CXML

DGGSVD (3lapack)


SYNOPSIS

  SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA,
                     BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK, INFO )

      CHARACTER      JOBQ, JOBU, JOBV

      INTEGER        INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P

      INTEGER        IWORK( * )

      DOUBLE         PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( *
                     ), Q( LDQ, * ), U( LDU, * ), V( LDV, * ), WORK( * )

PURPOSE

  DGGSVD computes the generalized singular value decomposition (GSVD) of an
  M-by-N real matrix A and P-by-N real matrix B:

      U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )

  where U, V and Q are orthogonal matrices, and Z' is the transpose of Z.
  Let K+L = the effective numerical rank of the matrix (A',B')', then R is a
  K+L-by-K+L nonsingular upper triangular matrix, D1 and D2 are M-by-(K+L)
  and P-by-(K+L) "diagonal" matrices and of the following structures,
  respectively:

  If M-K-L >= 0,

                      K  L
         D1 =     K ( I  0 )
                  L ( 0  C )
              M-K-L ( 0  0 )

                    K  L
         D2 =   L ( 0  S )
              P-L ( 0  0 )

                  N-K-L  K    L
    ( 0 R ) = K (  0   R11  R12 )
              L (  0    0   R22 )

  where

    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
    S = diag( BETA(K+1),  ... , BETA(K+L) ),
    C**2 + S**2 = I.

    R is stored in A(1:K+L,N-K-L+1:N) on exit.

  If M-K-L < 0,

                    K M-K K+L-M
         D1 =   K ( I  0    0   )
              M-K ( 0  C    0   )

                      K M-K K+L-M
         D2 =   M-K ( 0  S    0  )
              K+L-M ( 0  0    I  )
                P-L ( 0  0    0  )

                     N-K-L  K   M-K  K+L-M
    ( 0 R ) =     K ( 0    R11  R12  R13  )
                M-K ( 0     0   R22  R23  )
              K+L-M ( 0     0    0   R33  )

  where

    C = diag( ALPHA(K+1), ... , ALPHA(M) ),
    S = diag( BETA(K+1),  ... , BETA(M) ),
    C**2 + S**2 = I.

    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
    ( 0  R22 R23 )
    in B(M-K+1:L,N+M-K-L+1:N) on exit.

  The routine computes C, S, R, and optionally the orthogonal transformation
  matrices U, V and Q.

  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of A and
  B implicitly gives the SVD of A*inv(B):
                       A*inv(B) = U*(D1*inv(D2))*V'.
  If ( A',B')' has orthonormal columns, then the GSVD of A and B is also
  equal to the CS decomposition of A and B. Furthermore, the GSVD can be used
  to derive the solution of the eigenvalue problem:
                       A'*A x = lambda* B'*B x.
  In some literature, the GSVD of A and B is presented in the form
                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
  where U and V are orthogonal and X is nonsingular, D1 and D2 are
  ``diagonal''.  The former GSVD form can be converted to the latter form by
  taking the nonsingular matrix X as

                       X = Q*( I   0    )
                             ( 0 inv(R) ).

ARGUMENTS

  JOBU    (input) CHARACTER*1
          = 'U':  Orthogonal matrix U is computed;
          = 'N':  U is not computed.

  JOBV    (input) CHARACTER*1
          = 'V':  Orthogonal matrix V is computed;
          = 'N':  V is not computed.

  JOBQ    (input) CHARACTER*1
          = 'Q':  Orthogonal matrix Q is computed;
          = 'N':  Q is not computed.

  M       (input) INTEGER
          The number of rows of the matrix A.  M >= 0.

  N       (input) INTEGER
          The number of columns of the matrices A and B.  N >= 0.

  P       (input) INTEGER
          The number of rows of the matrix B.  P >= 0.

  K       (output) INTEGER
          L       (output) INTEGER On exit, K and L specify the dimension of
          the subblocks described in the Purpose section.  K + L = effective
          numerical rank of (A',B')'.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.  On exit, A contains the triangular
          matrix R, or part of R.  See Purpose for details.

  LDA     (input) INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.  On exit, B contains the triangular
          matrix R if M-K-L < 0.  See Purpose for details.

  LDB     (input) INTEGER
          The leading dimension of the array B. LDA >= max(1,P).

  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
          BETA    (output) DOUBLE PRECISION array, dimension (N) On exit,
          ALPHA and BETA contain the generalized singular value pairs of A
          and B; ALPHA(1:K) = 1,
          BETA(1:K)  = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = C,
          BETA(K+1:K+L)  = S, or if M-K-L < 0, ALPHA(K+1:M)=C,
          ALPHA(M+1:K+L)=0
          BETA(K+1:M) =S, BETA(M+1:K+L) =1 and ALPHA(K+L+1:N) = 0
          BETA(K+L+1:N)  = 0

  U       (output) DOUBLE PRECISION array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.  If JOBU
          = 'N', U is not referenced.

  LDU     (input) INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if JOBU =
          'U'; LDU >= 1 otherwise.

  V       (output) DOUBLE PRECISION array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.  If JOBV
          = 'N', V is not referenced.

  LDV     (input) INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if JOBV =
          'V'; LDV >= 1 otherwise.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.  If JOBQ
          = 'N', Q is not referenced.

  LDQ     (input) INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ =
          'Q'; LDQ >= 1 otherwise.

  WORK    (workspace) DOUBLE PRECISION array,
          dimension (max(3*N,M,P)+N)

  IWORK   (workspace) INTEGER array, dimension (N)

  INFO    (output)INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to converge.
          For further details, see subroutine DTGSJA.

PARAMETERS

  TOLA    DOUBLE PRECISION
          TOLB    DOUBLE PRECISION TOLA and TOLB are the thresholds to
          determine the effective rank of (A',B')'. Generally, they are set
          to TOLA = MAX(M,N)*norm(A)*MAZHEPS, TOLB =
          MAX(P,N)*norm(B)*MAZHEPS.  The size of TOLA and TOLB may affect the
          size of backward errors of the decomposition.

CXML Home Page

Index of CXML Routines