
√
ε̃ from

the electromagnetic theory. The experimental ε1 and ε2 of Ag and Au are shown

in Fig. 1-16 as a function of wavelength in the range 350-700 nm together with the

fitting functions. The fitting function of the dielectric constant of Au has been given

by P. G. Etchegoin et al [38], is expressed as follows

ε̃Au = ε∞ − 1

λ2p (1/λ
2 + i/γpλ)

+ (1.20)

∑

i=1,2

Ai
λi

[

eiφi

1/λi − 1/λ− i/γi
+

e−iφi

1/λi + 1/λ+ i/γi

]

,

where ε∞ = 1.54, λp = 143 nm, γp = 14500 nm, A1 = 1.27, φ1 = −π/4 radian,

λ1 = 470 nm, γ1 = 1900 nm, A2 = 1.1, φ2 = −π/4 radian, λ2 = 325 nm, and

γ2 = 1060 nm. The fitting function of gold takes two contributions into account: (i)

the Drude model, and (ii) the interband transition. However, the fitting function of

silver given by S. Foteinopoulou et al. [37] has only the Drude term because there is

no interband transition for Ag excited by the incident light in the visible region. The

Drude fitting function of the dielectric constant of silver as a function of frequency is

expressed as follows

ε̃(ω) = ε∞ −
ω2
p

ω(ω + iΓD)
, (1.21)

where ε∞ = 4.785, ωp = 14.385× 1015 rad/s, and ΓD = 7.95× 1013 rad/s.

The different behavior of the dielectric constants of Ag and Au can be obviously

seen by considering the ε2 of these two materials shown in Fig. 1-16(b). The ε2

of the Ag behaves as free electrons described by the Drude model in near infrared

region and in the whole visible region because it decreases as lowering wavelength

corresponding the ε2 in Drude model. However, The ε2 of the Ag becomes increasing

at the wavelength around 368 nm due to the interband transition effect at λ ≈ 359

nm as already mentioned in the section of Lorentz model. The ε2 of Au increases
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by lowering the wavelength in the visible region due to the effect of the interband

transition at λ ≈ 470 nm. The bulk dielectric constants of silver are valid for the

silver films with the thicknesses d ≥ 30.4 nm. This is called the critical thickness.

For gold, the critical thickness is 25 nm which is smaller than the critical thickness of

silver. When the thickness is smaller than this critical point, the dielectric constant

is dependent on the thickness [36].
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Chapter 2

Calculation method

This chapter mainly shows how to solve for the electromagnetic field scattered by

a metallic sphere. Once a metallic tip is modeled as the metallic sphere with the

same radius as the apex of the metallic tip, the problem can be solved analytically

and classically based on Maxwell equations. The solutions of this problem are called

Mie’s theory. The electric field enhancement from Mie’s theory is given as a function

of wavelength of laser light and radius of the metallic sphere using dielectric constant

in Fig. 1-16. In order to understand physics of the calculated electric field enhance-

ment from Mie’s theory, the quasi-static approximation and the dipole radiation are

reviewed in section 2.1 and section 2.2, respectively, before Mie’s theory given in sec-

tion 2.3. Finally, the exciton theory in carbon nanotube is reviewed in section 2.4

because the interaction between the near field and carbon nanotube can be explained

in term of the exciton theory.

2.1 Quasi-static approximation

Quasi-static approximation is applied to the metallic sphere which is much smaller

than the wavelength of the incident light, and the incident electric field is constant over

the volume of the metallic sphere. Then, the electric field is considered to be static,

but temporally it oscillates with time harmonic e−iωt [39]. The scattered electric field

Es outside the metallic sphere and the internal electric field inside the metallic sphere
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Figure 2-1: Geometry of the quasi-static approximation. The incident electric
field Ei indicated by the red arrow is constant over the volume of the metallic sphere
with radius a. The arrow indicates that Ei is oscillating with time harmonic e−iωt.
The internal electric field Et is represented by the blue arrow, and the scattered
electric field Es is indicated by the purple arrow. The total electric field outside the
metallic sphere is the sum of Ei and Es while the total electric field inside the metallic
sphere is Et.

Et are obtained by the scalar potential Φ using the relation E = −∇Φ. The scalar

potential inside and outside the metallic sphere is obtained by solving the Laplace’s

equation, ∇2Φ = 0, in the spherical coordinate, which is written as :

1

r

∂2

∂r2
(rΦ) +

1

r2 sin θ

∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

r2 sin2 θ

∂2Φ

∂φ2
= 0. (2.1)

The separation of variable is applied to solve Eq. (2.1) by writing the scalar

potential as Φ = R(r)P (θ)Q(φ). Then, three ordinary differential equations of each

variable are obtained :

1

Q(φ)

d2Q(φ)

dφ2
+m2Q(φ) = 0, (2.2)

1

sin θ

d

dθ
(sin θ

dP (θ)

dθ
) + [l(l + 1)− m2

sin2 θ
]P (θ) = 0, (2.3)

r2
d2

dr2
(rR(r)) = l(l + 1)(rR(r)). (2.4)

Fig. 2-1: fig:/fig:quasi-static-geo.eps

34



Therefore, the general solution of the potential Φ is written as :

Φ(r, θ, φ) =
∞
∑

l=0

l
∑

m=0

(

almr
l +

blm
rl+1

)

Pm
l (cos θ)eimφ, (2.5)

where Pm
l (cos θ) are the associated Legendre polynomial. The internal potential

Φt must be finite at the origin, thus blm = 0 for the potential inside the metallic

sphere. In the region outside the metallic sphere, the scattered potential Φs should

be zero at infinity, thus alm must be zero for the potential outside the metallic sphere.

The incident electric field Ei is assumed to be polarized along the z axis, that is,

Ei = E0êz, then the potential of the incident electric field is written as Φi = −E0z =

−E0rP1(cos θ). The total potential outside the metallic sphere is the sum between

the potentials of the incident light and the scattered field Φout = Φi+Φs, and the total

potential inside the metallic sphere is the internal potential Φin = Φt. The geometry

of the quasi-static approximation is shown in Fig. 2-1. The coefficients alm of the

internal field and blm of the scattered field are then obtained using the continuity

of the tangential component of the electric field and the continuity of the radial

component of the electric displacement at the surface of the metallic ball (r = a) :

∂Φout

∂θ







r=a
=

∂Φin

∂θ







r=a
, (2.6)

εm
∂Φout

∂r







r=a
= ε̃

Φin

∂r







r=a
, (2.7)

where a is the radius of the metallic sphere, εm is the dielectric constant of the

dielectric medium and ε̃ is the complex dielectric constant of the metallic sphere

which depends on the frequency (wavelength) of the incident light. The relation

between the Legendre polynomial and the associated Legendre polynomial, that is,

dPl(cos θ)
dθ

= −P 1
l (cos θ) is required for Eq. (2.6). It can be seen that m = 0 for the

scattered and internal fields because the incident light is polarized along z axis, and
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if the incident light is polarized along x axis, m = 1. Then Eq.( 2.6) becomes

E0aP
1
1 (cos θ)−

∞
∑

l=1

bl0
al+1

P 1
l (cos θ) = −

∞
∑

l=1

al0a
lP 1
l (cos θ). (2.8)

Recalling the orthogonality of the associated Legendre polynomial, the first linear

equation of the coefficients can be written as :

alal0 −
1

al+1
bl0 = −aE0δl1. (2.9)

The second linear equation is obtained from Eq. (2.7) using the orthogonality of the

Legendre polynomial, and it is written as :

ε̃lal−1al0 + εm
l + 1

al+2
bl0 = −εmE0δl1. (2.10)

By solving Eq. (2.9) and Eq. (2.10), the coefficients al0 and bl0 are obtained :

a10 = −
( 3εm
ε̃+ 2εm

)

E0 , b10 =
( ε̃− εm
ε̃+ 2εm

)

a3E0, (2.11)

al0 = 0 and bl0 = 0 if l 6= 1. Therefore, the electric field has only the dipole term

which get resonance when ε̃ = −2εm. The dipole resonance condition can be satisfied

for the Ag sphere embedded in the vacuum at the wavelength about 350 nm where the

real part has a value about −2.0 and the imaginary part is relatively small as shown

in Fig. 1-16. The scattered electric field Es and the internal field Et obtained from

the gradient of the scattered potential Φs and the internal potential Φt, respectively,

are then expressed as [39] :

Es = E0

( ε̃− εm
ε̃+ 2εm

)(a

r

)3

(2 cos θêr + sin θêθ), (2.12)

Et = 3E0

( εm
ε̃+ 2εm

)

êz. (2.13)

For a perfect conductor, the amplitude of the imaginary part of ε̃ is much larger

Fig. 2-2: fig:/fig:staticEFE.eps
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Figure 2-2: The electric field enhancement EFE of Ag and Au spheres from
the quasi-static approximation. The blue line represents the EFE of the small
Ag sphere and the red line represents the EFE of the small Au sphere. The dielectric
constants of Ag and Au are obtained from fitting functions [37, 38].

than εm, then the internal field Et becomes almost zero . Furthermore, the scattered

electric fieldEs expressed in Eq. (2.12) is identical to the electric field due to the static

dipole moment p = εmαE0 where α is the polarizability written as α = 4πa3
(

ε̃−εm
ε̃+2εm

)

,

placed at the center of the sphere. The electric field due to the oscillating electric

dipole moment will be given in the next section. We are interested in the electric field

enhancement EFE which is defined as the ratio between the maximum of the total

electric field outside the metallic sphere and the amplitude of the incident electric

field. The maximum of the total electric field Eout always occurs at the surface

of the metallic sphere and on the polarization axis. The scattered electric field at

the maximum point is then Es
max = 2E0

(

ε̃−εm
ε̃+2εm

)

, and the maximum of the total

electric field becomes Eout
max = Es

max + E0 =
(

3ε̃
ε̃+2εm

)

E0. Therefore, the electric field

enhancement can be written explicitly as :

EFE = 3






ε̃

ε̃+ 2εm






. (2.14)
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Figure 2-3: The electric dipole moment ~p0 polarized along z-axis placed at the origin,
~p = ~p0e

−iωt, where êz is the unit vector in the direction of z. êr and êθ are unit vectors
in the spherical coordinate in the direction of r and θ, respectively.

The electric field enhancement EFE depends only on the wavelength of the incident

light and the dielectric constant of the medium. It does not depend on the radius

of the metallic sphere, which does not work for the large metallic sphere comparing

with the wavelength of the incident light in which the retardation effect due to the

size of the metallic sphere is important [32]. The retardation effect is included in the

Mie’s theory which is fully described later in section 2.3.

Here, the electric field enhancement EFE as a function of wavelength of the small

Ag and Au spheres embedded in vacuum is shown in Fig. 2-2. The dielectric constant

of Ag and Au are taken from the fitting functions as shown in Fig. 1-16 [37, 38]. High

EFE has been found for the small Ag sphere in the region of blue light. The EFE of

the small Au sphere in this region is low compared to the Ag. At wavelength 350 nm

corresponding to the dielectric constants εAg = −2.36+0.11i and εAu = −1.08+5.63i

[37, 38] , the EFE of the small Ag and Au spheres are 19.0 and 3.0, respectively. The

high electric field enhancement of the small Ag sphere at the wavelength 350 nm is a

result of the dipole resonance.

Fig. 2-3: fig:/fig:dipole.eps
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2.2 Dipole radiation and dynamic depolarization

This section reviews the dynamic depolarization effect due to the electric dipole mo-

ments in the metallic sphere as proposed by M. Meier and A. Wokaun [41]. The

dynamic depolarization results in the appearance of the enhancement maximum at a

small but finite volume of the metallic sphere in Mie’s theory. It is also responsible

for the shift of the resonance at larger volume.

2.2.1 Dipole radiation

Most materials can be polarized by an electric field. The polarization is defined

as numbers of electric dipole moments p per unit volume. If the electric field is

oscillating with time harmonic e−iωt where ω is angular frequency, the dipoles will

oscillate with time at the same frequency as the electric field resulting in the radiation.

The electric field of the oscillating dipole p = p0e
−iωt at the distance r from the dipole

in the vacuum is expressed as :

E(r) =
ckωµ0

4π

eikr

r
êr × (p0 × êr) +

1

4πε0

( 1

r3
− ik

r2

)

eikr[3(êr · p0)êr − p0], (2.15)

where c is the velocity of light in vacuum, k is wave number of light in vacuum, µ0 is

the permeability of vacuum, ε0 is the permittivity of vacuum [40]. Here, the dipole is

oriented along z-axis, that is, p0 = p0êz, as shown in Figure (2-3) where the azimuthal

symmetry is assumed. Unit vectors êr and êθ in the spherical coordinate can be

written in term of êz and êx in direction parallel and perpendicular to the dipole,

respectively, as êr = sin θêx+cos θêz, êθ = cos θêx−sin θêz. Then, the vector product

of the first term of Eq. (2.15) becomes êr×(p0×êr) = −p0 sin θêθ, and the dot product

of the second term of Eq. (2.15) becomes 3(êr · p0)êr − p0 = 2p0 cos θêr + p0 sin θêθ.

The electric field is then written in the spherical coordinate as :

E(r) =
1

2πε0

( 1

r3
− ik

r2

)

(p0e
ikr) cos θêr +

1

4πε0

( 1

r3
− ik

r2
− k2

r

)

(p0e
ikr) sin θêθ
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Figure 2-4: Re(E(r))/E0 as a function of radial distance r: The dipole electric

field E(r) is generated by the electric dipole moment p0 = 4πε0

(

ε̃−ε0
ε̃+2ε0

)

a3E0 where

ε̃ and a are the dielectric constant and radius of the metallic sphere, respectively.
a is defined as 10 nm. The wavelength of the incident light is 350 nm, and the
corresponding bulk dielectric constant of the Ag is ε̃Ag = −2.36 + 0.11i [37]. (a)
Re(E(r))/E0 as a function of r when θ = 0 represented by the red curve and θ = π/2
represented by the blue curve in the near field region r ≪ 0.16λ. The dashed black
line denote r = 10 nm corresponding to the radius of the Ag sphere. (b) Re(E(r))/E0

as a function of r when θ = 0 represented by the red curve and θ = π/2 represented
by the blue curve in the far field region r ≫ 0.16λ.

= Erêr + Eθêθ. (2.16)

p0e
ikr is known as the retarded dipole, and it may be simply written as [p] = p0e

ikr.

Here, the retarded dipole means that it starts to radiate the electromagnetic wave at

time t − r/c where r is the distance between the observer and the radiating dipole.

In the near field region (kr << 1) (or in the very close region to the electric dipole),

the dominant term is proportional to 1/r3. The electric field in the near field region

Enf is then written as :

Enf =
1

4πε0

(p0
r3

)

(2 cos θêr + sin θêθ). (2.17)

Therefore, the scattered electric field ~Es obtained from the quasi-static approximation

Fig. 2-4(a): fig:/fig:Edipole-nf.eps
Fig. 2-4(b): fig:/fig:Edipole-ff.eps
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in Eq. (2.12) is recovered if the electric dipole moment in the vacuum is equal to

p0 = 4πε0

(

ε̃−ε0
ε̃+2ε0

)

a3E0.

In Fig. 2-4, we plot Re(E(r))/E0 as a function of r for θ = 0 and θ = π/2, where

E(r) is the dipole electric field as expressed in Eq. (2.16). The electric dipole moment

p0 = 4πε0

(

ε̃−ε0
ε̃+2ε0

)

a3E0 is in the small Ag sphere with radius a and the dielectric

constant ε̃Ag. The radius a is defined as 10 nm. The wavelength of the incident light

is 350 nm, and the dielectric constant of Ag at this wavelength is approximated to

be ε̃Ag = −2.36 + 0.11i [37] which corresponds to the bulk dielectric constant of Ag.

We divide the radial distance into the near field region where kr ≪ 1 or r ≪ 0.16λ

is satisfied and the far field region where kr ≫ 1 or r ≫ 0.16λ is satisfied. Firstly,

in both two regions, there is only the radial part of the electric field Er(r) along

the line θ = 0 which is parallel to the polarization axis, and there is only the polar

part of the electric field Eθ(r) along the line θ = π/2 which is perpendicular to the

polarization axis, as seen in Eq. (2.16) and Fig. 2-3. In near field region as shown

in Fig. 2-4(a), the electric field strongly decays by increasing r due to the near field

term proportional to 1/r3. The maximum of the dipole electric field is about twice of

the incident electric field which occurs at the surface of the Ag sphere with θ = 0. In

the far field region as shown in Fig. 2-4(b), the amplitude of the dipole electric field

is very small compared to the amplitude of the incident electric field. The dominant

term of the dipole electric field in this region is proportional to 1/r which only appears

in the polar part of the dipole electric field, Eθ. Er of the dipole electric field is very

small compared to Eθ in the far field region. Therefore, the dipole electric field in the

far field region is an outgoing wave which travels out from the source and has only a

polar component.

2.2.2 Dynamic depolarization

The electric field generated by polarized oscillating dipoles in the metallic sphere

causes the depolarization electric field Edep. Therefore, the polarization P of the
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Figure 2-5: The small polarized dipole dp(r) placed at the center of the small volume
dV (r, θ, φ) inside the metallic sphere. The corresponding depolarization electric field
of the dipole dp(r) is dEdep(r)

metallic sphere embedded in the vacuum is expressed as (SI) :

P = ε0(ε̃− 1)(E0 +Edep), (2.18)

where E0 is an external electric field.

The depolarization electric field Edep can be obtained by considering the metallic

sphere as the collection of small polarized oscillating dipoles dp(r) placed at the

center of the volume element dV (r, θ, φ) of metallic sphere as shown in Figure (2-5).

The corresponding depolarization electric field dEdep(r) due to the oscillating dipole

is expressed in Eq. (2.16). Edep is then obtained by integrating dEdep(r) over the

volume of metallic sphere with the radius a. As the components perpendicular to E0

cancel on the integration, only the parallel component dEdep,z must be considered.

By expanding the exponential eikr of the depolarization electric field written in

Eq. (2.16) as eikr ≈ 1 + ikr − k2r2

2
− ik3r3

6
and then retaining only the terms up to

order k3, the depolarization electric field dEdep is then written as :

dEdep =
1

2πε0

( 1

r3
+
k2

2r
+
ik3

3

)

(dp0 cos θ)êr +

1

4πε0

( 1

r3
− k2

2r
− 2ik3

3

)

(dp0 sin θ)êθ

= dEdep,rêr + dEdep,θêθ. (2.19)

Fig. 2-5: fig:/fig:depolarization.eps
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By converting the unit vectors êr and êθ into êx and êz, the parallel component of

the depolarization electric field dEdep,z can be written as :

dEdep,z = dEdep,r cos θ − dEdep,θ sin θ

=
dp0
4πε0

[ 1

r3
(3 cos3 θ − 1) +

k2

2r
(cos2 θ + 1) +

2ik3

3

]

. (2.20)

By integrating Eq. (2.20) over the volume of the metallic sphere with radius a, the

total depolarization electric field Edep is then written as follows [41] :

Edep =
1

ε0

(

− 1

3
+

1

3
x2 +

2i

9
x3
)

P , (2.21)

where x = ka. The constant term − P

3ε0
is included to account for the depolarization

electric field of a small metallic sphere. If the polarization P = p0/V = 3ε0

(

ε̃−ε0
ε̃+2ε0

)

E0,

the summation Edep + E0 is the same as the internal field written in Eq. (2.13),

obtained from the quasi-static approximation. By substituting the depolarization

electric field in Eq. (2.21) into Eq. (2.18) and then solving for the polarization P ,

then P is obtained as :

P =
3ε0(ε̃− 1)E0

(ε̃+ 2)− (ε̃− 1)x2 − (2i/3)(ε̃− 1)x3
= ε0αE0, (2.22)

and the polarizability α per unit volume is written as :

α =
3(ε̃− 1)

(ε̃+ 2)− (ε̃− 1)x2 − (2i/3)(ε̃− 1)x3
. (2.23)

The amplitude of the polarizability α per unit volume as expressed in Eq. (2.23) of

the Ag-sphere as a function of x = ka by defining the wavelength of the external light

as λ = 500 nm with the corresponding wave number k = 0.01256 1/nm is shown in

Figure (2-6). The bulk dielectric constant of Ag at wavelength 500 nm obtained from

the fitting function is ε̃Ag = −9.8 + 0.31i [37].

According to Fig. 2-6, the magnitude of the polarizability per unit volume is the

maximum about 9.2 at x ≈ 0.73. The radius of the silver sphere at this maximum
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Figure 2-6: Amplitude of the polarizability |α| of the depolarized ~P of the Ag spheres
as a function of x = ka. The wavelength of the external light is λ = 500 nm with
the corresponding wave number k = 0.012591/nm (k = 2π/λ). The bulk dielectric
constant of Ag is taken from the fitting function [37].

point is a ≈ 0.73/k = 58 nm. The polarizability decreases from the maximum

point by increasing the radius larger than 58 nm. This phenomena can be explained

as follows; for a small volume sphere, the term (2i/3)(ε̃ − 1)x3 is small compared

to the term (ε̃ − 1)x2, then the polarizability is approximated as α = 3(ε̃−1)
(ε̃+2)−(ε̃−1)x2

.

By increasing x (increasing radius), α increases and becomes maximum at the finite

volume due to the term (ε̃ − 1)x2. This term is declared as the “dynamic depolar-

ization”, after M. Meier and A. Wokaun [41]. For larger metallic sphere, the term

(2i/3)(ε̃ − 1)x3 cannot be neglected. It accounts for the damping of the dipole by

radiative losses, and also results in broadening and a strongly decreased amplitude of

the α. This similar phenomena also occurs in Mie’s theory in which the maximum

of the electric field enhancement (EFE) occurs at the small but finite volume, and

drastically decreases and broadens upon increasing the volume of the metallic sphere

from the maximum point. Mie’s theory will be fully explained in the next section.

Fig. 2-6: fig:/fig:alpha-dep.eps
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2.3 Mie’s theory

A metal is an absorbing material because the dielectric constant has an imaginary

part. When, an external light (laser light) is incident on a metallic sphere, then the

electric current flows resulting in the absorption of the electromagnetic field. The elec-

tromagnetic field inside the metallic sphere is called the internal field. Furthermore,

the oscillating of charges and current in the metallic sphere radiates the secondary

electromagnetic field called the scattered wave outward from the metallic sphere. The

space is then divided into two regions: (i) outside the metallic sphere and (ii) inside

the metallic sphere. It is assumed that the metallic sphere is embedded within the

non-absorbing dielectric with dielectric constant ε where the incident light and the

scattered wave are travelling. Firstly, we look for the solutions of the scattered wave

travelling outward from the metallic sphere. Secondly, the solutions of the internal

fields can be solved by similar way as the scattered wave. Lastly, the coefficients of the

scattered wave and the internal field are calculated using the boundary conditions.

Hereafter, the time-harmonic dependence of the electric and magnetic fields is

assumed to be e−iωt where ω is frequency of the incident light.

2.3.1 Solution of the scattered wave

The Maxwell’s equations of the electromagnetic wave travelling in the non-absorbing

dielectric with dielectric constant ε are:

∇ ·E = 0, (2.24)

∇ ·B = 0, (2.25)

∇×E = iωB, (2.26)

∇×B = −iεk0
c
E, (2.27)

where E is the electric field, B is the magnetic field, k0 is wavenumber in vacuum

and c is velocity of light in vacuum. The wave equations of E and B are obtained

by taking curl to Eq. (2.26) and Eq. (2.27), respectively. Using the vector identity
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∇×∇×E = ∇(∇ ·E)−∇2E and Gauss’s laws, the wave equations are obtained:

(∇2 + k2)E = 0 , (∇2 + k2)B = 0 (2.28)

where k =
√
εk0 is the wavenumber of the incident light and the scattered wave

in the dielectric medium. Eq. (2.28) are known as the vector Helmholtz equations.

Each component (r, θ, φ) of the vector Laplacians ∇2E in spherical coordinate are

given in Appendix (A.1.2). Only the radial component of the electric field Er(Br) is

separable from another components. Therefore, Er(Br) can be solved directly from

the vector Helmholtz equations. In order to solve for the other components of the

electric field (Eθ, Eφ) and those of the magnetic field (Bθ, Bφ), we must separate the

general solutions of the electromagnetic field into two modes, that is, (i) transverse

magnetic mode or TM mode and (ii) transverse electric mode or TE mode. As

indicated by their names, TM mode has no radial component of the magnetic field

or Br = 0 but Er 6= 0, and TE mode has no radial component of the electric field or

Er = 0 but Br 6= 0. TM mode corresponds to the electric vibration where as the TE

mode is related to the magnetic vibration in the metallic sphere. Importantly, the

general solution of the electromagnetic wave is the sum of TM and TE modes.

TM mode of the scattered wave

Let’s us firstly find the solutions of Er in TM mode. The differential equation of Er

in spherical coordinate is expressed as :

1

r2
∂2

∂r2
(r2Er) +

1

r2 sin θ

∂

∂θ

(

sin θ
∂Er
∂θ

)

+
1

r2 sin2 θ

∂2Er
∂φ2

+ k2Er = 0 (2.29)

The separation of variable technique is employed to solve Eq. (2.29) by writing the

solution of Er as Er =
R(r)
r
P (θ)Q(φ). By substituting the separable Er into Eq. (2.29),

the three ordinarily differential equations of each function, R(r), P (θ) and Q(φ) are

obtained :

d2

dr2
(rR(r)) + [k2 − l(l + 1)

r2
](rR(r)) = 0, (2.30)
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1

sin θ

d

dθ
(sin θ

dP (θ)

dθ
) + [l(l + 1)− m2

sin2 θ
]P (θ) = 0, (2.31)

d2Q(φ)

dφ2
+m2Q(φ) = 0. (2.32)

The solution of the azimuthal part Q(φ) could be either sin(mφ) or cos(mφ), where m

are integers. Then we may write Q(φ) as a linear combination of these two solutions,

that is:

Q(φ) = A cos(mφ) + B cos(mφ) m = 0,±1,±2,±3, . . . . (2.33)

The solutions of Eq. (2.31) for a givenm are the associated Lengendre polynomial,

Pm
l (cos θ), where l = 0, 1, 2, 3, . . . . The important properties of Pm

l (cos θ) are given

in the Appendix (A.3). For the radial part, the Eq. (2.30) is known as the spherical

Bessel function. The solutions of Eq. (2.30) is the spherical Hankel function of the

first kind, h
(1)
l :

R(r) = h
(1)
l (kr), (2.34)

which behaves as the outgoing wave in asymptotic form, h
(1)
l can be expanded as

h
(1)
l (kr) ≈ (−1)l+1 eikr

kr
.

Now, the full solution of Er has been derived and can be written as a linear

combination of all l andm. Here we have introduced the complex scattering coefficient

ãlm :

Er(r, θ, φ) =
∑

l,m

ãlm
h
(1)
l (kr)

r
Pm
l (cos θ)Qm(φ). (2.35)

The remaining components of the electric and magnetic fields in TM mode are

derived from the differential equations obtained by equating components of unit vec-

tors in the LHS and the RHS of Eq. (2.26) and Eq. (2.27) from Maxwell equations so

that six equations are formulated. Then, the differential equation of each remaining

component can be written in term of the known Er by normal elimination method

given in the Appendix (A.2). These differential equations for Eθ, Eφ, Bθ and Bφ are

given by:

∂2

∂r2
(rEθ) + k2(rEθ) =

∂2Er
∂r∂θ

, (2.36)
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∂2

∂r2
(rEφ) + k2(rEφ) =

1

sin θ

∂2Er
∂r∂φ

, (2.37)

∂2

∂r2
(rBθ) + k2(rBθ) = − iεk0

c

1

sin θ

∂Er
∂φ

, (2.38)

∂2

∂r2
(rBφ) + k2(rBφ) =

iεk0
c

∂Er
∂θ

. (2.39)

The Eqs. (2.36)-(2.39) have the same functional form in the LHS but different func-

tions in the RHS. Next, the solution of Eθ for each l and m will be shown as an

example because solutions of another components are obtained by similar way.

The solution of Eθ in TM mode is obtained by substituting the Er for each l and

m from Eq. (2.29) into Eq. (2.36), then we have that :

∂2

∂r2
(rEθ) + k2(rEθ) = ãlm

d

dr

[h
(1)
l (kr)

r

]dPm
l (cos θ)

dθ
Qm(φ). (2.40)

Eq. (2.40) shows that Eθ has the angular part proportional to
dPm

l
(cos θ)

dθ
Qm(φ), and

the radial part is in term of h
(1)
l (kr). This means that it is also separable, thus we

may assume that Eθ = 1
r

d
dr
[rKl(r)]

dPm
l

(cos θ)

dθ
Qm(φ) where Kl(r) is a radial function

to be determined. By substituting this assumed solution of Eθ into Eq. (2.40) and

employing the linearly independent property of Pm
l (cos θ), the differential equation

of Kl(r) can be obtained as :

d2

dr2
[rKl(r)] + rKl(r) = ãlm

h
(1)
l (kr)

r
. (2.41)

Since h
(1)
l (kr) is in Eq. (2.30), the

h
(1)
l

(kr)

r
satisfies :

h
(1)
l (kr)

r
=

1

l(l + 1)

d2

dr2
[rh

(1)
l (kr)] +

k2

l(l + 1)
rh

(1)
l (kr). (2.42)

By substituting Eq. (2.42) to Eq. (2.41) and comparing two sides of the equation, the

solution of Kl(r) is expressed by :

rKl(r) =
ãlm

l(l + 1)
rh

(1)
l (kr). (2.43)
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The solution of Eθ is written as a linear combination of all l and m :

Eθ =
∑

l,m

ãlm
l(l + 1)

1

r

d

dr
[rh

(1)
l (kr)]

dPm
l (cos θ)

dθ
Qm(φ) , (l = 0, 1, 2, ..., |m| ≤ l) . (2.44)

For convenience, we define a new radial function namely ζl(kr) as ζl(kr) = krh
(1)
l (kr),

and ζ
′

l (kr) as the derivative with respect to its argument. Finally, the solution of Eθ

becomes

Eθ =
∑

l,m

ãlm
l(l + 1)

ζ
′

l (kr)

r

dPm
l (cos θ)

dθ
Qm(φ). (2.45)

The solutions of Eφ , Bθ and Bφ in TM mode are obtained by the similar way as

Eθ by solving Eq. (2.37), Eq. (2.38) and Eq. (2.39), respectively. These solutions are

summarized as follows :

Eφ =
∑

l,m

ãlm
l(l + 1)

ζ
′

l (kr)

r

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.46)

Bθ = − ik
2

ω

∑

l,m

ãlm
l(l + 1)

h
(1)
l (kr)

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.47)

Bφ =
ik2

ω

∑

l,m

ãlm
l(l + 1)

h
(1)
l (kr)

dPm
l (cos θ)

dθ
Qm(φ). (2.48)

TE mode of the scattered wave

The electric and magnetic field in TE mode in the region outside the metallic sphere

are obtained in the similar way as TM mode by starting from the derivation of the

radial part of the magnetic field Br. The remaining components of the magnetic field,

Bθ and Bφ, and the electric field are obtained by solving the differential equations

whose are written in term of known Br. These differential equations are obtained from

the Maxwell equations with the requirement that Er = 0 in TE mode. The differential

equation of Br is acquired from the vector Helmholtz equation in Eq. (2.28), thus it

takes the same from as Er written in Eq. (2.29). Br must also behave as an outgoing

wave at asymptotic as required for the radiation wave. Therefore, the solution of

Br has the same angular and radial parts as Er but with different amplitude. Here,
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we define the complex amplitude of Br in TE mode for each l as b̃lm. Then, Br is

expressed as :

Br(r, θ, φ) =
∑

l,m

b̃lm
h
(1)
l (kr)

r
Pm
l (cos θ)Qm(φ). (2.49)

Next, the differential equations of Bθ, Bφ, Eθ and Eφ written in term of Br are

acquired by the simple elimination method of six equations obtained from Eq. (2.26)

and Eq. (2.27) using the linearly independent property of the unit vectors in the

spherical coordinate. The differential equation of Bθ in TE mode has exactly the

same form as that of Eθ in TM mode, and the differential equation of Bφ in TE mode

has exactly the same form as that of Eφ in TM mode. Therefore, the solutions of Bθ

and Bφ in TE mode have the same form as Eq. (2.45) and Eq. (2.48), respectively,

but with the amplitude b̃lm :

Bθ =
∑

l,m

b̃lm
l(l + 1)

ζ
′

l (kr)

r

dPm
l (cos θ)

dθ
Qm(φ), (2.50)

Bφ =
∑

l,m

b̃lm
l(l + 1)

ζ
′

l (kr)

r

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
. (2.51)

However, the RHS of the differential equations of Eθ and Eφ in TE mode are different

with those of Bθ and Bφ in TM mode, respectively. The steps of deriving these

two solutions in TE mode are the same as those of Eθ in TM mode as shown as an

example, which are : (1) substituting the solution of Br in Eq. (2.49) to the differential

equations of Eθ and Eφ, (2) writing Eθ and Eφ as separable solutions with the same

angular part but different radial part as the RHS of the differential equations, (3)

recalling the linearly independent of Pm
l (cos θ) and the spherical Bessel equation and

finally (4) comparing two sides of the equations to determine the radial part. By

following these steps, the solutions of Eθ and Eφ in TE mode can be written as follow

:

Eθ = iω
∑

l,m

b̃lm
l(l + 1)

h
(1)
l (kr)

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.52)
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Eφ = −iω
∑

l,m

b̃lm
l(l + 1)

h
(1)
l (kr)

dPm
l (cos θ)

dθ
Qm(φ). (2.53)

Finally, we have derived the general solutions of the electric and magnetic field

which are the sum of TM and TE modes in the region outside the metallic sphere.

However, the complex coefficients ãl and b̃l whose are defined as the coefficients of

TM and TE modes have not been known yet. The boundary conditions at the surface

of the metallic sphere must be used to find these coefficients. Therefore, we need to

know the electromagnetic field inside the metallic sphere called the internal field at

the surface. The solution of the internal field is explained in the next section.

2.3.2 Solution of the internal field

The first three equations of Maxwell’s equations inside the metallic sphere are the

same as Eqs. (2.24)-(2.26). However, the Ampere and Maxwell’s law must include

the current density J flowing inside the metallic sphere. Thus, the fourth equation

of the Maxwell’s equations now becomes

∇×B = µ0J − iε
k0
c
E, (2.54)

where µ0 is the permeability of free space, ε is real dielectric constant, k0 is wavenum-

ber in free space and c is the speed of light in free space. We assume that the metallic

sphere is the Ohmic material, that is, J = σE where σ is the conductivity. There-

fore, two terms in the RHS of Eq. (2.54) can be grouped together. Then, Eq. (2.54)

becomes

∇×B = − ik0
c
(ε+

iσ

ε0ω
)E. (2.55)

The term ε+ iσ
ε0ω

is replaced by the complex dielectric constant ε̃ to make Eq. (2.55)

to have the same from as Eq. (2.27). This approach is commonly found in solid state

physics as is known as optical conductivity. The metallic sphere becomes dispersive

due to the complex dielectric constant ε̃. Finally, the Ampere and Maxwell’s law of
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the internal field is obtained as :

∇×B = − ik0
c
ε̃E. (2.56)

From Eq. (2.24)-Eq. (2.26) and Eq. (2.56), the vector Helmholtz equations of the

electric and magnetic fields can be obtained, and the complex wavenumber k̃ is defined

as k̃ = k0
√
ε :

(∇2 + k̃2)E = 0 , (∇2 + k̃2)B = 0. (2.57)

Obviously, the vector equations of the internal field have the same from as the scat-

tered wave. The difference between Eq. (2.28) and Eq. (2.57) is only the wavenumber.

The solution of the internal field is divided into TM mode in which Er 6= 0 but Br = 0,

and TE mode in which Br 6= 0 but Er = 0, as the same as the scattered wave. The

general solution of the internal field is the sum of these two modes.

TM mode of the internal field

In TM mode (Er 6= 0, Br = 0), we firstly find the solution of the radial part of the

electric field Er. The remaining components of the electric field and other components

of the magnetic field can be derived from Er. The differential equation of the internal

Er is in the same form as Eq. (2.29) except for the wavenumber which becomes

complex for the internal field. Using the separation of variable, the function of the

angular part becomes the product of the associated Legendre polynomial Pm
l (cos θ)

and Qm(φ) as expressed in Eq. (2.33). The solution of the radial function R(r) is

obtained from the spherical Bessel function :

d2

dr2
(rR(r)) + [k̃2 − l(l + 1)

r2
](rR(r)) = 0. (2.58)

The requirement for the internal field is that it must be finite at the center of the

metallic sphere which is defined as the origin of the system. Thus, only the spherical

Bessel function jl(k̃r) satisfy this condition because the approximation from of jl(k̃r)

with small argument is that jl(k̃r) ≈ (k̃r)l

1·3·5···(2l+1)
which is finite at the origin. Therefore,
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the solution of Er has been found, and the complex amplitude of the internal field in

TM mode is defined as d̃lm :

Er(r, θ, φ) =
∑

l,m

d̃lm
jl(k̃r)

r
Pm
l (cos θ)Qm(φ). (2.59)

It can be seen that the differences between Er of the scattered wave in Eq. (2.35)

and Er of the internal field in Eq. (2.59) are merely the complex coefficient and

the radial function. Therefore, the remaining components of the electric field, Eθ

and Eφ, and the magnetic field, Bθ and Bφ, of the internal field are obtained by

replacing the complex coefficient ãlm of the scattered wave by d̃lm, and the spherical

Hankel function h
(1)
l (kr) of the scattered wave by the spherical Bessel function jl(k̃r),

because the differential equations of the remaining components of the internal field

are the same as those of the scattered wave. We define a new radial function namely

ψl(k̃r) = krjl(k̃r), and ψ
′

l(k̃r) is the derivative of ψl(k̃r) with respect to its argument.

Therefore, these remaining solutions of the internal electric and magnetic field are

expressed as

Eθ =
∑

l,m

d̃lm
l(l + 1)

ψl
′(k̃r)

r

dPm
l (cos θ)

dθ
Qm(φ), (2.60)

Eφ =
∑

l,m

d̃lm
l(l + 1)

ψl
′(k̃r)

r

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.61)

Bθ = − ik̃
2

ω

∑

l,m

d̃lm
l(l + 1)

jl(k̃r)
Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.62)

Bφ =
ik̃2

ω

∑

l,m

d̃lm
l(l + 1)

j
(
l k̃r)

dPm
l (cos θ)

dθ
Qm(φ). (2.63)

These solutions will be used when we consider the boundary condition to find the

complex coefficients of the scattered wave and also the internal field.
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TE mode of the internal field

In TE mode (Br 6= 0, Er = 0), we firstly find the solution of the radial part of

the internal magnetic field Br. From this solution, we can obtain the remaining

components of the internal magnetic field and also the solution of the internal electric

field. The differential equation of the internal Br is in the same form as that of the

internal Er in TM mode. Therefore, the solution of the internal Br has the same

radial and angular functional forms as the internal Er but with different complex

coefficient. Here, we define the complex coefficient of the internal field in TE mode

as c̃lm. Thus, the solution of internal Br is expressed as :

Br(r, θ, φ) =
∑

l,m

c̃lm
jl(k̃r)

r
Pm
l (cos θ)Qm(φ). (2.64)

The remaining components of the internal magnetic field and the internal electric

field in TE mode are obtained by replacing the coefficient blm, h
(1)
l (kr), ζl(kr) and

ζ
′

l (kr) of the scattered wave in TE mode by clm, jl(k̃r), ψl(k̃r) and ψ
′

l(k̃r), respectively.

Then, these solutions are expressed as :

Bθ =
∑

l,m

c̃lm
l(l + 1)

ψ
′

l(k̃r)

r

dPm
l (cos θ)

dθ
Qm(φ), (2.65)

Bφ =
∑

l,m

c̃lm
l(l + 1)

ψ
′

l(k̃r)

r

Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.66)

Eθ = iω
∑

l,m

c̃lm
l(l + 1)

jl(k̃r)
Pm
l (cos θ)

sin θ

dQm(φ)

dφ
, (2.67)

Eφ = −iω
∑

l,m

c̃lm
l(l + 1)

jl(k̃r)
dPm

l (cos θ)

dθ
Qm(φ). (2.68)

In the next section will give the formulae of all defined complex coefficients using

the boundary condition of the electromagnetic field at the surface of the metallic

sphere.
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2.3.3 Coefficients of the scattered wave and the internal field

In this section, we show the derivation of the coefficients of the scattered wave and

the internal field from the boundary conditions for electric and magnetic fields at the

surface of the metallic sphere.

Expansion of the incident light

In spectroscopy measurement, laser light is utilized as an excitation source. Hereafter,

laser light is called an incident light. We consider the incident light propagating in

form of plane wave. The direction of propagation is defined as z-axis, and the incident

electric field is polarized along x-axis, in the cartesian coordinate. Thus, the electric

and magnetic fields propagating in the non-absorbing dielectric with the dieletric

constant ε can be expressed as follow where the right superscript “i” is used to label

the incident light :

Ei = E0êxe
ikz , Bi =

k

ω
E0êye

ikz, (2.69)

where k is the wavenumber of the incident light in the dielectric medium, ω is the

angular frequency of the incident light, and E0 is the amplitude of the incident electric

field which is related to the intensity of the incident light I as E0 =
√

I
ε0c

, where ε0

is the permittivity of the free space and c is the velocity of light in free space. Ei

and Bi can be expanded in term of the spherical wave. The concept of TM mode

and TE mode is also applied to the incident light as it is applied to the scattered

wave in the region outside of the metallic sphere. Thus, once Eir has been expanded,

the remaining components of the electric and magnetic fields are obtained simply by

comparing the Eir with E
s
r for the scattered wave in both TM and TE modes.

Let’s us firstly try to expand Eir to find the expansion of the incident light in TM

mode (Eir 6= 0, Bi
r = 0). Eir can be written in the spherical coordinate as :

Eir = E0 sin θ cosφe
ikr cos θ = −E0

ikr
cosφ

∂

∂θ

(

eikr cos θ
)

. (2.70)

It can be seen that the azimuthal part has only one component that is m = 1, and it
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is cosine function, that is, Q1(φ) = cosφ. The exponential term can be expanded in

term of the spherical Bessel function jl(kr) and the Legendre polynomial Pl(cos θ) as

:

eikr cos θ =
∑

l

(2l + 1)iljl(kr)Pl(cos θ). (2.71)

By substituting Eq. (2.71) into Eq. (2.70) and recalling the relation of the Legendre

polynomial and the associated Legendre polynomial, dPl

dθ
= −P 1

l (cos θ), the expanded

Eir becomes :

Eir = E0

∑

l

(2l + 1)il−1 jl(kr)

kr
P 1
l (cos θ) cosφ. (2.72)

By comparing Eq. (2.72) with Eq. (2.35), the remaining components of the electric

and magnetic fields in TM mode are acquired from those of the scattered wave in TM

mode simply by replacing the complex coefficients ãlm by E0(2l+1)il−1, replacing the

radial spherical Hankel function of the first kind h
(1)
l (kr)/r by the spherical Bessel

function jl(kr)/kr, and replacing Qm(φ) by cosφ. Then, these expanded remaining

components of the incident electric and magnetic fields in TM mode are expressed as

:

Eiθ = E0

∑

l

(2l + 1)il−1

l(l + 1)

ψ
′

l(kr)

kr

dP 1
l (cos θ)

dθ
cosφ, (2.73)

Eiφ = −E0

∑

l

(2l + 1)il−1

l(l + 1)

ψ
′

l(kr)

kr

P 1
l (cos θ)

sin θ
sinφ, (2.74)

Bi
θ = E0

k

ω

∑

l

(2l + 1)il

l(l + 1)
jl(kr)

Pm
l (cos θ)

sin θ
sinφ, (2.75)

Bi
φ = E0

k

ω

∑

l

(2l + 1)il

l(l + 1)
jl(kr)

dPm
l (cos θ)

dθ
cosφ. (2.76)

where a is defined as the radius of the metallic sphere.

Next, we show the expansion of the incident light in TE mode (Bi
r 6= 0, Eir = 0).

We want to expand Bi
r in the spherical coordinate. Then, Bi

r obtained from Eq. (2.69)

is expressed as :

Bi
r = E0

k

ω
sin θ sinφeikr cos θ = E0

k

ω

(

− 1

ikr

)

sin θ
∂

∂θ

(

eikr cos θ
)

. (2.77)
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By substituting Eq. (2.71) into Eq. (2.77) and recalling the identity dPl

dθ
= −P 1

l (cos θ),

the expanded Bi
r can be written as :

Bi
r = E0

k

ω

∑

l

(2l + 1)il−1 jl(kr)

kr
P 1
l (cos θ) sinφ.. (2.78)

It can be seen that the azimuthal part is sine function with m = 1, that is, Q1(φ) =

sinφ. Therefore, phase difference in the azimuthal part of the incident electric and

magnetic fields is π/2. By comparing Eq. (2.78) with Eq. (2.49), the remaining

components of the magnetic and electric fields in TE mode are acquired from those

of the scattered wave in TE mode simply by replacing the complex coefficients b̃lm

by E0
k
ω
(2l + 1)il−1, replacing the radial function h

(1)
l (kr)/r by the spherical Bessel

function jl(kr)/kr, and replacing Qm(φ) by sinφ. Then, these expanded remaining

components of the incident magnetic and electric fields are expressed as :

Bi
θ = E0

k

ω

∑

l

(2l + 1)il−1

l(l + 1)

ψ
′

l(kr)

kr

dPm
l (cos θ)

dθ
sinφ, (2.79)

Bi
φ = E0

k

ω

∑

l

(2l + 1)il−1

l(l + 1)

ψ
′

l(kr)

kr

Pm
l (cos θ)

sin θ
cosφ, (2.80)

Eiθ = E0

∑

l

(2l + 1)il

l(l + 1)
jl(kr)

Pm
l (cos θ)

sin θ
cosφ, (2.81)

Eiφ = −E0

∑

l

(2l + 1)il

l(l + 1)
jl(kr)

dPm
l (cos θ)

dθ
sin θ. (2.82)

Coefficients of the scattered wave and the internal field

The continuities of the tangential components of the electric and magnetic fields

at the surface of the metallic sphere are applied to obtain the coefficients of the

scattered wave and the internal field. The electromagnetic field outside the metallic

sphere is the sum of the incident light and the scattered wave, while the internal

field is inside the metallic sphere. The general solution of the electromagnetic field

is the summation of TM mode and TE mode, then these two mode are needed to be

marked. The TM mode and TE mode are denoted by the left superscript “tm” and

“te”, respectively. Thus, the boundary conditions of the tangential component of the

57



electric and magnetic field at the surface of the metallic sphere are expressed as :

( Etm i
θ + Ete i

θ)(r=a) + ( Etm s
θ + Ete s

θ)(r=a) = ( Etm t
θ + Ete t

θ)(r=a) (2.83)

( Etm i
φ + Ete i

φ)(r=a) + ( Etm s
φ + Ete s

φ)(r=a) = ( Etm t
φ + Ete t

φ)(r=a) (2.84)

( Btm i
θ + Bte i

θ)(r=a) + ( Btm s
θ + Bte s

θ)(r=a) = ( Btm t
θ + Bte t

θ)(r=a) (2.85)

( Btm i
φ + Bte i

φ)(r=a) + ( Btm s
φ + Bte s

φ)(r=a) = ( Btm t
φ + Bte t

φ)(r=a) (2.86)

The first step is finding the coupled equations of these coefficients from Eq. (2.83) to

Eq. (2.86). Two coupled equations are acquired from a pair of boundary conditions

for Eθ and Eφ, and the other two coupled equations are obtained from a pair of

boundary conditions for Bθ and Bφ. Then, the four coupled equations are sufficient

to be solved for the coefficients of the scattered wave and the internal field in both TM

and TE modes. Eiθ in TM mode and TE mode are written in Eqs. (2.73) and (2.81),

respectively. The Esθ in TM mode and TE modes are written in Eqs. (2.45) and

(2.52), respectively, and Etθ in TM mode and TE mode are shown in Eqs. (2.60) and

(2.67), respectively. All of these equations are substituted into Eq. (2.87), and then

the terms with the same angular dependence are grouped together so that the integral

identities of the associated Legendre polynomial in Appendix Eqs. (A.27) − (A.28)

can be later applied. After substituting and grouping as mentioned, the Eq. (2.87)

becomes :

0 =
∞
∑

l=1

[

E0
(2l + 1)il−1

l(l + 1)

ψ
′

l(x)

x
+

ãl1
l(l + 1)

ζ
′

l (x)

a
− d̃l1
l(l + 1)

ψ
′

l(mx)

a

]dP 1
l (cos θ)

dθ
+

∞
∑

l=1

[

E0
(2l + 1)il

l(l + 1)
jl(x) +

iωb̃l1
l(l + 1)

h
(1)
l (x)− iωc̃l1

l(l + 1)
jl(mx)

]P 1
l (cos θ)

sin θ
. (2.87)

For the boundary condition of Eφ, the expansion of Eiφ into TM mode and TE

mode written in Eq. (2.74) and Eq. (2.81), respectively, the solutions of Esφ in TM

mode and TE mode written in Eq. (2.46) and Eq. (2.53), respectively, and the solu-

tions of Etφ in TM mode and TE mode written in Eq. (2.61) and Eq. (2.68), respec-

tively, are substituted into Eq. (2.84). Then, by grouping the terms with the same
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angular function together, Eq. (2.84) becomes :

0 =
∞
∑

l=1

[

E0
(2l + 1)il−1

l(l + 1)

ψ
′

l(x)

x
+

ãl1
l(l + 1)

ζ
′

l (x)

a
− d̃l1
l(l + 1)

ψ
′

l(mx)

a

]P 1
l (cos θ)

sin θ
+

∞
∑

l=1

[

E0
(2l + 1)il

l(l + 1)
jl(x) +

iωb̃l1
l(l + 1)

h
(1)
l (x)− iωc̃l1

l(l + 1)
jl(mx)

]dP 1
l (cos θ)

dθ
. (2.88)

It can be seen that there are two angular functions,
P 1
l
(cos θ)

sin θ
and

dP 1
l
(cos θ)

dθ
, appearing

in both Eq. (2.87) and Eq. (2.88). Furthermore, the l-dependence coefficient in front

of the function
P 1
l
(cos θ)

sin θ
in Eq. (2.88) is the same as that one in front of the function

dP 1
l
(cos θ)

dθ
in Eq. (2.87) and vice versa. By this observation, it allows us to use the inte-

gral identities (A.27) and (A.28) of the associated Legendre polynomial to derive two

coupled equations of the coefficients of the scattered wave and the internal field. By

applying the integral identities of the associated Legendre polynomial to Eqs. (2.87)

and (2.88), the two linear coupled equations of the coefficients are obtained as :

ζ
′

l (x)ãl1 − ψ
′

l(mx)d̃l1 = −E0a(2l + 1)il−1ψ
′

l(x)

x
, (2.89)

h
(1)
l (x)b̃l1 − jl(mx)c̃l1 = −E0

(2l + 1)il−1

ω
jl(x). (2.90)

Similarly, from Eqs. (2.85) and (2.86), and the integral identities of the associated

Legendre polynomial (A.27) and (A.28), the another two coupled equations of the

coefficients of the scattered wave and the internal field are obtained as :

h
(1)
l ãl1 −m2jl(mx)d̃l1 = −E0

(2l + 1)i(l−1)

k
jl(x), (2.91)

ζ
′

l (x)b̃l1 − ψ
′

l(mx)c̃l1 = −E0
(2l + 1)i(l−1)

ω
ψ

′

l(x). (2.92)

Then, the coefficients of the scattered wave and the internal field in TM mode, al1

and dl1, respectively, are obtained by solving the linear equations (2.89) and (2.92).

The linear Eqs. (2.90) and (2.92) are solved for the coefficients of the scattered wave

and the internal field in TE mode, bl1 and cl1, respectively. The solutions of all of
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these coefficients are given as follows :

ãl1 = −E0
(2l + 1)il−1

k

[mψl(mx)ψ
′

l(x)− ψ
′

l(mx)ψl(x)

mψl(mx)ζ
′

l (x)− ψ
′

l(mx)ζl(x)

]

, (2.93)

d̃l1 = E0
(2l + 1)il−1

k̃

[ mψl(x)ζ
′

l (x)−mψ
′

l(x)ζl(x)

mψl(mx)ζ
′

l (x)− ψ
′

l(mx)ζl(x)

]

, (2.94)

b̃l1 = −E0
(2l + 1)il−1

ω

[ψl(mx)ψ
′

l(x)−mψ
′

l(mx)ψl(x)

ψl(mx)ζ
′

l (x)−mψ
′

l(mx)ζl(x)

]

, (2.95)

c̃l1 = E0
(2l + 1)il−1

ω

[ mψl(x)ζ
′

l (x)−mψ
′

l(x)ζl(x)

ψl(mx)ζ
′

l (x)−mψ
′

l(mx)ζl(x)

]

, (2.96)

where x = ka.

The coefficients of the same mode have the same denominator, but these denom-

inators are different between two modes. The resonance of the electromagnetic field

occurs when the denominator becomes zero, thus the resonance conditions for each

value of l are different between TM mode and TE mode. For TM mode, the resonance

corresponds to the resonance of the electric multipole oscillation while the resonance

of TE mode corresponds to the magnetic multipole oscillation.

The scattered electric and magnetic fields which are denoted by the right super-

script “s” in TM mode are then obtained by substituting the scattering coefficients

ãl1 written in Eq. (2.93) into Eq. (2.35) , and Eqs. (2.45)-(2.48). These solutions are

expressed as follow :

Etm s
r = −E0

∞
∑

l=1

(2l + 1)il−1

[

mψl(mx)ψ
′

l
(x)− ψ

′

l
(mx)ψl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)

kr
P 1
l (cos θ) cosφ, (2.97)

Etm s
θ = −E0

∞
∑

l=1

(2l+ 1)il−1

l(l+ 1)

[

mψl(mx)ψ
′

l
(x)− ψ

′

l
(mx)ψl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

ζ
′

l
(kr)

kr

dP 1
l
(cos θ)

dθ
cosφ, (2.98)

Etm s
φ = E0

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

mψl(mx)ψ
′

l
(x)− ψ

′

l
(mx)ψl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

ζ
′

l
(kr)

kr

P 1
l
(cos θ)

sin θ
sinφ, (2.99)

Btm s
θ = −E0

k

ω

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

mψl(mx)ψ
′

l
(x)− ψ

′

l
(mx)ψl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)
P 1
l
(cos θ)

sin θ
sinφ, (2.100)

Btm s
φ = −E0

k

ω

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

mψl(mx)ψ
′

l
(x)− ψ

′

l
(mx)ψl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)
dP 1

l
(cos θ)

dθ
cosφ. (2.101)

The scattered electric and magnetic fields in TE mode are obtained by substituting

the scattering coefficient b̃l1 written in Eq. (2.95) into Eq. (2.49), and Eqs. (2.50)-
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(2.53). These solutions are then expressed as :

Bte s
r = −E0

k

ω

∞
∑

l=1

(2l + 1)il−1

[

ψl(mx)ψ
′

l
(x)−mψ

′

l
(mx)ψl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)

kr
P 1
l (cos θ) sinφ, (2.102)

Bte s
θ = −E0

k

ω

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

ψl(mx)ψ
′

l
(x)−mψ

′

l
(mx)ψl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

ζ
′

l
(kr)

kr

dP 1
l
(cos θ)

dθ
sinφ, (2.103)

Bte s
φ = −E0

k

ω

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

ψl(mx)ψ
′

l
(x)−mψ

′

l
(mx)ψl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

ζ
′

l
(kr)

kr

P 1
l
(cos θ)

sin θ
cosφ, (2.104)

Ete s
θ = −E0

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

ψl(mx)ψ
′

l
(x)−mψ

′

l
(mx)ψl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)
P 1
l
(cos θ)

sin θ
cosφ, (2.105)

Ete s
φ = E0

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

ψl(mx)ψ
′

l
(x)−mψ

′

l
(mx)ψl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

h
(1)
l

(kr)
dP 1

l
(cos θ)

dθ
sinφ. (2.106)

The internal electric and magnetic fields which are denoted by the right superscript

“t” in TM are obtained by substituting the internal coefficient d̃l1 written in Eq. (2.94)

into Eq. (2.59), and Eqs. (2.60)-(2.63). Then, these solutions are expressed as :

Etm t
r = E0

∞
∑

l=1

(2l+ 1)il−1

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

jl(k̃r)

k̃r
P 1
l (cos θ) cosφ, (2.107)

Etm t
θ = E0

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

ψ
′

l
(k̃r)

k̃r

dP 1
l
(cos θ)

dθ
cosφ, (2.108)

Etm t
φ = −E0

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

ψ
′

l
(k̃r)

k̃r

P 1
l
(cos θ)

sin θ
sinφ, (2.109)

Btm t
θ = E0

k̃

ω

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

jl(k̃r)
P 1
l
(cos θ)

sin θ
sinφ, (2.110)

Btm t
φ = E0

k̃

ω

∞
∑

l=1

(2l + 1)il

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

mψl(mx)ζ
′

l
(x)− ψ

′

l
(mx)ζl(x)

]

jl(k̃r)
dP 1

l
(cos θ)

dθ
cosφ. (2.111)

Finally, the internal electric and magnetic fields in TE mode are obtained by

substituting the internal coefficient c̃l1 into Eq. (2.64), and Eqs. (2.65)-(2.68). Then,

these solutions are expressed as :

Bte t
r = E0

k̃

ω

∞
∑

l=1

(2l+ 1)il−1

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

jl(k̃r)

k̃r
P 1
l (cos θ) sinφ, (2.112)

Bte t
θ = E0

k̃

ω

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

ψ
′

l
(k̃r)

k̃r

dP 1
l
(cos θ)

dθ
sinφ, (2.113)
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Bte t
φ = E0

k̃

ω

∞
∑

l=1

(2l + 1)il−1

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

ψ
′

l
(k̃r)

k̃r

P 1
l
(cos θ)

sin θ
cosφ, (2.114)

Ete t
θ = E0

∞
∑

l=1

(2l+ 1)il

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

jl(k̃r)
P 1
l
(cos θ)

sin θ
cosφ, (2.115)

Ete t
φ = −E0

∞
∑

l=1

(2l+ 1)il

l(l+ 1)

[

mψl(x)ζ
′

l
(x)−mψ

′

l
(x)ζl(x)

ψl(mx)ζ
′

l
(x)−mψ

′

l
(mx)ζl(x)

]

jl(k̃r)
dP 1

l
(cos θ)

dθ
sinφ. (2.116)

2.4 Theory of Exciton in carbon nanotube

An exciton is a bounded electron-hole pair generated by the Coulomb interaction

between photo-excited electron and hole [1]. At room temperature, an exciton in

a carbon nanotube can be excited due to its one-dimensional property, but it is

impossible for a bulk three-dimensional semiconductor to be excited due to the low

binding energy of the exciton, about 10 meV. The exciton wavefunction is localized in

real space and k space. In k space, the exciton wavefunction is a linear combination

of Bloch wavefunctions so that the exciton has two kinds of wave vectors defined

as : (i) the wave vector of the center of mass, K = (kc − kv)/2 and (ii) the wave

vector of the relative coordinate, k = kc + kv, where kc and kv are, respectively, the

wave vectors of the electron and hole in a single particle picture. It should be noted

that the hole has an opposite sign for its wave vector and effective mass compared

to the electron. K is a good quantum number and then the dispersion energy of the

exciton is written as a function of K [7]. If we consider the optical transition along

the tube axis, the vertical transition, that is, kc = kv, must be satisfied [3]. Thus,

only K = 0 exciton can recombine by emitting a photon which is called the “bright

exciton”, but K 6= 0 exciton, the non-vertical transition, cannot recombine directly

to emit a photon ,and then it is called “dark exciton” [7]. The spin of the exciton

is defined as a total spin S which can be 0 and 1. The exciton spin S = 0 is called

the “singlet exciton”, and the exciton spin S = 1 is called the “triplet exciton”. The

triplet exciton is a dark exciton in term of dipole selection rule.
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(a)

(4,2) (3,3) (3,3)

(b)

Figure 2-7: (a) Symmetries of chiral (4,2) SWNT and achiral (3,3) SWNT [5].The
tube axis is denoted by Cd, and the axis perpendicular to the tube axis is denoted

by C
′

2. The horizontal and vertical symmetry planes for (3,3) SWNT, σh and σv,
respectively, are shown by gray planes. (b) Electron-hole pairs in three inequivalent
regions of the Brillouin zone of graphene for (6,5) SWNT [7]. A excitons correspond
to an electron and hole pair in K or K

′

regions in which 2K = kc − kv lies in Γ
region. E and E∗ excitons correspond to an electron from K region and an hole from
K

′

region, and vice versa, in which 2K lies in K and K
′

regions, respectively.

2.4.1 Symmetries of exciton and Dipole selection rules in

carbon nanotube

Excitons in a carbon nanotube can be classified by the symmetries of that carbon

nanotube [5] and by wave vector of the center of mass [7]. According to both cases,

there are four kinds of the excitons: A1 , A2 , E and E∗ . A1 and A2 excitons have

K = 0 and are called A excitons, but they have different symmetries.E and E∗,

called E excitons, are K 6= 0 excitons which are all dark. These four excitons in the

Brillouin zone of graphene are shown in Fig. 2-7(a). In Fig. 2-7(a), A excitons have

2K = kc−kv that lies in Γ region because both electron and hole are in the same K

or K
′

region. E and E∗ excitons have 2K that lies in K and K
′

, respectively, because

an electron and hole are in K and K
′

regions, K
′

and K regions, respectively. We

are interested in the vertical transition in this thesis, thus only the symmetries and

the Dipole selection rules of the A excitons will be discussed.

Fig. 2-7(a): fig:/exciton-symmetry-Jiang.eps
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A1 and A2 are the irreducible representation defined by the character table of the

point groupDN for chiral nanotube, whereN is a number of hexagons in the nanotube

unit cell, and the exciton wavefunction that have these symmetries are called A1

exciton and A2 exciton, respectively. The A1 exciton is symmetric with respect to C2

rotation (rotation by π) about the axis perpendicular to the tube axis, while the A2

exciton is anti-symmetric with respect to the C2 rotation. There are N/2 axes, C
′

2,

that go through the center of bonds between two inequivalent carbon atoms as shown

in the Fig. 2-7(b), and the other N/2 axes, C
′′

2 , that can go through the centers of the

hexagons. For achiral nanotube, armchair and zigzag, there are additional symmetry

operations: inversion, horizontal reflection and vertical reflection. The mirror planes

of the horizontal vertical reflections for armchair carbon nanotube are shown in Fig. 2-

7(b). Then, the additional symbols, g (gerade : even) and u (ungerade : odd), are

added to A1 and A2 to be A1g, A1u, A2g, and A2u. These symmetries are in the point

group DNh [1].

According to the dipole selection rules without near field, the transition prob-

ability is proportional to |P̂ · 〈Ψ|∇|Ψ0〉|2 with |Ψ〉 and |Ψ0〉 denoting the excited

and ground states, respectively, and P̂ denoting the polarization of laser light. The

ground state |Ψ0〉 is totally symmetric, and the ∇ transforms as the antisymmetric

under C2 rotation. The excited state |Ψ〉 must be antisymmetric under C2 rotation

to have non-zero transition probability. Therefore, A2 excitons are bright exciton and

A1 excitons are dark exciton for chiral nanotube. However, it should be noted that in

two-photon photoluminescence experiment, the A1 excitons become optically active

and A2 excitons become dark [12]. For zigzag and armchair carbon nanotubes, the

A2u exciton are dipole optically active or bright excitons and the remaining excitons

are all dark exciton [5]. However, in two-photon experiment, the A1g exciton are

accessed and the remaining excitons become dark [12].

2.4.2 Wavefunctions of exciton in carbon nanotube

The exciton energy Ωn and the wavefunction Ψn are obtained by solving the Bethe-

Salpeter equation (BS-equation) by mixing different kv and kc wave vectors written
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as follows

∑

kckv

{

[E(kc)− E(kv)]δk′

ckc
δk′

vkv
+K(k′

ck
′
v,kckv)

}

Ψn(kckv) = ΩnΨn(k′
ck

′
v), (2.117)

where E(kc) and E(kv) are energies of electron and hole in an excited state obtained

by adding Coulomb interaction to one-particle energy, K(k′
ck

′
v,kckv) is called kernel

showing the mixing of wave vectors as expressed by

K(k′
ck

′
v,kckv) = −Kd(k′

ck
′
v,kckv) + 2δSK

x(k′
ck

′
v,kckv), (2.118)

where Kd is direct interaction obtained from screened Coulomb potential, Kx is

exchange interaction obtained from bare Coulomb potential, δS is one and zero for

singlet and triplet excitons, respectively, [1]. Wave vectors from one cutting line are

sufficient to describe the Eii transition for small-diameter nanotubes (0.5< dt <2.0

nm) because the Coulomb interaction is larger than the diameter dt of SWNT [7].

By solving the BS-equation, the exciton energy dispersion becomes the Hydrogen-

like that is discrete energy levels. Each energy level is labeled by the integer ν =

0, 1, 2, 3, . . .. Then, the exciton wavefunction |~k, ~K〉 of the vertical transition near K

point can be written as :

|k,K〉 =
∑

k

Zν
kΨ

c
k (~re)Ψ

v∗
k (~rh) . (2.119)

where Zν
k are obtained by solving the BS-equation. Zν

k is called as the envelop-

function [6], and ν can be either even and odd numbers depending on the reflection

symmetry about the plane perpendicular to the tube axis (horizontal plane). Ψc and

Ψv are the one-particle wavefunctions of the valence band and the conduction band,

respectively. The one-particle wavefunctions are written as the linear combination of

the Bloch wavefunctions ΦA(k, r) and ΦB(k, r) of A and B atoms, respectively, in

the graphene lattice :

Ψ
v(c)
k (r) = c

v(c)
A ΦA(k, r) + c

v(c)
B ΦB(k, r), (2.120)
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where the Bloch wavefunction ΦA(B)(k, r) is expressed as :

ΦA(B)(k, r) =
1√
N

N
∑

j=1

eik·R
j

A(B)ϕ
(

r −R
j
A(B)

)

, (2.121)

where ϕ
(

r −R
j
A(B)

)

is 2pz atomic orbital centered at A(B) atom in the unit cell

of the graphene lattice. The A excitons are obtained by mixing the k wave vectors

of electron and hole from K and K ′ points so that the wave vector of the center of

mass K of the excitons become zero by means of the vertical transition. k wave

vector around K ′ point has the opposite sign as k from K point, but the K is the

same for both K and K ′ points. The A1 exciton is symmetric , and the A2 exciton

is antisymmetric under C2 rotation about the axes perpendicular to the tube axis.

Therefore, the linear combination between the excitons from K and K ′ points of A1

and A2 excitons are expressed as follow in order to fulfill the symmetry [7] :

A2,1 =
1√
2
(|k,K〉 ± | − k,K〉) . (2.122)

where |k,K〉 is the exciton wavefunction from K point, and | − k,K〉 is the exciton

wave function from K ′ point, written in Eq. (2.119). It can be seen that the plus

sign is for A2 exciton, and the minus sign is for A1 exciton. The symmetry of A

excitons can be confirmed by making the C2 rotation on the exciton wavefunctions

expressed in Eq. (2.122) and then using the relations: Ĉ2Ψv = Ψ∗
v and Ĉ2Ψc = −Ψ∗

c .

By substituting Eq. (2.119) into Eq. (2.122), the A2 exciton wavefunction Ψν
2 with

an electron on the s′ atom in the graphene lattice j′, and hole on the s atom in the

graphene lattice j, can be expressed as [7] :

Ψν
2(j

′s′, js) =
∑

k

Zν
kRe

[

Cc
s′(k)C

v∗
s e

ik·(Rj′s′−Rju)
]

. (2.123)

Here, Ψν
2 for ν = 1, 2, 3 of E22 transition of (8,0) SWNT obtained from STB method

is shown in Fig. 2-8. In Fig. 2-8(a) and 2-8(c), we show the exciton wavefunction for

the electron and hole on the A atom that is (A,A), because the exciton wavefunction
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for (B,B) , (A,B), or (B,A) is similar to (A,A). However, the exciton wavefunction for

ν = 1, (A,A) or (B,B) is not allowed. Then, the exciton wavefunction in Fig. 2-8(b)

is for (A,B) case [7]. It is noted here that the x-axis in the original paper should be

divided by the lattice constant, 2.46 nm, to be consistent with our plot. According

to Fig. 2-8, three excitonic states are orthogonal. Then, the nodes appear on the

tube axis according to the value of ν. The A0
2 is well localized with the full width at

half maximum about 2 nm. The exciton becomes delocalize by increasing energy and

tube diameter. Ψ0
2 and Ψ2

2 are symmetric, and Ψ1
2 is anti-symmetric with respect to

the reflection about the plane perpendicular to the tube axis. Therefore, Ψ0
2 and Ψ2

2

are denoted by A2g, and Ψ1
2 is denoted by A2u, for excitons in armchair and zigzag

SWNTs.

The exciton wavefunctions of A excitons can also be written in term of the sec-

ond quantization where the electron creation ĉ† and the electron annihilation ĉ are

introduced. The wavefunction of the conduction band is obtained by operating the

creation operator to the ground state |0〉, and the wavefunction of the valence band

is obtained by operating the annihilation operator to the ground state. Then, the A

excitons becomes :

Ψ (Aν2) =
1√
2

∑

k

Zν
k

(

ĉ†kĉk + ĉ†−kĉ−k

)

|0〉, (2.124)

Ψ (Aν1) =
1√
2

∑

k

Zν
k

(

ĉ†kĉk − ĉ†−kĉ−k

)

|0〉. (2.125)

where subscript k and −k of the creation and annihilation operators, respectively,

denote wave vectors from K and K ′ point. The Eq. (2.125) and Eq. (2.125) are very

useful in constructing the exciton-photon matrix element of dipole approximation and

also the exciton-near field matrix element.

After solving the BS-equation for particular transition energy Eii, the envelop

function Zν
k is obtained. If only one-particle wavefunctions of π electron are used, the

method is called simple tight binding approximation (STB). In STB approximation,

the curvature of SWNT is neglected so that there is no mixing of π electron and

67



-0.4

 0

 0.4

-20 -15 -10 -5 0 5 10 15 20

xe-xh (nm)

(c)

-0.4

 0

 0.4

E
x
c
it
o
n
 w

a
v
e
fu

n
c
ti
o
n

(b)
 0

 0.4

 0.8
(a)

Figure 2-8: Amplitude of A2 exciton wavefunction for E22 transition as a
function of relative distance along tube axis of (8, 0) SWNT. (a) Amplitude
of the A2 exciton wavefunction of the first excitonic state (ν = 0). (b) Amplitude of
the A2 exciton wavefunction of the second excitonic state (ν = 1). (c) Amplitude of
the A2 exciton wavefunction of the third excitonic state (ν = 3).

s electron. If the curvature effect of SWNT is taken into account, the mixing of p

orbitals and s orbitals can not be neglected, and the method is called extended tight

binding approximation (ETB).

2.4.3 Exciton-photon matrix element

In this section, the formulation of the exciton-photon matrix element in the Dipole

approximation is given. This work has been done by J. Jiang et al. [8] based on the

second quantization. However, in this thesis, the electromagnetic field will not be

quantized which means that the classical vector potential is used in the formulation.

This approach has been used by A. Grünei et al. [3] to calculate the optical absorption

of graphene and SWNT.

Fig. 2-8: fig:/exwf-swnt0800-e22go.eps

68



The Hamiltonian of an electron in the electromagnetic field can be written as :

Ĥ =
[p− eA(r, t)]2

2m
+ V (r), (2.126)

where p is linear momentum of the electron, A is the classical vector potential of the

electromagnetic field, e is the electronic charge, m is mass of the electron and V (r)

is the electronic potential of the electron. The linear term ∝ A of the squared con-

jugated momentum is retained and the squared term ∝ A2 will be neglected because

the latter is much smaller than the former for the power of light. The nonlinear effect

can not be neglected for high energy electromagnetic field. By applying the Coulomb

gauge, that is, ∇ · A = 0, the linear momentum become commute with the vector

potential, then the one-particle Hamiltonian is simply written as :

H =
[ p2

2m
+ V (r)

]

− e

m
A(r, t) · p = H0 +H

′

(t), (2.127)

where H0 is defined as the unperturbed Hamiltonian, and H
′

(t) is defined as the time-

dependent perturbed Hamiltonian. In Coulomb gauge, the classical vector potential

is related to the classical electric field by E = −∂A
∂t
, and then A = − i

ω
E by assum-

ing the time-harmonic dependence e−iωt. Therefore, the time-dependent perturbed

Hamiltonian of one particle can be written in term of the classical electric field as :

H
′

(t) =
e~

mω
E(t) · ∇. (2.128)

In the second quantization, wavefunction of many-particles system is reinterpreted

as an operator written as the linear combination of the one-particle wavefunctions

which form the complete set :

Ψ̂(r, t) =
∑

k

ĉk(t)ψk(r), (2.129)

where ĉk(t) = e−iεkt/~ĉk, εk is one-particle energy. ĉk and ĉ†k satisfy the anticommu-
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tation relations :

{ĉk, ĉ†k′} = δkk′ , {ĉk, ĉk′} = 0, {ĉ†k, ĉ
†
k′} = 0, (2.130)

where δkk′ is a Delta function. ĉk and ĉ
†
k} are called the annihilation and the creation

operators, respectively. ĉk annihilate an electron in the state k, the operation will be

zero if it either operates on the ground state or there is no electron in the state k. ĉ†k

creates an electron in state k, the operation will be zero if and only if the state k has

been already occupied by the electron. The Hamiltonian of the transition from the

initial state to the final state is defined in the second quantization as :

Ĥel−op =

∫

drΨ̂fĤ
′Ψ̂i. (2.131)

By substituting the initial and final states written as Eq. (2.129) and the perturbed

one-particle Hamiltonian from Eq. (2.128) into Eq. (2.131), the Hamiltonian of the

vertical transition kc = kv is written as :

Ĥel−op =
e~

mω
Ex

∑

k

Dkĉ
†
kc
ĉkv , (2.132)

where Ex is the electric field parallel to the tube axis (x-axis) which is constant along

the tube axis because the wavelength of the laser light is much larger than the atomic

distance (Dipole approximation), and Dk is the dipole vector defined as follows :

Dk = 〈Ψc
k|
∂

∂x
|Ψv

k〉, (2.133)

where the subscript c and v, respectively, denote the conduction band and the valence

band, and kc = kv for the vertical transition.

The exciton-photon matrix elementsMex−op of A
ν
2 and A

ν
1 excitons from the dipole

approximation are obtained by calculating the following integral :

Mex−op(A
ν
2(1)) = 〈Ψ(Aν2(1))|Ĥel−op|0〉. (2.134)
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By substituting the Aν2 and Aν1 from Eq. (2.125) and Eq. (2.125),respectively, into

Eq. (2.134), the matrix elements of A excitons are written as :

Mex−op(A
ν
2) =

1√
2

e~

mω
Ex

∑

k

Zν∗
k (Dk +D−k) , (2.135)

Mex−op(A
ν
1) =

1√
2

e~

mω
Ex

∑

k

Zν∗
k (Dk −D−k) . (2.136)

Because the dipole vector is real, Dk = D−k. Therefore, the matrix element of A1

excitons are always zero for all ν, and the matrix element of An2 is exist :

Mex−op(A
ν
2) =

√
2
e~

mω
Ex

∑

k

Zν∗
k Dk , Mex−op(A

n
1 ) = 0. (2.137)

It can be seen that the amplitude of the matrix element is proportional to Ex. If

laser light is polarized along the tube axis, Ex = E0 where E0 is the amplitude if the

laser light. If laser light is a plane wave, the amplitude E0 can be calculated from the

intensity using the relation : E0 =
√

I
ε0c

where ε0 is the permittivity of vacuum and

c is the speed of light in free space. The intensity I can be calculated from the power

and area of the focus of laser light.

The dipole vector Dk can be obtained by substituting the one-particle wavefunc-

tions of the valence band and the conduction band from Eq. (2.120) into Eq. (2.133).

Then, Mex−op(A
ν
2) can be expressed as :

Mex−op(A
ν
2) =

√
2
e~

mω
Ex

∑

k

Zν∗
k (2.138)

In addition to Eq. (2.137), Mex−op(A
ν
2) can be written in terms of the A2 exciton

wavefunction Ψν
2 written in Eq. (2.123) by substituting the one-particle wavefunctions

of the valence band and the conduction band expressed in Eq. (2.120) into the dipole

vector around K and K ′ points. Then, the Mex−op(A
ν
2) can be written in terms of Ψν

2

as follows :
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Chapter 3

Exciton-near field matrix element

This chapter is devoted to the formulation of the exciton-near field matrix element

based on the exciton theory of carbon nanotube developed by J. Jiang et al. [7] and

classical near field obtained from Mie’s theory as described in chapter 2. By using

the classical scattered wave radiated from a small metallic sphere which has only

the dipole mode (l = 1), the near field along the tube axis of SWNT can be simply

obtained by the geometry. The exciton-near field matrix element of the vertical

transition is then constructed by replacing the incident electric field in the exciton-

photon matrix element by the near field along tube axis. The concept of the effective

optical matrix element is introduced to be used in the calculation of the effective

enhancement factor γ.

3.1 Near field function

The system of a small metallic sphere with radius a placed at distance d above a

SWNT is shown in Fig. 3-1. Here, wavevector of the incident light is defined as q to

avoid the confusion with wavevectors in the Brillouin zone of SWNT. The incident

electric field is polarized along tube axis giving rise to the vertical transition along

the tube axis. The scattered electric field Es of the dipole term (l = 1) is taken

only from the TM mode which corresponds to the electronic vibration in the metallic

sphere. Therefore, the dipole Es has two components in radial direction (Es
r) and in
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Figure 3-1: System of a metallic sphere on SWNT. x-axis is defined as the tube
axis, and z-axis is perpendicular to the tube axis. Wave vector of an incident light is
denoted as q pointing in z direction meaning that the incident light is traveling to a
SWNT from the top. The incident electric field E0 is polarized parallel to the tube
axis. Radius a and separation distance d are defined as parameters. The unit vectors
of the spherical coordinate in radial and polar directions are defined as êr and êθ,
respectively. r is the radial distance from the center of a metallic sphere.

polar direction (Es
θ) written in the spherical coordinate as :

Es = Es
rêr + Es

θêθ, (3.1)

where

Es
r = ã11

[

− i

(qr)3
− 1

(qr)2

]

eiqr sin θ , Es
θ =

ã11
2

[ i

(qr)3
+

1

(qr)2
− i

qr

]

eiqr cos θ. (3.2)

ã11 is the dipole scattering coefficient of TM mode obtained by assigning l = 1 in

Eq. 2.93. The unit of ã11 is the same as the unit of electric field, V/m. By retaining

the terms proportional to 1/r3 of Es
r and E

s
θ in Eq. (3.2) and using the transformations

from the spherical coordinate to the cartesian coordinate, êr = sin θêx − cos θêz and

Fig. 3-1: fig:/exciton-nf-system.eps
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êθ = cos θêx + sin θêz, the near field Enf can be written in x- and z− direction as :

Enf =

[

− iã11
(qr)3

sin2 θ +
iã11
2(qr)3

cos2 θ

]

êx +

[

iã11
(qr)3

+
iã11
2(qr)3

]

sin θ cos θêz. (3.3)

By substituting sin θ = x
r
and cos θ = a+d

r
into the near field in x-direction in Eq. (3.3),

the near field along tube axis Enf
x can be written as :

Enf
x =

iã11
2

1

[q(a+ d)]3

{[(a+ d)2 − 2x2

r2

](a+ d

r

)3}

=
iã11
2

1

[q(a+ d)]3
fnf3
x (x), (3.4)

where fnf3
x (x) is defined as

fnf3
x (x) =

{[(a+ d)2 − 2x2

r2

](a+ d

r

)3}

. (3.5)

fnf3
x (x) is real dimensionless function of a position along the tube axis x which is

maximum of 1 at x = 0. We will call fnf3
x (x) as near field function originated from

terms proportional to 1/r3 in this thesis. Because fnf3
x (x) is symmetric along the tube

axis, it can be fitted with Gaussian basis function Iα exp(−βαx2), where Iα and βα

are Gaussian fitting parameters. The Gaussian fitting function of fnf3
x (x) can be used

to calculate the near field matrix element.

If we also retain the terms proportional to 1/r2 in Eq. (3.2), near field along the

tube axis Enf
x can be written as :

Enf
x =

{

iã11
2

1

[q(a+ d)]3

}

{

fnf3
x (x) + ifnf2

x (x)
}

=

{

iã11
2

1

[q(a+ d)]3

}

fnf
x (x), (3.6)

where fnf2
x (x) is defined as :

fnf2
x (x) = −q(a+ d) [(a+ d)2 − 2x2]

r2

(

a+ d

r

)2

, (3.7)

and fnf
x (x) = fnf3

x (x) + ifnf2
x (x). We also call fnf2

x (x) as the near field function origi-

Fig. ??: fig:/efenf-swnt427-5nm.eps
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Figure 3-2: Near field enhancement and near field functions. (a) Near field
enhancement, |Enf

x (x = 0)|/E0, with only fnf3
x (red line), or both fnf3

x and fnf2
x (black

line), as a function of radius of a gold sphere excited by the He-Ne laser light with
the wavelength 633 nm. The separation distance d is zero. (b) Near field functions
fnf3
x (red line) and fnf2

x (black line) as a function of distance along the tube axis of
SWNT whose length is 200 nm. The separation distance d is zero and radius of a
gold sphere a is 15 nm (a+ d = 15 nm).

nated from terms proportional to 1/r2. It can be seen that adding terms proportional

to 1/r2 is equivalent to adding the imaginary part to fnf3
x (x). fnf2

x (x) is also symmet-

ric as shown by the black line in Fig. 3-2(b). At x = 0, the magnitude of fnf2
x (x) is

equal to −q(a+ d). Then, we can fit the near field functions fnf3
x (x) and fnf2

x (x) with

the Gaussian basis functions as :

fnf3
x (x) =

∑

α

Iα exp
(

−βαx2
)

, (3.8)

fnf2
x (x) = −q(a+ d)

∑

α′

Iα′ exp
(

−βα′x2
)

, , (3.9)

where Iα and βα are Gaussian fitting parameters.

In Fig. 3-2(a), we show the near field enhancement at x = 0, |Enf
x (x = 0)|/E0

by taking into account only fnf3
x (red line), or both fnf3

x and fnf2
x (black line), as

a function of radius. The separation distance is defined to be zero (d = 0). The

metallic sphere is a gold sphere excited by an He-Ne laser light with the wavelength

633 nm. The corresponding bulk dielectric constant of a gold sphere acquired from
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the fitting function [38] is about ε̃ = −11.425 + 1.186i. The maximum of the near

field enhancement for the black line is about 2.2 at the radius about 80 nm, while

the near field enhancement of the red line of the same radius is about 1.7. The near

field enhancement of the black line and the red line for a small gold sphere with the

radius less than 20 nm is not much different from each other. From this figure we

can see that the maximum of the near field enhancement for the gold sphere excited

by the He-Ne laser light with the wavelength 633 nm occurs at large sphere about 80

nm, and the near field function fnf2
x can not be negligible for large metallic sphere.

In Fig. 3-2(b), we also plot the near field functions fnf3
x (red line) and fnf2

x (black

line) with a = 15 nm, d = 0, and the wavelength 633 nm, as a function of distance

along the tube axis of SWNT whose length is 200 nm. fnf3
x is always equal to 1 at

x = 0, but the magnitude of fnf2
x at x = 0 is equal to −q(a + d) according to its

definition in Eq. (3.7). Then, fnf2
x is -0.15 at x = 0 for a + d = 15 nm, and λ = 633

nm. The full width at half maximum (FWHM) of the near field function fnf3
x (red

line) is about 11.5 nm, and the FWHM of the near field function fnf2
x (black line)

is about 12.1 nm which is slightly larger than the former. The FWHM of the near

field function is a linear function of a + d, and for fnf3
x , it can be approximated that

FWHM = 0.77(a + d) nm. By adding ifnf2
x to fnf3

x , the FWHM of the near field

function becomes a little bit larger than that of the fnf3
x . The near field function fnf3

x

become negative at x ≈ ±10.61 nm because the amplitude of radial component of

the near field whose sign is opposite to the amplitude of polar component becomes

larger than the latter.

3.2 Formulation of exciton-near field matrix ele-

ment

We modify the time-dependent perturbed Hamiltonian of one-particle as written in

Eq. (2.128) by adding the scattered electric field Es to the incident electric field

Ei which becomes the total electric field outside a metallic sphere according to
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G. Mie [25]. Then, the one-particle perturbed Hamiltonian of the scattered light

is written in the same from as Eq. (2.128) by H
′

(t) = e~
mω

Es(t) · ∇. Unlike the dipole

approximation that the incident electric field is treated as constant along the tube

axis [3], the scattered electric field Es is localized near the metallic sphere, and then

it can not be taken outside the integration. By following the same steps as section

2.4.3, the exciton-near field matrix elements of A2 and A1 excitons for the vertical

transition can be expressed as :

Mex−nf (A
ν
2) =

√
2
e~

mω

1

2
ΣkZ

ν∗
k {Sk + S−k}, (3.10)

Mex−nf (A
ν
1) =

√
2
e~

mω

1

2
ΣkZ

ν∗
k {Sk − S−k}, (3.11)

where Sk is defined as the transition matrix element written as follows :

Sk = 〈Ψc
k|Enf

x

∂

∂x
|Ψv

k〉, (3.12)

where Ψv
k and Ψc

k are one-particle wavefunctions of valence and conduction bands,

respectively, written in Eq. (2.120). By substituting the near field along the tube axis

Enf
x from Eq. (3.4) into Eq. (3.12), the transition matrix element Sk becomes :

Sk =
iã11
2

1

[q(a+ d)]3
〈Ψc

k|fnfx
∂

∂x
|Ψv

k〉 =
iã11
2

1

[q(a+ d)]3
DN
k , (3.13)

where DN
k is defined as the near field matrix element expressed as

DN
k = 〈Ψc

k|fnf
x (x)

∂

∂x
|Ψv

k〉 = 〈Ψc
k|
(

fnf3
x (x) + ifnf2

x (x)
) ∂

∂x
|Ψv

k〉. (3.14)

The near field matrix element DN
k has the same unit as the Dipole vector Dk. It

becomes the same as Dk if and only if fnf
x = 1. Next, we show the formulation of

the near field matrix element DN
k . By substituting the one-particle wavefunctions of

valence and conduction bands in Eq. (2.120) into the expression of DN
k , four integrals
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can be obtained as :

DN
k = cc∗A c

v
A〈Φc

A(k, r)|fnf
x

∂

∂x
|Φv

A(k, r)〉+ cc∗B c
v
B〈Φc

B(k, r)|fnf
x

∂

∂x
|Φv

B(k, r)〉+

cc∗A c
v
B〈Φc

A(k, r)|fnf
x

∂

∂x
|Φv

B(k, r)〉+ cc∗B c
v
A〈Φc

B(k, r)|fnf
x

∂

∂x
|Φv

A(k, r)〉.(3.15)

By substituting the Bloch wave functions in Eq. (2.121) into Eq. (3.15) and taking

into account only the first nearest neighbor interaction for the last two terms and

the interaction on the same atomic site for the first two terms of Eq. (3.15), the near

field matrix elements Eq. (3.15) are then written as the sum of (A,A), (B,B) on-site

matrix elements, and (A,B), (B,A) off-site matrix elements :

DN
k =

1

N
cc∗A c

v
A

N
∑

j=1

nAA +
1

N
cc∗B c

v
B

N
∑

j=1

nBB +

1

N
cc∗A c

v
B

N
∑

j=1

3
∑

p=1

eik·r
p
AnAB +

1

N
cc∗B c

v
A

N
∑

j=1

3
∑

p=1

e−ik·r
p
AnBA, (3.16)

where nAA and nBB are called the (A,A) and (B,B) on-site matrix elements, respec-

tively, nAB and nBA are called (A,B) and (B,A) off-site matrix elements, respectively,

r
p
A (p = 1, 2, 3) are first nearest neighbor vectors pointing from A atom to B atom.

The (A,A) and (B,B) on-site matrix elements are expressed as :

nAA = 〈ϕ(r −R
j
A)|fnf3

x + ifnf2
x

∂

∂x
|ϕ(r −R

j
A)〉 = n

(3)
AA + in

(2)
AA, (3.17)

nBB = 〈ϕ(r −R
j
B)|fnf3

x + ifnf2
x

∂

∂x
|ϕ(r −R

j
B)〉 = n

(3)
BB + in

(2)
BB, (3.18)

, and the (A,B) and (B,A) off-site matrix elements are expressed as :

nAB = 〈ϕ(r −R
j
A)|fnf3

x + ifnf2
x

∂

∂x
|ϕ(r − (Rj

A + r
p
A))〉 = n

(3)
AB + in

(2)
AB, (3.19)

nBA = 〈ϕ(r −R
j
B)|fnf3

x + ifnf2
x

∂

∂x
|ϕ(r − (Rj

B + r
p
B))〉 = n

(3)
BA + in

(2)
BA, (3.20)

where Rj
A and R

j
B are A and B atomic positions in the unit cell j of graphene lattice.

The superscript (3) and (2) denotes the matrix element of the near field function fnf3
x
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and fnf2
x , respectively. The r

p
A and r

p
B, (p = 1, 2, 3), are the first nearest neighbor

vectors pointing from A atom and B atom, respectively, with the relation r
p
B = −r

p
A.

Near field on-site matrix element

We show the formulae of (A,A) and (B,B) on-site matrix elements and discuss their

behavior in this section. In the Dipole approximation, the on-site matrix elements are

disappear due to the symmetry. However, because of the appearance of the near field

function fnf
x in the integration, the on-site matrix elements may exit for near field.

The (A,A) on-site near field matrix element n
(3)
AA defined in Eq. (3.17) is expressed as

n
(3)
AA = 〈ϕ(r −R

j
A)|fnf3

x (x)
∂

∂x
|ϕ(r −R

j
A)〉. (3.21)

By substituting the Gaussian fitting functions of the 2pz atomic orbital and the near

field function fnf3
x into Eq. (3.21), the n

(3)
AA can be expressed as

n
(3)
AA =

1

n

∑

k,l,α

2βlIlIkIα{Lx}{Ly}{Lz}, (3.22)

where the indices k and l are for the 2pz atomic orbital, and the index α is for the

near field function. The integrals Lx, Ly and Lz are expressed as

Lx = −
∫ ∞

−∞
dx(x− xjA) exp [− γkl(x− xjA)

2 − βαx
2], (3.23)

Ly =

∫ ∞

−∞
dy exp [− γkl

(

y − yjA
)2

], (3.24)

Lz =

∫ ∞

−∞
dzz2 exp (− γklz

2), (3.25)

where γkl = βk + βl, x
j
A and yjA are the components of A atom in the graphene

lattice j on the tube axis and the circumference, respectively. Ly and Lz can be

integrated immediately using the Gaussian integral formulae. Then, Ly =
√

π
γkl

, and

Lz =
√

π
γkl

(

1
2γkl

)

. Lx is more complicate. However, the steps are straightforward.
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Figure 3-3: (A,A) on-site matrix element nAA as a function of xjA. Red line
shows nAA of a+d = 1 nm, blue line shows nAA of a+d = 4 nm and black line shows
nAA of a+ d = 10. The separation distance d is defined as zero (d = 0).

Firstly, the exponential term of Eq. (3.23) is expanded to be written in following form

exp [− γkl(x− xjA)
2 − βαx

2] = exp
[

− γklβα
γkl + βα

(

xjA
)2

]

exp [− (γkl + βα) (x− x0)
2 ],

(3.26)

where x0 = γkl
γkl+βα

xjA. Then Lx can be integrated analytically using the Gaussian

integral formulae, and it can be expressed as

Lx = xjA
βα

γkl + βα

√

π

γkl + βα
exp

[

− γklβα
γkl + βα

(xjA)
2
]

. (3.27)

By substituting Lx, Ly and Lz into Eq. (3.22), the n
(3)
AA can be expressed as

n
(3)
AA(x

j
A) = xjA

1

n

∑

k,l,α

βαβlIlIkIα
1

γ2

( π

γkl + βα

)3/2

exp
[

− γklβα
γkl + βα

(xjA)
2
]

. (3.28)

The (B,B) on-site matrix element n
(3)
BB can be obtained by simply replacing xjA in

Eq. (3.28) by xjB. n
(2)
AA and n

(2)
BB can be also obtained by the same way. The difference

between n
(3)
BB and n

(2)
AA is only the magnitude. It can be seen that the on-site matrix

elements are exponential function of the component of the atom on the tube axis

Fig. 3-3: fig:/naa-ad1-4-10nm.eps
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which is originated from the localization of the near field. n
(3)
AA(n

(3)
BB) is proportional

to xjA(x
j
B) due to the symmetry. If xjA(x

j
B) is equal to zero, the near field on-site

matrix element vanishes corresponding to the Dipole approximation. In Fig. ??, n
(3)
AA

as a function of xjA has been shown for a + d = 1, 4, 10 nm with d = 0. The red line

of a+ d = 1 gives the maximum of n
(3)
AA about 0.05 1/(at.u) at xjA ≈= 0.38 nm. n

(3)
AA

sharply decrease by increasing the xjA. By increasing a+ d, the peak of n
(3)
AA becomes

broad and the its amplitude decreases because the FWHM of the near field becomes

large resulting in the anti-symmetric of the on-site matrix element.

Near field off-site matrix element

The near field off-site matrix elements nAB and nBA are given in this section. We

consider only nAB because nBA can be obtained from the former by replacing xjA by

xjB and the first nearest neighbor vector r
p
A by r

p
B. According to Eq. (3.19), n

(3)
AB is

expressed as

n
(3)
AB = 〈ϕ(r −R

j
A)|fnf3

x (x)
∂

∂x
|ϕ(r − (Rj

A + r
p
A))〉. (3.29)

We define the A carbon atom on the unrolled graphene sheet as Rj
A = xjAêx + yjAêy

where xjA and yjA are the components of the A atom on tube axis and circumference of

SWNT, respectively. Three first nearest neighbor vectors pointing out from R
j
A are

denoted as r pA = xprAêx+y
p
rAêy. Then, by substituting the Gaussian basis functions of

2pz atomic orbital and the near field function fnf3
x into Eq. (3.29), n

(3)
AB can be written

as

n
(3)
AB =

1

n

∑

k,l,α

2βlIlIkIα{Lx}{Ly}{Lz}, (3.30)

where the indices k and l are for the 2pz atomic orbital, and the index α is for the

near field function. The integrals Lx, Ly and Lz are expressed as

Lx = −
∫ ∞

−∞
dx[x− (xjA + xprA)]

exp [− βk(x− xjA)
2 − βl

(

x− (xjA + xprA))
2 − βαx

2], (3.31)

Ly =

∫ ∞

−∞
dy exp [− βk

(

y − yjA
)2 − βl(y − (yjA + yprA))

2], (3.32)
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Lz =

∫ ∞

−∞
dzz2 exp (− γklz

2), (3.33)

where γkl = βk + βl. The z−integral (Lz) is the same as the near field on-site matrix

element, Lz =
√

π
γkl

(

1
2γkl

)

. Ly and Ly are slightly difficult. The starting point of

making the integration is expanding the exponential term which can be done by the

help of following general Gaussian identity

exp [− βk(x− xa)
2 − βl(x− xb)

2 − βα(x− xc)
2] (3.34)

= Cklα exp [− (γkl + βα)(x− x0)
2],

where Cklα(xa, xb, xc) and x0 are expressed as :

Cklα = exp
[

− βkβl
γkl + βα

(xa − xb)
2 − βkβα

γkl + βα
(xa − xc)

2 −

βlβα
γkl + βα

(xb − xc)
2
]

, (3.35)

x0 =
βkxa + βlxb + βαxc

γkl + βα
. (3.36)

Then, by expanding the exponential terms of Lx and Ly using Eqs. (3.35)-(3.36), and

using the Gaussian integral formulae, the Lx and Ly are expressed as :

Lx(x
j
A, x

p
rA) = Cklα

( 1

γkl + βα

)

√

π

γkl + βα
[βαx

j
A + (βk + βα)x

p
rA], (3.37)

Ly(y
p
rA) =

√

π

γkl
exp [− βkβl

γkl
(yprA)

2]. (3.38)

Then, n
(3)
AB is expressed as

n
(3)
AB(x

j
A, x

p
rA) =

1

n

∑

k,l,α

βlIlIkIα
1

γ2kl

( π

γkl + βα

)3/2

[βαx
j
A + (βk + βα)x

p
rA]

exp
[

− βkβl
γkl + βα

(ac−c)
2 − βkβα

γkl + βα
(xjA)

2

− βlβα
γkl + βα

(xjA + xprA)
2
]

. (3.39)

Fig. 3-4: fig:/nab3-ad15nm-lam633nm.eps
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Figure 3-4: The near field (A,B) off-site matrix element as a function of xjA.

The solid red line is the near field off-site matrix element n
(3)
AB, and the dashed black

line represents the off-site matrix element of the Dipole approximation. We define
the radius as a = 15 nm, and the separation distance as d = 0, a + d = 50 nm. The
wavelength of the laser light is 633 nm. The component of the first nearest neighbor
vector on the tube axis is x3rA = −ac−c, where ac−c = 0.142 nm, C-C atomic distance.

Similarly, n
(2)
AB defined in Eq. (3.19) can be expressed as

n
(2)
AB(x

j
A, x

p
rA) = −q(a+ d)

1

n

∑

k,l,α′

βlIlIkIα′

1

γ2kl

( π

γkl + βα′

)3/2

[βα′xjA + (βk + βα′)xprA]

exp
[

− βkβl
γkl + βα′

(ac−c)
2 − βkβα′

γkl + βα′

(xjA)
2

− βlβα′

γkl + βα′

(xjA + xprA)
2
]

. (3.40)

Eq. (3.39) becomes the same as the Dipole approximation when βα = 0, Iα = 1,

and without summation on α, which means that fnf
x = 1. The exponential decay

of nAB appears because of the localization of the near field. In Fig. 3-4, we show

the magnitude of the n
(3)
AB (solid red line) as a function of xjA for the first nearest

neighbor r3
A of zigzag SWNT whose the component on the tube axis x3rA is −ac−c,

where ac−c = 0.142 nm, C-C atomic distance. The radius of a gold sphere is a = 15

nm, and the separation distance d = 0 nm. Then, the FWHM of the near field

function fnf3
x is about 11.5 nm. The wavelength of the laser light is 633 nm. It can
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Figure 3-5: Coordinate and first nearest neighbor vectors in an unrolled
graphene lattice of armchair SWNT. (a) Coordinate of armchair SWNT in which
the origin is defined at the center of an hexagon, and tube axis and circumference are
in T and Ch directions, respectively. Unit cells of graphene lattice are represented
by dotted parallelograms. Two inequivalent carbon atoms A and B in graphene unit
cell are denoted by red and blue circles, respectively. (b) Three first nearest neighbor

vectors : r 1
A =

(

a0
Ch

)

Ch, r 2
A = −

(

a0/2
Ch

)

Ch +
(√

3a0/2
T

T
)

, r 3
A = −

(

a0/2
Ch

)

Ch −
(√

3a0/2
T

T
)

, where a0 = 0.142 nm is C-C distance.

be seen that the FWHM of the n
(3)
AB is the same as that of the near field function

fnf3
x . Therefore, the enhancement of near field matrix element is only inside the

region enclosed by the FWHM of near field function. The magnitude of near field

matrix element becomes much smaller than that of the far field matrix element outside

this region. The magnitude of the n
(3)
AB doesn’t have much difference as the nAB by

including the n
(2)
AB.Note that the relation nAB(x

j
A,−xprA) = −nAB(x

j
A, x

p
rA) is always

satisfied.

3.3 Exciton-Near field matrix element of achiral

SWNTs

This section gives the explicit formulae of the near field matrix elements of armchair

and zigzag SWNTs.

3.3.1 Near field matrix element of armchair SWNTs

Fig. 3-5: fig:/armchair-swnt.eps
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The origin in the unrolled graphene sheet of an armchair SWNT is defined at the

intersection point between the z′-axis or θ = 0 axis of the metallic sphere in Fig. 3-1

and the centre of an hexagon of the unrolled graphene sheet as shown in Fig. 3-5(a).

The graphene lattice unit cell is denoted by an dotted parallelograms in Fig. 3-5(a).

It can be seen that xjA = xjB in the graphene unit cell j. The first nearest neighbor

vectors of an armchair SWNT are also shown in Fig. 3-5(b). They can be written

in terms of vectors T and Ch of the unrolled carbon nanotube unit cell as r 1
A =

(

ac−c

Ch

)

Ch, r
2
A = −

(

ac−c/2
Ch

)

Ch +
(√

3ac−c/2
T

T
)

, r 3
A = −

(

ac−c/2
Ch

)

Ch −
(√

3ac−c/2
T

T
)

,

where ac−c = 0.142 nm is the C-C atomic distance. Because DN
k in Eq. (3.13) is a

real function in the reciprocal space of Armchair SWNTs, that is, DN
k = DN

−k. Then,

the exciton-near field matrix element of A1 excitons are zero for all ν. The exciton-

near field matrix element of the A2 excitons can be obtained by substituting Sk in

Eq. (3.13) to Mex−nf(A
ν
2) in Eq. (3.10), then Mex−nf(A

ν
2) can be written as

Mex−nf(A
ν
2) =

√
2
e~

mω

{

iã11
2

1

[q(a+ d)]3

}

∑

k

Zν∗
k D

N
k . (3.41)

Next, we will consider the summation
∑

k Z
ν∗
k D

N
k in Eq. (3.41) for armchair

SWNTs. Let’s us consider DN
k in Eq. (3.15) for an armchair SWNTs. The coef-

ficients of the one-particle wavefunctions of the valence band and the conduction

band for A and B atoms obtained from the STB method can be expressed as [3]

cvA(k) =
1

√

2 (1 + sw(k))

√

f(k)

w(k)
, cvB(k) =

1
√

2 (1 + sw(k))

√

f ∗(k)

w(k)
, (3.42)

ccA(k) =
1

√

2 (1− sw(k))

√

f(k)

w(k)
, ccB(k) = − 1

√

2 (1− sw(k))

√

f ∗(k)

w(k)
,(3.43)

where s is the overlap integral, f(k) =
∑3

p=1 exp (ik · r pA), and w(k) = |f(k)|. For

the valence band, the coefficient becomes complex conjugate by changing atomic

sites from A atom to B atom and vice versa. The coefficient of the conduction band

becomes minus complex conjugate by changing the atomic sites. The products of

the coefficients for the near field (A,A) and (B,B) on-site matrix elements satisfy
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the relation cc∗A (k)c
v
A(k) = −cc∗B (k)cvB(k). Furthermore, we also have that nAA = nBB,

because xjA = xjB. Therefore, the contribution of the near field on-site matrix elements

of the armchair SWNTs is always zero. Then, DN
k for armchair can be written as

DN
k =

1

N
cc∗A (k)c

v
B(k)

N
∑

j=1

3
∑

p=1

eik·r
p
AnAB

(

xjA, x
p
rA

)

+

1

N
cc∗B (k)c

v
A(k)

N
∑

j=1

3
∑

p=1

e−ik·r
p
AnAB

(

xjA,−xprA
)

. (3.44)

By using the relation nAB

(

xjA,−xprA
)

= −nAB

(

xjA, x
p
rA

)

and neglecting nAB

(

xjA, x
1
rA

)

because of small value compared with other two nearest neighbor vectors, DN
k can be

expanded by summing on p. Then, DN
k can be written in term of the summation of

nAB

(

xjA, x
2
rA

)

on j multiplied by k-dependence function as

DN
k =

1

N

{

N
∑

j=1

nAB(x
j
A, x

2
rA)

}

{cc∗A (k)cvB(k)φ(k)− cc∗B (k)c
v
A(k)φ

∗(k)} , (3.45)

where φ(k) = exp(ik · r 2
rA)− exp(ik · r 3

rA). By substituting r 2
rA and r 3

rA as shown in

Fig. 3-5 to φ(k), the phase factor φ(k) can be written as :

φ(k) = 2i sin

(

ka

2

)

exp

(

−i µπa
Ch

√
3

)

, (3.46)

where k is the wavenumber along the tube axis, µ is the cutting index, a =
√
3ac−c =

0.246 nm is graphene lattice constant, and Ch is the circumference of SWNT. Then,

the summation
∑

k Z
ν∗
k D

N
k can be written explicitly as

∑

k

Zν∗
k D

N
k =

1

N

{

N
∑

j=1

nAB(x
j
A, x

2
rA)

}

{

∑

k

Zν∗
k [cc∗A (k)c

v
B(k)φ(k)− cc∗B (k)c

v
A(k)φ

∗(k)]

}

. (3.47)

The normalization constant 1/N , where N is the total number of graphene lattices

in SWNTs, appears in Eq. (3.47) because nAB is not a constant of xjA, instead it
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Figure 3-6: Coordinate and first nearest neighbor vectors in an unrolled
graphene lattice of zigzag SWNT. (a) Coordinate of zigzag SWNT in which the
origin is defined at the center of an hexagon, and tube axis and circumference are
in ~T and ~Ch directions, respectively. Unit cells of graphene lattice are represented
by dotted parallelograms. Two inequivalent carbon atoms A and B in graphene unit
cell are denoted by red and blue circles, respectively. (b) Three first nearest neighbor

vectors of zigzag SWNT : r 1
A =

√
3a0/2

(

Ch

Ch

)

+ a0/2
(

T

T

)

, r 2
A = −

√
3a0/2

(

Ch

Ch

)

+

a0/2
(

T

T

)

, r 3
A = −a0

(

T

T

)

, where a0 = 0.142 nm is C-C distance.

exponentially decays by increasing xjA as shown in Fig. 3-4. By increasing the num-

ber of graphene unit cells N in a SWNT, the number of wavenumber k along the

tube axis increases. The increasing of the number of k raises the term summation

on k in Eq. (3.47). However, the factor 1/N strongly reduces
∑N

j=1 nAB(x
j
A, x

2
rA).

Then,
∑

k Z
ν∗
k D

N
k decreases by increasing N . Therefore, the exciton-near field ma-

trix element would vanish by increasing length of a SWNT, if all xjA were taken into

account.

3.3.2 Near field matrix element of zigzag SWNTs

The coordinate of a zigzag SWNT is shown in Fig. 3-6(a) together with the first

nearest neighbor vectors in Fig. 3-6(b) . The origin is defined at the center of the

hexagon where a line perpendicular to the tube axis passes through the origin of the

metallic sphere. A and B carbon atoms in a graphene unit cell are denoted by red

and blue color, respectively. According to the coordinate of the zigzag SWNT, A

and B atoms in graphene unit cell j have different position on the tube axis, that

Fig. 3-6: fig:/zigzag-swnt.eps
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is, xjA 6= xjB. Then, unlike the armchair SWNT, the summation
∑

k Z
ν∗
k D

N
k can not

be further simplified. Therefore, we may write the summation on k for A2 exciton

explicitly as

∑

k

Zν∗
k D

N
k =

1

N

N
∑

j=1

∑

k

3
∑

p=1

Zν∗
k [cc∗A (k)c

v
B(k)e

ik·rp
AnAB(x

j
A, x

p
A) + (3.48)

cc∗B (k)c
v
A(k)e

−ik·rp
AnBA(x

j
B,−xpA)],

where the exponential phase factor of the first nearest neighbors are exp(ik · r1
A) =

exp
[

ia
2

µ
dt/2

+ ika
2
√
3

]

, exp(ik · r2
A) = exp

[

−ia
2

µ
dt/2

+ ika
2
√
3

]

, and exp(ik · r3
A) = exp[− ika√

3
].

We also see that the exciton-near field matrix element has smaller value than the

exciton-far field matrix element if all graphene lattices in the unrolled carbon nan-

otube are taken into account.

3.4 Effective enhancement factor of the optical ma-

trix element

So far, we neglect the near field region, and the exciton-near field matrix element

includes all atoms in SWNTs. In facts, the near field strongly interacts with atoms

only within the near field region defined in the chapter 1. Because the Raman intensity

is proportional to the fourth order of the optical matrix element, then we define the

effective enhancement factor for the optical matrix element γM as follows

γM = (γ)
1
4 , (3.49)

where γ is the effective enhancement introduced in the chapter 1. If we define the

number of graphene lattice in the near field and far field region as Nnf and Nff ,

respectively, the ratio Nnf/Nff is approximately the same as the ratio Anf/Aff which
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appears in the definition γ. Then, the γM can be obtained by following equation

γM =
Mex−nf/Mex−ff

(Nnf/Nff)
1/4

, (3.50)

where Mex−nf and Mex−ff are the exciton-near field matrix element, and the exciton-

far field matrix element, respectively. Nnf can be obtained by the near field area Anf

and the area of graphene lattice as

Nnf = int

(

Anf

|a1 × a2|

)

, (3.51)

where a1 and a2 are lattice unit vectors of the graphene lattice. Anf is obtained by

the product of FWHM of near field and the circumference of a SWNT. Nff is the total

number of graphene lattice in a SWNT, N .

We will show the effective enhancement of the optical matrix element in the next

chapter. The validity of our theory will be compared with the experimental relative

intensity between the near field Raman intensity and the far field Raman intensity

as a function of the separation distance between the tip and the SWNTs which has

been reported by L. G. Cancado et al. [14].
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Chapter 4

Results and Discussions

In this chapter, we discuss the electric field enhancement (EFE) obtained from the

Mie’s theory as described in the chapter 2. We show the exciton-near field matrix

element, and we discuss the tip-sample distance dependence of the Raman intensity

approximated by the theory developed in the chapter 3.

4.1 Electric field enhancement (EFE)

The electric field enhancement (EFE) is defined as the ratio between the amplitude of

the maximum of the total electric field outside the metallic sphere and the amplitude

of the incident electric field. This point is at the surface of the metallic sphere along

the polarization axis as denoted by the red point in Fig. 4-1. The solution of the

total electric field is the summation of the incident electric field E i, and the scattered

electric field Es which is written as the multipole expansion. Here, we show the EFE

obtained by the different number of order l from l = 1 to l = 5 as a function of

the diameter of the gold sphere embedded in the vacuum and excited by the He-

Ne laser light with the wavelength 633 nm in Fig. 4-1. The dielectric constant of

gold at the wavelength 633 nm is about −11.4 + 1.2i approximated by the fitting

function in Eq. (1.21) [38].Note that the amplitude of the scattered electric field in

TE mode is small compared to the TM mode, because the TE mode is associated

with the magnetic vibration which is typically weak in gold and silver. Then, only
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Figure 4-1: The EFE as a function of diameter of a gold sphere excited by
the He-Ne laser light (a) The EFE as a function of diameter in which only the
radial part of the scattered electric field Es

r is taken into account. The black line
includes only the dipole term (l = 1), the red line includes l = 1 up to l = 3, and the
blue line takes the terms l = 1 up to l = 5 into account. Each peak corresponds to
the electric resonance for odd l. (b) The EFE as a function of the diameter in which
only the polar part of the scattered electric field Es

θ is taken into account. The black
line is zero, and the broad peaks of the red and blue lines correspond to the electric
resonance for even l.

the scattered electric field in TM mode is taken into account. In Fig. 4-1(a), only

the radial part of the scattered electric field Es
r is taken into account. Because Es

r is

proportional to P 1
l (cos θ), there is no contribution of the even order l to the Es

r at

θ = π/2. Then, we can identify each peak in the Fig. 4-1(a) to l = 1, l = 3, and

l = 5. In Fig. 4-1(b), only the polar part of the scattered electric field Es
θ is taken

into account. The Es
θ is proportional to

dP 1
l
(cos θ)

dθ
, then there is no contribution of the

odd order l to the Es
θ at θ = π/2. The dipole term is always zero in the Fig. 4-1(b),

and each broad peak corresponds to the electric resonance of the even l as labelled

in this figure. Importantly, the high EFE is due to the dipole resonance l = 1, and

only the dipole term is sufficient for a small metallic sphere as shown in Fig. 4-1(a).

Fig. 4-1: fig:/EFE1.eps
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EFE ~ 6.3 at 457.93 nm (Ar-Kr),
a = 50 nm    

(a) silver

EFE ~ 5.7 at 568.19 nm (Ar-Kr),
a = 60 nm    

(b) gold

Figure 4-2: The EFE as a function of wavelength of the available laser light
and the radius of small silver and gold spheres. The contour color denotes the
value of the EFE varying from 1 to 7. The bulk dielectric constants of silver and
gold as a function of wavelength are obtained from the fitting functions [37, 38]. (a)
EFE as a function of wavelength and radius of small silver spheres. (b) EFE as a
function of wavelength and radius of small gold spheres.

Hereafter, we will consider only the small metallic sphere compared to the wavelength

of the laser light.

In Fig. (4-2)(a) and (4-2)(b), we show the electric field enhancement (EFE) as a

function of the available wavelength of the laser light used in spectroscopy and the

radius of the silver sphere and the gold sphere, respectively. The maximum of the EFE

about 6.3 and 5.7 are obtained for the silver sphere with the radius 50 nm excited by

the Ar-Kr laser with the wavelength 457.93 nm, and the gold sphere with the radius

60 nm excited by the Ar-Kr laser with the wavelength 568.19 nm, respectively. By

increasing the wavelength from 457.93 nm, the lower and broader peak of the EFE

for the silver sphere is shifted to the larger volume as shown in Fig. (4-2)(a). From

this calculation, we can see that the maximum of the EFE occurs at the small but

finite volume of the metallic sphere.

Let’s us consider the EFE as a function of the radius of the silver and gold spheres

at the wavelength 350 nm as shown in Fig 4-3(a) and 4-3(b), respectively. The dashed

lines in both figures represent the EFE obtained from the quasi-static approximation

Fig. 4-2: fig:/efe-lambda-a.eps
Fig. 4-3: fig:/EFE2.eps
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(a) (b)

Figure 4-3: The EFE as a function of radius of small silver and gold spheres
at the wavelength 350 nm (a) The EFE as a function of the radius of the small
silver sphere excited by the laser light with the wavelenght 350 nm. The dielectric
constant of the silver is approximated by the fitting function in Eq. (1.21) as −2.36+
0.11i [37]. The red solid line is the EFE obtained from the Mie’s theory, and the
black dashed line is the EFE obtained from the quasi-static approximation. (b) The
EFE as a function of the radius of the small gold sphere excited by the laser light
with the wavelength 350 nm. The dielectric constant of the gold is approximated by
the fitting function in Eq. (1.21) as −1.08 + 5.6i [38]. The red solid line is the EFE
obtained from the Mie’s theory, and the black dashed line is the EFE obtained from
the quasi-static approximation.

expressed in Eq. (2.14). We can see that the EFE of the silver and gold spheres with

the radius less than 5 nm follows the quasi-static approximation. The peak of the

EFE in Fig 4-3(a) for the silver sphere is about 36.6 at the radius about 18.5 nm, while

the broad peak in Fig 4-3(b) for the gold sphere is about 3.3 at the radius about 30.0

nm which is much smaller than the silver sphere. The large EFE of the 20 nm silver

sphere at the wavelength 350 nm is due to the dipole resonance, ε̃ = −2εm, where

ε̃ is the dielectric constant of the metallic sphere and εm is the dielectric constant

of the medium which is defined as the vacuum (εm = 1). The dipole resonance

condition appears in Eq. (2.14) of the quasi-static approximation, and it can also

be obtained from the Mie’s theory by approximating the spherical Bessel function

jl(z) and the spherical Hankel function of the first kind h
(1)
l (z) for a small metallic

sphere (x = ka ≪ 1) as jl(z) = 2ll!
(2l+1)!

zl and h
(1)
l = − i(2l−1)!

2l−1(l−1)!
1

zl+1 , respectively [?].
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Then, by taking the denominator of dipole term l = 1 of the scattered electric field

as zero, the dipole resonance condition ε̃ = −2ε can be obtained. The appearance of

the peak of EFE for the silver sphere at the radius 20 nm results from the dynamic

depolarization by the dipoles in the sphere [41], which can be explained as follows

; for a small metallic sphere, the polarizability α increases by increasing the factor

ka, where k in the wavenumber of light and a is the radius, until the α reaches the

maximum, leading to the maximum of the EFE. The decreasing and the broadening

of the EFE for larger metallic sphere results from the decreasing and the broadening

of the α due to the damping of the dipole. The detail of the dynamic depolarization

has been already described in the chapter 2.

In next section, we will show the exciton-near field matrix element as developed

in the chapter 3.

4.2 Exciton-near field matrix element

In this section, we show the enhancement of the exciton-near field matrix element. We

model the gold tip excited by the He-Ne laser light with the wavelength 633 nm (1.96

eV) as employed by L. G. Cancado et al. [14]. The laser light energy is in resonance

with the E22 transition of the A0
2 exciton of the (8,0) SWNT [44]. In Fig. 4-4, we

show the ratio between the amplitude of the exciton-near field matrix elementMex−nf

and the amplitude of the exciton-far field matrix element Mex−ff as a function of the

component of the A atom in the graphene lattice j on the tube axis (xjA) of the (8,0)

SWNT. The tip-SWNT distance is defined as zero (d = 0). We consider the very

sharp tip with the tip radius 2 nm (red line), the sharp tip with the tip radius 10 nm

which is the typical value of the tip radius used in TERS experiment (blue line), and

the slightly larger tip radius 20 nm (black line). The near field along the tube axis

Enf
x includes both fnf3

x and fnf2
x terms. For xjA close to zero, the |M j

ex−nf |/|M
j
ex−ff |

is approximately the same as the near field enhancement |Enf
x (x = 0)|/E0 as shown

in Fig. 3-2. Therefore, the exciton-near field matrix element M j
ex−nf increases by

Fig. 4-4: fig:/mxexnf-xaj-swnt0800-e22.eps
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Figure 4-4: The ratio between the exciton-near field matrix element and
the exciton-far field matrix element of the E22(A

0
2) exciton as a function of

xjA. The red line is the gold sphere with the radius 2 nm, the blue line is the gold
sphere with the radius 10 nm and the black line is the gold sphere with the radius 20
nm. The tip-SWNT distance is defined as zero.

increasing the radius from 2 nm to 20 nm for xjA near zero. The amplitude of the

M j
ex−nf exponentially decreases by increasing xjA. Then, the amplitude of the M j

ex−nf

is greater than that of the M j
ex−ff only within the small region which is smaller than

the FWHM of the near field function. For example, the FWHM of the radius 10 nm

(d = 0) denoted by the blue line is about 7.7 nm, while the enhancement region of the

M j
ex−nf is about 6.2 nm. The enhancement region increases by increasing the radius of

the gold sphere. In Fig. 4-5, we show the corresponding effective enhancement factors

of the exciton-near field matrix elements (γM) as defined in Eq. (3.50), taking into

account only the matrix elements within the near field area, as a function of small

radius a of the gold sphere (red line) compared with the silver sphere (black line).

We can clearly see that the small gold sphere gives higher value of the γM than that

given by the small silver sphere, because the near field generated by the gold sphere

is larger than the near field produced by the silver sphere at the wavelength 633 nm.

Therefore, the sharp gold tip will give higher resolution of the TERS Raman image

of the SWNT than that obtained by the sharp silver tip if the excitation source is

Fig. 4-5: fig:/gamM-silver-gold-633nm-swnt0800.eps
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Figure 4-5: γM of the E22(A
0
2) exciton of (8,0) SWNT as a function of the

radius of small gold and silver spheres excited by the He-Ne laser light
with the wavelength 633 nm. The red line is the γM of the gold sphere, and the
black line is the γM of the silver sphere. The separation distance between the metallic
sphere and the SWNT is defined as zero.

the He-Ne laser light with the wavelength 633 nm. Furthermore, the maxima of the

γM for both materials occur at the smallest radius a = 2 nm, because of the smallest

FWHM along the tube axis, about 1.54 nm. Therefore, the strongly localized near

field will give the higher resolution of the TERS Raman image than that obtained

by the broadly localized near field. It is noted that the FWHM of the radius a = 2

nm is comparable to the FWHM of the A0
2 exciton wavefunction of the E22 transition

along the tube axis of the (8,0) SWNT as shown in Fig. 2-8.

In the next section, we consider the enhancement of the Raman intensity approx-

imated by the optical matrix element in the vertical direction by showing the the

tip-SWNT distance dependence of the Raman intensity.

4.3 Tip-SWNT distance dependence of the Raman

intensity

To calculate the Raman intensity, the exciton-phonon matrix element must be taken

into account. The formula of the Raman intensity has been well established [44], and
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Figure 4-6: The effective enhancement factor γ as a function of the tip-
SWNT distance The red, blue and black lines are the gold spheres with radius 15
nm, 25 nm and 35 nm, respectively. The He-Ne laser light with the wavelength 633
nm excites the E22 transition of the A0

2 exciton in (8,0) SWNT.

the Raman intensity is proportional to the fourth order of the exciton-optical field

matrix element. Therefore, we will approximate the near field and far field Raman

intensities as Inf ∝ |Mex−nf |4 and Iff ∝ |Mex−ff |4, respectively, in this thesis. Then,

the effective enhancement factor γ of the Raman intensity can be obtained from γM

as γ = γ4M. In Fig. 4-6, we show the γ as a function of the tip-SWNT distance d

for three gold spheres with the radius 15 nm (red line), 25 nm (blue line) and 35 nm

(black line) positioned at the distance d above the (8,0) SWNT. Then, The He-Ne

laser light with the wavelength 633 nm excites the E22 transition of the A0
2 exciton

in (8,0) SWNT. We can see that the maximum of γ is at d = 0, and then it decays

by increasing d. At d = 0, the γ decreases by increasing the radius corresponding to

the near field enhancement shown in Fig. 3-2(a). oppositely, at the distance d which

is larger than 1 nm, the γ increases by increasing the radius, because the FWHM in

the vertical direction increases by increasing the radius leading to the broad decaying

of the near field in the vertical direction for the large metallic sphere. The γ sharply

decays by increasing d for a small metallic sphere, and the decay length increases

by increasing the radius. Therefore, the near field Raman intensity slowly decays by

increasing the separation distance d for the large metallic sphere, and it dramatically
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Figure 4-7: Tip-SWNT distance dependence of Inf/Iff The dashed line is the
Inf/Iff obtained by the fitting function in Eq. (1.8). The solid line is the γ scaled by
the factor 0.7. The radius of the gold sphere for the solid line is 40 nm.

decreases by increasing the separation distance d for the very small metallic sphere.

Next, let’s up compare the tip-SWNT distance dependence of the γ with the fitting

function given by L. G. Cancado et al. as expressed in Eq. (1.8). In Fig. 4-7, we

compare the γ of the 40 nm radius gold sphere denoted by the solid line with the

Inf/Iff obtained by the fitting function in Eq. (1.8) denoted by the dashed line. The

γ at any distance d is scaled by the factor 0.7. We can see that the decaying trend

of the Inf/Iff obtained from the fitting function is close to our model. The fitting

function will be more nicely fitted with our model by changing the radius of the

gold sphere. The real tip radius used in the TERS experiment obtained by the SEM

method is about 15 nm [14] which is much smaller than the radius 40 nm used in

our calculation in Fig. 4-7. The reason of this error is because of the FWHM of the

near field obtained from the Mie’s theory is much smaller than that of the real tip,

which results in the fast decay of the near field in the vertical direction.
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Chapter 5

Summary

In summary, we have modelled a metallic tip as a metallic sphere with the same radius

as the metallic tip in order to obtain the scattered wave radiated from the tip. The

solution of the scattered wave is then obtained analytically called Mie’s theory. The

electric field enhancement EFE at the surface of the metallic sphere is calculated as a

function of the wavelength of the laser light and the radius of the metallic sphere. The

maximum of the EFE occurs at a small but finite volume sphere due to the dynamic

depolarization effect of the dipoles in the metallic sphere. The 18.5 nm radius silver

sphere excited by the laser light with the wavelength 350 nm gives the high EFE

about 36.6 because of the dipole resonance. We then show the enhancement of the

optical transition by formulating the exciton-near field matrix element by taking only

the near field along the tube axis into account. The enhancement of the exciton-near

field matrix element occurs only within the small region less than the FWHM of

the near field. We introduce the effective enhancement factor of the optical matrix

element γM and show that it strongly depends on the radius of the metallic sphere. By

using the γM, we suggest that the gold sphere will give the higher resolution Raman

image of the SWNT than that obtained by the silver sphere if the excitation source

is the He-Ne laser light with the wavelength 633 nm. Lastly, we show the tip-SWNT

distance dependence of the Raman intensity and compare with the experimental

fitting function. The decaying trend of the Inf/Iff obtained from the experimental

fitting function can be reproduced by our model.
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Appendix A

In chapter 2, we have seen that solutions of the Maxwell’s equations in the spherical

coordinate can be solved by the help of the calculus identities listed in the appendix

A-1. The differential equations of Eθ, Eφ, Bθ and Bφ written in term of known Er

in TM mode are derived in the appendix A-2. The associated associated Legendre

polynomial and its properties that are used in the boundary conditions to obtain the

coefficients of the scattering wave and the internal field in Mie’s theory are given in

the appendix A-3. The spherical Bessel and the spherical Hankel functions are given

in the appendix A-4 to be used in the Mie’s theory program.

A.1 Vector calculus in the spherical coordinate

A.1.1 Differential identities in the spherical coordinate

1. Gradient of any scalar ψ in the spherical coordinate is expressed as :

∇ψ = êr
∂ψ

∂r
+ êθ

1

r

∂ψ

∂θ
+ êφ

1

r sin θ

∂ψ

∂φ
. (A.1)

2. The scalar Laplacian of any scalar ψ in the spherical coordinate is expressed as :

∇2ψ =
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ
(sin θ

∂ψ

∂θ
) +

1

r2 sin2 θ

∂2ψ

∂φ2
. (A.2)
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3. The divergence of any vector ~E = Erêr + Eθêθ + Eφêφ in the spherical coordinate

is expressed as :

∇ · ~E =
1

r2
∂

∂r
(r2Er) +

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂Eφ
∂φ

. (A.3)

4. Curl of any vector ~E = Erêr+Eθêθ+Eφêφ in the spherical coordinate is expressed

as :

∇× ~E = êr(curl ~E)r + êθ(curl ~E)θ + êφ(curl ~E)φ, (A.4)

where

(curl ~E)r =
1

r sin θ

[ ∂

∂θ
(sin θEφ)−

∂Eθ
∂φ

]

, (A.5)

(curl ~E)θ =
1

r sin θ

[∂Er
∂φ

− sin θ
∂

∂r
(rEφ)

]

, (A.6)

(curl ~E)φ =
1

r

[ ∂

∂r
(rEθ)−

∂Er
∂θ

]

. (A.7)

A.1.2 Vector Laplacian

The vector Laplacian ∇2 ~E appearing in the vector Helmholtz equation is obtained

from the vector identities ∇× (∇× ~E) = ∇(∇ · ~E)−∇2 ~E. If ∇ · ~E = 0, the vector

Laplacian is then calculated from the double curl as ∇2 ~E = −∇ × (∇ × ~E). The

double curl can be expressed as :

∇× (∇× ~E) = êr

(

curl(curl ~E)
)

r
+ êθ

(

curl(curl ~E)
)

θ
+ êφ

(

curl(curl ~E)
)

φ
, (A.8)

where

(

curl(curl ~E)
)

r
= − 1

r2
∂2

∂r2
(r2Er)−

1

r2 sin θ

∂

∂θ
(sin θ

∂Er
∂θ

)

− 1

r2 sin2 θ

∂2Er
∂φ2

, (A.9)

(

curl(curl ~E)
)

θ
= −1

r

∂2

∂r2
(rEθ)−

1

r2 sin2 θ

∂

∂θ

[

sin θ
∂

∂θ
(sin θEθ)

]

− 1

r2 sin2 θ

∂2Eθ
∂φ2

− 2

r2
∂Er
∂θ

− 2

r3
cos θ

sin θ

∂

∂r
(r2Er), (A.10)
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(

curl(curl ~E)
)

φ
= −1

r

∂2

∂r2
(rEφ)−

1

r2
∂

∂θ

[ 1

sin θ

∂

∂θ
(sin θEφ)

]

− 1

r2 sin2 θ

∂2Eφ
∂φ2

− 2 cos θ

r2 sin2 θ

∂Eθ
∂φ

− 2

r2 sin θ

∂Er
∂φ

. (A.11)

It can be seen that only the radial component of ∇× (∇× ~E) is separable, another

two components are coupled with each other and so they are inseparable.

A.2 Differential equations of TM mode

In TM mode, Er 6= 0, Br = 0. Once Er has been solved from the vector Helmholtz

equation, the differential equations of Eθ, Eφ, Bθ and Bφ can be written in term of

known Er by considering the Faraday’s law and the Maxwell and Ampere’s law in

Maxwell’s equations.

A.2.1 Faraday’s law

Faraday’s law describes the coupled of the electric and magnetic field, it can be

expressed in the spherical coordinate as follow :

∇× ~E = iω ~B,

êr(curl ~E)r + êθ(curl ~E)θ + êφ(curl ~E)φ = iω(Bθêθ + Bφêφ). (A.12)

Then, because the unit vectors are linearly independent, three differential equations

are obtained by equating two side of Eq. (A.12) :

∂

∂θ
(sin θEφ)−

∂Eθ
∂φ

= 0, (A.13)

1

sin θ

∂Er
∂φ

− ∂

∂r
(rEφ) = iωrBθ, (A.14)

∂

∂r
(rEθ)−

∂Er
∂θ

= iωrBφ. (A.15)
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A.2.2 Ampere and Maxwell law

The Ampere and Maxwell law in the Maxwell equations is expressed in the spherical

coordinate as :

∇× ~B = −iεk0
c
~E,

êr(curl ~B)r + êθ(curl ~B)θ + êφ(curl ~B)φ = −iεk0
c
(Brêr + Bθêθ +Bφêφ).(A.16)

Then, using the linearly independent property of the unit vectors, three differential

equations are obtained :

1

sin θ

∂

∂θ
(sin θBφ)−

1

sin θ

∂Bθ

∂φ
= − ik0ε

c
rEr, (A.17)

∂

∂r
(rBφ) =

ik0ε

c
rEθ, (A.18)

∂

∂r
(rBθ) = − ik0ε

c
rEφ. (A.19)

A.2.3 Differential equation of Eθ in TM mode

By eliminating Bφ from Eq. (A.15) and Eq. (A.18), the differential equation of Eθ in

TM mode is obtained as follow :

∂2

∂r2
(rEθ) + k2(rEθ) =

∂2Er
∂r∂θ

. (A.20)

A.2.4 Differential equation of Eφ in TM mode

By eliminating Bθ from Eq. (A.14) and Eq. (A.19), the differential equation of Eφ in

TM mode is obtained as follow :

∂2

∂r2
(rEφ) + k2(rEφ) =

1

sin θ

∂2Er
∂r∂φ

. (A.21)
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A.2.5 Differential equation of Bθ in TM mode

By eliminating Eφ from Eq. (A.14) and Eq. (A.19), the differential equation of Bθ is

written as :
∂2

∂r2
(rBθ) + k2(rBθ) = − iεk0

c

1

sin θ

∂Er
∂φ

. (A.22)

A.2.6 Differential equation of Bφ in TM mode

By eliminating Eθ from Eq. (A.15) and Eq. (A.18), the differential equation of Bφ is

then written as :
∂2

∂r2
(rBφ) + k2(rBφ) =

iεk0
c

∂Er
∂θ

. (A.23)

A.3 The associated Legendre polynomial

In this section, we review the associated Legendre polynomial Pm
l (x) including some

important properties used in Mie’s theory. Pm
l (x) which are the solutions of the

polar part of Er in TM mode and Br in TE mode can be obtained from the Legendre

polynomial Pl(x) in which m in Eq. (2.31) becomes zero. Pl(x) of each order l can

be obtained by the Rodrigues’s formula written as

Pl(x) =
1

2l2!

dl

dxl
(x2 − 1)l. (A.24)

Pl(x) of small order l obtained from Eq. (A.24) are listed below

P0(x) = 1, (A.25)

P1(x) = x, (A.26)

P2(x) =
1

2
(3x2 − 1), (A.27)

P3(x) =
1

2
(5x3 − 3x), (A.28)

P4(x) =
1

8
(35x4 − 30x2 + 3), (A.29)

P5(x) =
1

8
(63x5 − 70x3 + 15x), (A.30)

107



where x = cos θ. Higher order Pl(x) may by obtained using the recursion relation

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x). (A.31)

Then, Pm
l (x) can be obtained from Pl(x) using the following relation

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x). (A.32)

In Mie’s theory, we have shown that m = 1 for the scattered wave and the internal

filed because the incident light is a plane wave traveling in z−direction, and the inci-

dent electric field is polarized along x−direction. We list P 1
l (cos θ) of l = 1, 2, 3, 4, 5

obtained by substituting Eq. (A.26)-(A.30) into Eq. (A.32) as follows

P 1
1 (cos θ) = sin θ, (A.33)

P 1
2 (cos θ) = 3 sin θ cos θ, (A.34)

P 1
3 (cos θ) =

3

2

(

5 cos2 θ − 1
)

sin θ, (A.35)

P 1
4 (cos θ) =

5

2

(

7 cos3 θ − 3 cos θ
)

sin θ, (A.36)

P 1
5 (cos θ) =

15

8

(

21 cos4 θ − 14 cos2 θ + 1
)

sin θ. (A.37)

The important properties of the associated Legendre polynomials are given as

follows

1. The relation between the associated Legendre Polynomial and the Legendre

Polynomial (m = 0) is
dPl(cos θ)

dθ
= −P 1

l (cos θ). (A.38)

2. The orthogonalities of the associated Legendre polynomial is expressed as

∫ 1

−1

Pm
l (x)Pm

k (x)dx =
2

2l + 1

(l +m)!

(l −m)!
δkl, (A.39)

∫ 1

−1

Pm
l (x)P n

l (x)

1− x2
dx =

(l +m)!

m(l −m)!
δmn. (A.40)
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3. The integral indentities of the associated polynomials used in Mie’s theory :

∫ π

0

(dPm
l

dθ

dPm
k

dθ
+m2 P

m
l

sin θ

Pm
k

sin θ

)

sin θdθ =
2l(l + 1)(l +m)!

(2l + 1)(l −m)!
δlk, (A.41)

∫ π

0

( P 1
l

sin θ

dP 1
k

dθ
+

P 1
k

sin θ

dP 1
l

dθ

)

sin θdθ = 0. (A.42)

A.4 The spherical Bessel and the spherical Hankel

functions

The spherical Bessel function jl(z) and the spherical Hankel function of the first kind

h
(1)
l (z) can be obtained from the Rayleigh formulas as follows

jl(z) = (−1)lzl
(

1

z

d

dz

)l(
sin z

z

)

, (A.43)

h
(1)
l (z) = −i(−1)lzl

(

1

z

d

dz

)l(
eiz

z

)

, (A.44)

where i =
√
−1.

By using the Rayleigh formulas in Eq. (A.43), the spherical Bessel functions of

the order l = 0 and l = 1 can be expressed as

j0(z) =
sin z

z
, (A.45)

j1(z) =
sin z

z2
− cos z

z
. (A.46)

We cal also obtain the spherical Hankel functions of the first kind of the order

l = 0 and l = 1 by using the Rayleigh formulas in Eq. (A.44).

h
(1)
0 (z) = − ie

iz

z
, (A.47)

h
(1)
1 (z) =

(

−1

z
− i

z2

)

eiz. (A.48)

The higher order spherical Bessel/Hankel functions can be obtained by using the
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recurrence relations as follows :

fl−1(z) + fl+1(z) =
2l + 1

z
fl(z), (A.49)

lfl−1(z)− (l + 1)fl+1(z) = (2l + 1)f
′

l (z), (A.50)

where fl may represent jl and h
(1)
l .

The Riccati Bessel functions ψl(z) and ζl(z) defined as ψl(z) = zjl(z) and ζl(z) =

zh
(1)
l (z), respectively, of the higher order (l > 2) can be obtained form those of the

order l = 0 and l = 1 by using the recurrence relations, derived from Eq. (A.49)-

(A.50), as follows

gl−1(z) + gl+1(z) =
2l + 1

z
gl(z), (A.51)

(l + 1)gl−1(z)− lgl+1(z) = (2l + 1)g
′

l(z), (A.52)

where gl may represent ψl and ζl.
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