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Abstract

Resonance Raman spectroscopy of single wall carbon nanotubes (SWNTs) is widely used

for evaluating the sample quality and the population of (n,m) SWNTs for a given sample,

in which a SWNT is specified by two integers n, m. For Raman intensity calculation, we

need to understand the electron-photon and electron-phonon interactions, and the Raman

resonance window (hereafter, γ) in carbon nanotube system. Here, the γ value is defined

by an energy region which gives resonance Raman enhancement. So far, we have used a

constant value (0.06 eV) for the γ values for different (n,m) SWNTs. Experimentally,

the γ value depends on the tube diameter and chirality. In this thesis, we calculate the

Raman resonance window for different (n,m) SWNTs. For a resonance system, the Ra-

man resonance window is related to the energy dissipation by inelastic electron-phonon

scattering and obtained by calculating the transition probability of a photo-excited elec-

tron in the conduction band. The transition probability calculated by electron-phonon

scattering is given by the Fermi Golden rule. The electron-phonon scattering is considered

for 48 possible scattering processes, that is, intra- and inter-valley, forward and backward,

emission and absorption, and six phonon modes. The calculated γ values are compared

with Raman spectral width in the experiment directly. Using these γ values, we calcu-

late the G′ band Raman spectra, especially for a double resonance Raman scattering,

which has a strong metallicity dependence in experiment. We suggest that the G′ band

comes from the overtone of iTO phonon mode by deducing the G′ band properties. The

electron-phonon matrix elements for iTO phonon mode show the dependence of electronic

transition energy such as ES
22, E

M
11 , and ES

33. The γ values for m-SWNTs give a smaller

value than that for s-SWNTs. This is the reason why the G′ band intensity depends on

the metallicity in SWNTs. In addition, we calculate the G′ band spectra of multi-layer

graphene, in which the G′ band Raman spectra change in shape, width, and peak position

when the number of graphene layers increase from one (1L) to three (3L). Comparison
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with single layer graphene, multi-layer graphene has inter-layer interaction between π

electrons on the different layers, and then the energy band structure of the multi-layer

graphene is split to several energy sub-bands around the Fermi level. The split sub-bands

make many double resonance Raman scattering (DR) processes, and give broad the G′

band compared with single layer graphene. Thus, for double (2L) and triple (3L) layer

graphenes, there are four and nine possible DR processes for the G′ band, respectively.

However, Raman intensity calculation shows that each sub-band which appears due to

corresponding DR process depends on its wave vector, and then the G′ band of double

and triple layer graphenes have three and five components, respectively. The calculated

G′ band intensity of multi-layer graphene depends on the number of graphene layers, and

compares with the experiments.
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Chapter 1

Introduction

1.1 Purpose of this study

The physics of carbon nanotubes has rapidly developed into a new research field since

multi-wall carbon nanotube was discovered by S. Iijima in 1991 [1] and since single wall

carbon nanotubes (SWNTs) was discovered two years later [2, 3]. Carbon nanotube is

defined by a cylindrical graphene sheet with a nanoscale (1 nm=10−9 m) diameter and a

microscale (1 µm=10−6 m) length. Most of the observed SWNTs have diameter less than

3 nm. Therefore, the SWNTs can be considered as one dimensional (1D) nano-structures

because of high aspect ratio. A 1D SWNT can behave as either metallic or semiconducting

nanotube depending on two integers (n,m) or two key structural parameters, chirality

and diameter [4, 5]. Carbon nanotube is an ideal system for studying the physics of 1D

material. Many theoretical and experimental researchers have focused on the relationship

between the atomic and electronic structures, or on the electron-electron and electron-

phonon interaction. Theoretical and experimental studies in various fields of SWNTs, such

as mechanics, optics, chemistry, biology, and electronics, have also focused on both the

fundamental physical properties and the commercial application of carbon nanotubes.

These studies, in recent years, have generated significant breakthrough in the area of

nano-science and technology.

Resonance Raman spectroscopy (RRS) and photoluminescence (PL) spectroscopy pro-

vide powerful tools to investigate the geometry and characterization of SWNTs for dif-

ferent samples. The unique optical and spectroscopic properties observed in SWNTs are
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2 CHAPTER 1. INTRODUCTION

mainly due to the 1D confinement of the electronic and phonon states. In particular,

the 1D confinement of the electron (phonon) state results in the so-called van Hove sin-

gularities (vHSs) in the density of states (DOS) of SWNT as a function of energy [5, 6].

The vHSs in the DOS or corresponding the electronic joint density of states (JDOS) play

an important role on various optical phenomena. When the incident excitation laser en-

ergy matches to the vHS for a SWNT in the JDOS between the valence and conduction

bands, one can find a RRS resonance enhancement for the corresponding Raman scat-

tering process, which we call resonance Raman spectroscopy. Thus, the RRS intensity

allows one to obtain the information in detail about the phonon properties of SWNTs

as well as the electronic properties. Recently, many theoretical studies in the optical

properties of SWNTs have been performed in order to explain experimental observation.

The resonance Raman scattering process in SWNT consists of the electron-photon and

electron-phonon scattering processes [7, 8]. Therefore, for the RRS intensity calculation,

we need to understand the electron-photon and electron-phonon interaction in a SWNT.

The calculation of these interaction matrices has been able to explain the electronic and

phonon structure of SWNTs with different chirality and diameter. However, for more

precise RRS intensity calculation, we need to understand the Raman resonance window

for different SWNTs. Here, the resonance window is defined by an energy region which

gives resonance Raman enhancement [9]. In this thesis, we calculate the Raman resonance

window for SWNTs with different chirality and diameter. Using these values, we then

calculate the Raman spectra especially for a so-called G′ band (∼ 2700 cm−1) of SWNT

and multi-layer graphene.

1.1.1 Raman resonance window

Hereafter we overview the problems that are discussed in this thesis. Detailed definitions

will be given in the following chapters. RRS can be used to assign the (n,m) value of

a SWNT from a plot of the energy separation Eii between the i-th vHS in the valence

band and the i-th vHS conduction band as a function of diameter of the SWNT, which we

call the Kataura plot [10]. RRS of SWNTs is also widely used for evaluating the sample

quality and the population [7, 11] of (n,m) SWNTs in actual samples. In the analysis of

Raman spectra, not only the resonance energies for the given (n,m) SWNTs, but also

the Raman intensities relative to the intensity of other (n,m) SWNTs or of other phonon
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modes are important for evaluating the population of SWNTs in the generally available

sample in which many (n,m) SWNTs are mixed to one another. The radial breathing

mode (RBM, 100∼300 cm−1) and G band (1550∼1600 cm−1) Raman intensities [8,12] and

the PL intensity [13] show the presence of a strong (n,m) chirality and diameter depen-

dences, which are calculated by using an extended tight binding (ETB) calculation of the

electronic [14] and phonon [12] structures. The calculated results are directly compared

with (1) experimental PL intensity measurements on samples prepared at different syn-

thesis temperatures [13], (2) experimental Raman/PL intensity ratio measurements [15],

and (3) direct transmission electron microscope (TEM) measurements of the diameter

distribution [16]. The agreement between theory and experiment is satisfactory except

for some exceptions for small diameter SWNTs.

The first order Raman intensity, RBM and G band, as a function of phonon frequency

ω and excitation laser energy EL is given by:

I(ω,EL) =
∑

i

∣∣∣∑
a

Mel−op(i, b)Mel−ph(b, a)Mel−op(a, i)

(EL − (Ea − Ei) − iγ)(EL − (Ea − Ei) − Eph − iγ)

∣∣∣2, (1.1.1)

where i, a, and b denote, respectively, the initial state, the excited state, and the scat-

tered state of an electron, Mel−op is the electron-photon interaction matrix, and Mel−ph

is the electron-phonon interaction matrix. Here EL, Ei, Ea and Eph are, respectively, the

excitation laser energy, the initial state electronic energy, the excited state electronic en-

ergy, and the phonon energy. In Eq. (1.1.1), we have two energy difference denominators

(EL − (Ea −Ei)− iγ) and (EL − (Ea −Ei)−Eph − iγ) given by a time-dependent pertur-

bation theory. If the condition EL = Ea −Ei (incident resonance) or EL = Ea −Ei +Eph

(scattered resonance) is satisfied, we expect the large resonance enhancement of Raman

intensity, which is called resonance Raman effect. The resonance Raman intensity is very

sensitive to the resonance window parameter γ. Experimentally, we can observe this γ

value as the spectral width of the RBM spectra as a function of excitation laser energy

(Raman excitation profile, REP) [9], and we see both the diameter and chiral angle de-

pendences of the γ values. Moreover, the γ value for metallic SWNT (m-SWNT) is larger

than that for semiconducting SWNT (s-SWNT) [9]. However, in the previous intensity

calculations [8, 11], we used a constant value (0.06 eV) for the γ values for all SWNTs.

This might be the reason why we do not get good agreement in the population analysis

between the calculated and experimental values of the population of (n,m) especially for
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Figure 1.1: (a) Raman spectra taken HiPCO SWNT bundle with a excitation laser energy

2.41 eV. The spectra show the radial breathing mode (RBM), D band (∼ 1350 cm−1),

G band, and G′ band features. (b) Raman spectra taken from a metallic (top) and a

semiconducting (bottom) SWNT grown by the CVD method on an Si/SiO2 substrate [17].

The Si/SiO2 substrate provides contributions to the Raman spectra denoted by “∗”.

smaller diameter SWNTs [15]. In order to get more reliable calculated intensity values,

we will calculate the γ value as a function of (n,m) in Chapter 4.

1.1.2 Metallicity dependence in G′ band of SWNT

The chiralities of SWNTs can be identified using the RBM frequencies in Raman spec-

troscopy [18]. The RBM frequencies ωRBM(cm−1) are inversely proportional to the diam-

eters of the SWNTs:

ωRBM =
C1

dt

+ C2, (1.1.2)

where dt(nm) is the diameter of a SWNT, and C1 and C2 are the constants that vary

according to the environment such as bundle or substrate. For example, the fitted values

are C1 = 248 (cm−1·nm) and C2 = 0 (cm−1) for isolated nanotubes on a SiO2 substrate, and

C1 = 234 (cm−1 ·nm) and C2 = 10 (cm−1) for bundles [18,19]. However the assignment of

the (n,m) values becomes difficult for a relatively higher Eii and a larger dt because there

are many data of (n,m) in a small region of the Kataura plot. The G band spectra can

distinguish the metallicity (either metallic or semiconducting) of the SWNTs, where the

separation of frequencies for the split G band (G+ and G−) is larger for metallic SWNTs

than that for semiconducting SWNTs and the G− band spectrum of metallic SWNT is

broaden [20] (see Fig. 1.1). The relative G band Raman intensity (G+/G−) strongly
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(a) (b)

Figure 1.2: (a) Optical image of single, double and triple layer graphene on Si with a

300 nm SiO2 over-layer, labeled in the paper as 1L, 2L, and 3L, respectively. (b) Raman

spectra of 1L, 2L, and 3L graphene at excitation laser energy EL = 2.32 eV [26].

depends on the chiral angle [20], and the G+/G− value becomes large for SWNT with a

chiral angle near a zigzag nanotube [21,22]. Therefore, we need other simple information

on the metallicity of SWNT by Raman spectroscopy. Recently, the metallicity dependence

of the G′ band intensity relative to the G band intensity was observed by separating the

metal-enriched or semiconducting-enriched SWNT samples by the oxidation of nitronium

ions [23–25]. The experimental results are confirmed by calculating the Raman intensity

for the G′ band using the double resonance Raman scattering theory, which is one of the

results of the present thesis.

We will demonstrate that the G′ band intensity of SWNTs shows a strong dependence

on the metallicity of the sample in Chapter 5.

1.1.3 G′ band of multi-layer graphene

Graphene is defined as a two-dimensional (2D) hexagonal lattice of carbon atoms. The

recent discovery of graphene has stimulated great interest in the scientific community by

the report of the massless and relativistic properties of the conduction electrons in this

single layer system. It is in fact these special electrons that are responsible for the unusual

properties of the quantum Hall effect [27,28] in single layer and double layer graphene.
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Many groups are now making devices by using graphene ribbon, because the 2D nano-

structure of graphene makes it a promising candidate for electronic applications due to

its high mobility, and its chemical and mechanical stability [29, 30]. The single layer

graphene is usually obtained by using the procedure of micro-mechanical cleavage of

bulk graphite, which is the same technique that allowed the isolation of graphene for

the first time [31]. A single graphene layer placed on top of a Si wafer with a carefully

chosen thickness of SiO2 (300 nm) becomes visible in an optical microscope (see Fig. 1.2).

However, this SiO2 thickness dependence on visibility is very sensitive, and if the thickness

is exceeded by about 5 nm, the single layer graphene becomes completely invisible in an

optical microscope [31]. For overcoming of this difficulty, many groups use a Raman

spectroscopy under an optical microscope, for distinguishing single layer from multi-layer

graphene. Raman spectroscopy allows accurate measurement of the number of graphene

layers on a SiO2 substrate [32], using the G′ band of the Raman spectra. The G′ band

Raman spectra change in shape, width, and peak position when the number of graphene

layers changes from one to three [32] (see Fig. 1.2). It has been known that the electronic

band structure around the Fermi level for multi-layer graphene plays an important role

in an inter-valley double resonance Raman scattering process [32]. By analyzing the G′

band of double layer graphene with several excitation laser energies, we can probe both

the electronic energy and phonon dispersion around the K or K ′ point in the Brillouin

zone of graphene [33].

In Chapter 6, we will report the results on the calculation of the Raman G′ band as

a function of number of graphene layers, and compare theory with experiment.

1.2 Organization

The present thesis is organized as follows. In the remaining section of Chapter 1, we

explain the background for understanding this thesis. In Chapter 2, the structures of

graphene and SWNT are reviewed and the concept of cutting lines leading to the zone-

folding scheme is discussed. Also, the electronic band structures of graphene and SWNT

are reviewed based on the simple tight binding and extended tight binding models. In

Chapter 3, we introduce the calculation methods used in this thesis. The electron-phonon

interaction matrix elements for the evaluation of Raman resonance windows is reviewed,
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which was developed by J. Jiang et al. [12, 34] in our group. Then, we show how to

get the Raman resonance windows of the Raman excitation profiles for (n,m) SWNTs.

The G′ band intensity calculation for each (n,m) SWNT is introduced based on the

double resonance scattering theory. For the G′ band Raman intensity calculation, we

consider the electron-phonon interaction matrix, the electron-photon interaction matrix,

and the Raman resonance window. In Chapter 3, the electron-photon interaction matrix

is simply reviewed, which was developed by J. Jiang et al. [35] and A. Grüneis et al. [36]

in our group. For graphene with different number of layers, a computational program

for the G′ band spectra is developed, based on the double resonance scattering theory.

By considering the unit cell of double and triple layer graphene with the AB stacking of

graphene layer [37,38], we calculate the electronic structure for each number of layers. As

the result, the electronic two-linear band of single graphene layer around the Fermi level

is split into two or three energy sub-bands by the interlayer interaction. The electronic

structure of multi-layer graphene is applied to calculate their G′ band Raman spectra.

Our contributed work will be shown from Chapter 4. In Chapter 4, the calculated results

for the Raman resonance windows for each (n,m) SWNT are directly compared with the

experimental value which was obtained by Raman excitation profile (REP). For metallic

SWNTs, we will discuss an additional contribution to the calculated resonance windows

for explaining discrepancy with the experimental results. For example, the interaction

of photo-excited carriers with free electrons might contribute to the Raman resonance

window in metallic SWNTs. In Chapter 5, the calculated G′ band intensities of metallic

SWNTs are given. We will show the G′ band intensity for metallic SWNTs are stronger

than that of semiconducting SWNTs. This results are compared with the experimental

G′ band for SWNTs sample in which metallic SWNTs are removed from semiconducting

SWNTs by oxidization of SWNTs. We will also explain the reason why the G′ band

intensity for the metallic SWNTs is stronger than that for the semiconducting SWNTs.

In Chapter 6, we will show that the electronic band splitting near the Fermi level plays

an important role in determining the G′ band shape and intensity for double and triple

layer graphenes. Finally, in Chapter 7, a summary and conclusion of this thesis are given.
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1.3 Background

1.3.1 Synthesis of SWNTs

The full potential of carbon nanotubes for commercial applications will be realized if the

growth of carbon nanotubes can be optimized and well controlled. Over the years, various

techniques have been developed to commercially synthesize SWNTs in large quantities,

including arc discharge [39], laser ablation [40], high pressure carbon monoxide (CO) de-

composition (HiPCO) [41], and chemical vapor deposition (CVD) [42]. The arc discharge

method is a convenient tool to vaporize carbon atoms in the high temperature of the

plasma, which approaches 3700 ◦C [43], and it has been used to produce such structures

as carbon whiskers [44], fullerenes [45], and carbon nanotubes. Typical conditions for the

arc discharge method are that a DC voltage of 20 − 25 V is applied between two carbon

rod electrodes with 5 − 20 mm diameter in a reactor chamber at a given helium pressure

around 500 Torr and the negative electrode rod contains the catalyst such as Co, Ni, and

Fe in order to grow the SWNTs in the chamber. The laser ablation method is an efficient

technique for the synthesis of bundles of SWNTs with a narrow diameter distribution. Un-

der the condition flowing Ar gas at 30 Torr in a heated glass tube (1200 ◦C), a pulse laser

beam is irradiated on the graphite target containing a small amount of metal catalyst.

The irradiation arises from the graphite and the catalyst to vaporize. Flowing Ar gas, the

vaporized particles are swept away the copper collector and then the SWNTs with high

yield are formed [40]. The HiPCO process produces SWNTs from gas-phase reactions

of iron carbonyl (Fe(CO)5) in carbon monoxide (CO) at high pressures (10 − 100 atm).

In the HiPCO process, SWNTs are obtained with less graphitic deposits and amorphous

carbon and the process has the potential for producing SWNTs in large quantities due

to a gas-phase reaction [41]. The CVD method is highly promising for producing large

quantities of high quality SWNT. The SWNT growth process involves heating a catalyst

to high temperatures in a tube furnace and flowing a hydrocarbon gas through the tube

reactor for a period of time. The key parameters in SWNT CVD growth are the type of

hydrocarbon and catalyst, and the growth temperature. For example, by using CH4 or

C2H5OH as carbon source, the reaction temperature in the range of 850 − 1000 ◦C, the

suitable catalyst materials (Ni, Co, Fe), and the gas flow condition, one can easily grow

high quality SWNTs by a simple CVD method [46, 47]. Recent interest in CVD SWNT
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growth is to synthesize the aligned and ordered SWNT structure on surfaces under some

control such as temperature and flowing rate of hydrocarbon gas [48,49]. The controlled

SWNT growth techniques have opened up new routes building the SWNT structure at

the specified location and allow the construction of novel SWNT electromechanical de-

vices [50]. Perhaps, it is an ultimate goal for carbon nanotube growth to gain control over

the SWNT chirality and diameter, and be able to direct the growth of a semiconducting

or metallic nanotube from and to any desired direction. But, it is still difficult to reach

with current synthesis techniques. On the other hand, the diameter of SWNTs can be

controlled significantly by optimizing the growth temperature and the size of catalyst.

Thus, we generally get a mixture of SWNTs with different chiralities and diameters.

1.3.2 Experimental Raman spectra of SWNT

Resonance Raman spectra of SWNTs can be obtained by using commercial micro-Raman

spectrometers. Relatively high laser powers (up to 40 mW · µm−2) can be used to probe

isolated SWNTs on substrate or in aqueous solution because of their high thermal conduc-

tivity (3 W ·K−1) [51], their high temperature stability, and their good thermal contact to

the substrate. A triple monochromator is ideal for the Raman measurements for changing

the excitation laser energy continuously, but the obtained intensity decreases significantly

compared with the intensity obtained from a single monochromator spectrometer. We

usually adopt a notch filter for removing a strong Rayleigh scattering of the light for a

single monochromator setup.

In Fig. 1.1 (page 4), we show characteristics of Raman spectra from both bundled (Fig.

1.1a) and isolated (Fig. 1.1b) SWNTs. The first order single resonance Raman spectra

RBM and G band features are the most intense Raman peaks. The D and the G′ bands

are the second order double resonance Raman spectra, in which the D band is defect-

induced Raman spectra and the G′ band is an inelastic two-phonon Raman scattering of

the light [7,52–57]. The second order Raman spectra provide a large amount of important

information about SWNT electronic and vibrational properties that cannot be obtained

by analyzing the first order Raman spectra. We will focus on the second order double

resonance Raman spectra, in particular, the G′ band in this thesis. Other weak peaks,

such as the M band (an overtone of out of plane tangential optic (oTO) mode, ∼1750

cm−1) [7] and the iTOLA band (a combination of in-plane tangential optic(iTO) at the
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Figure 1.3: (a) Schematic electronic DOS in a SWNT. Bold solid arrows denote the

optical excitation from second valence band v2 to second conduction band c2 and the

emission (or fluorescence) from the first conduction band c1 to the first valence band v1,

and dashed arrows denote the non-radiative relaxation of the electron in the conduction

band (c2 → c1) and the hole in the valence band (v2 → v1) before the emission. (b)

Contour plot of PL intensity versus excitation and emission wavelengths [58].

Γ point and in-plane longitudinal acoustic (iLA) modes, ∼1950 cm−1) [7] also shown in

Fig. 1.1, too. However, we will not discuss in this thesis.

1.3.3 Photoluminescence spectroscopy

Photoluminescence (PL) is a process in which a SWNT absorbs a photon and then emits

a photon. Quantum mechanically, this process can be described as an excitation of an

electron to a higher energy band and then a recombination with a hole by emitting a

photon. The duration time between the absorption and the emission is typically in the

order of 10 ns [59]. The wavelengths of light preferentially absorbed and emitted are

determined by the selection rules for optical transition. Over the past few years, PL has

become an important technique for the characterization of SWNTs [60]. The ability to

probe the electronic structures of a large number of semiconducting SWNTs at the same

time has made PL a complementary method to RRS for the characterization of SWNTs.

In the most prior PL studies, the SWNT samples were dispersed in a surfactant solution,

excited by a lamp source, and the PL spectra were recorded over the near and far IR

spectral regions. Generally, in the most of studies, the strongly luminescent peaks are
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associated with a emission at ES
11 (from the first conduction band c1 to the first valence

band v1, see Fig. 1.3 (a)) for different semiconducting SWNTs with a strong absorption

at ES
22 (from the second conduction band c2 to the second valence band v2). A very

fast (< 1 ps) relaxation of the photo-excited carrier occurs by emitting a phonon from

ES
22 to ES

11, as shown in Fig. 1.3 (a). In Fig. 1.3 (b), a two-dimensional (2D) map for

the PL intensity for a sample of HiPCO SWNTs suspended in SDS and deuterium oxide

(D2O) [58] is plotted as functions of absorption (ES
22) wave-length (y−axis) and emission

(ES
11) wave-length (x−axis). Each strong peak in the 2D map corresponds to a (n,m)

SWNT. We can see that the relative PL intensity depends on (n,m) value. It is because

that (1) the population for (n,m) SWNTs is different [11] and that (2) the relative matrix

elements of PL are strongly chirality dependent [12]. As for (2), we know that PL intensity

is relatively strong for large chiral angle near armchair SWNTs [13].

1.4 Experimental background for this study

1.4.1 Resonance Raman window measurement

C. Fantini et al. as our collaborators measured the experimental resonance window for

various samples at room temperature and at ambient pressure, using a DILOR XY

triple-monochromator spectrometer in a backscattering configuration for measurement,

equipped with a liquid N2 cooled charge coupled device (CCD) [9], as shown in Fig 1.4.

In Fig 1.4 (a), the 2D map of the Raman intensity is plotted as a function of the RBM

frequency (x−axis) for 76 different excitation laser energies (y−axis). The samples were

excited by a tunable laser system composed of a Ti:Sapphire laser, a dye laser, and an

Ar-Kr ion laser, in the range 1.52 to 2.71 eV. Along a vertical line of the experimental

2D resonance Raman plot in Fig. 1.4 (a), we get experimental Raman excitation profile

(REP) for the individual RBM features for different (n,m) SWNTs present in the sample

(see Fig. 1.4 (b)). From these measurements, C. Fantini et al. obtained the experimental

resonance window (γEX) values in the resonance Raman profiles as the spectral width of

REP for individual (n,m) SWNTs. Experimental results reveal that the γEX value, repre-

senting the lifetime-broadening of the excitonic transition of an individual (n,m) SWNT,

strongly depends on the environment of the (n,m) SWNT and on (n,m) values itself in a

given sample, which suggests that electron-phonon (or exciton-phonon) coupling depends
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Figure 1.4: (a) The experimental 2D resonance Raman plot (the intensity increases from

blue to red) compared with resonance points calculated by the extended tight binding

method presented in a Kataura plot (+ for metallic and × for semiconducting nanotubes).

SDS-wrapped HiPCO carbon nanotubes in solution were used in the experiment [9]. We

can see that, for metallic nanotubes, the experimental peaks are related only to the lower

transition energy (EML
11 ) in the extended Kataura plot. The numbers denote values of

2n+m. The RBM intensity at 310 cm−1 is plotted as a function EL for bundle SWNTs and

for SDS wrapped (6,5) SWNTs in solution for (b) CoMoCAT and (c) HiPCO samples [61].

The experimental resonance window γEX are shown.

on the environment and (n,m) values.

In Fig. 1.4 (b-c), we show the REPs of the RBM at 310 cm−1 observed for (6,5)

nanotubes in (b) CoMoCAT [62] and (c) HiPCO [41] samples. Solid circles and open

squares denote SDS-wrapped SWNTs in solution and SWNTs within bundles, respec-

tively. Solid and dashed lines represent the fit of the REPs to Eq. (1.1.1) for first order

single resonance Raman scattering intensity I(EL). The matrix elements for optical ab-

sorption Mel−op, electron-phonon coupling Mel−ph, and optical emission Mel−op are taken

as constants for the fitting. The spectra widths of the REPs correspond to the exper-

imental resonance windows γEX. In Chapter 3, we explain how to calculate the matrix

elements, based on the electronic structure by the ETB method explained in Chapter

2. The optical matrix [36] and electron-phonon interaction matrix elements [12] were

developed by A. Grüneis and J. Jiang, respectively, who had worked in our group. The
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γEX value is determined by fitting the parameter γ of Eq. (1.1.1) to the experimental

points. The fitting was performed not by Lorentzian functions but by making the integral

in Eq. (1.1.1), and by considering the numerator as a δ−function integrated in energy

δ(E − (Ea − Ei))dE [9]. For the CoMoCAT nanotubes in solution, the REPs show a

smaller resonance window than those for HiPCO nanotubes in solution. The γEX values

of (6,5) nanotubes for HiPCO and CoMoCAT samples in solution are 63 meV and 40

meV, respectively. Moreover, the resonance window for SWNTs in solution is smaller

than that for bundles, which means that there are more relaxation paths for the excited

carriers in bundles. For example, the tube-tube interaction may make the carrier relax-

ation to other SWNTs possible. When we compare the REPs for HiPCO and CoMoCAT

SWNTs in solution, we can see that there are minor differences (up to 80 meV) in the

optical transition energies due to the environmental effects which gives rise to the shift

of Eii value by the surrounding materials of SWNTs [63]. It should be mentioned that

the γEX for CoMoCAT SWNTs is not always smaller for all (n,m) tubes than the γEX

for HiPCO SWNTs. Thus the 23 meV difference should be considered as a sample- and

(n,m)-dependent deviation. We expect that the catalyst or the length of SWNT might

not contribute to the resonance window very much because most of catalyst will be re-

moved in the purification process and the electron-phonon scattering is also independent

of the tube length. In Chapter 4, we will consider the γ value of isolated SWNTs. The

calculated γ values for some (n,m) values are compared with the isolated SDS wrapped

SWNTs in solution.

1.4.2 G′ band measurement of SWNT

K. K. Kim et al. as our collaborators in Korea observed the dependence of the G′ band in-

tensity on the metallicity (being either metallic or semiconducting properties) of SWNTs

by RRS with several excitation laser energies of 2.41 eV (514 nm, Ar+ ion laser), 1.96

eV (632.8 nm, He-Ne laser), and 1.58 eV (785 nm, diode laser) [23]. These measure-

ments used HiPCO SWNTs sample with diameters ranging from 0.8 to 1.3 nm. For the

observation of the metallicity dependence of the G′ band intensity, the pristine HiPCO

sample was treated by nitronium ions (NO+
2 ) to remove the metallic (m-) SWNTs. In this

treatment, 10 mg of the pristine sample were sonicated for 24 hours in tetramethylene

sulfone/chloroform (1:1 by weight) containing 50 mmol nitronium hexafluoroantimonate
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Figure 1.5: Raman spectra of the pristine HiPCO sample (black) and the NHFA-treated

HiPCO sample (red) at an excitation energy of (a-c) 2.41 eV, (d-f) 1.96 eV, and (g-i)

1.58 eV. The NHFA-treated HiPCO sample was annealed at 900 ◦C. In Figures (b,e,f),

the blue and red dotted regions indicate the semiconducting and metallic RBM frequency

regions. The G′ band intensity is normalized to the G band peak intensity [23].

(NHFA). While the semiconducting (s-) SWNTs with small diameter range (< 1nm) re-

main after the chemical reaction, the m-SWNTs are removed by oxidation in the same

diameter range as the s-SWNTs [24].

Figure 1.5 shows strong metallicity dependence of the G′ band intensity of the HiPCO

sample. The Raman spectra with excitation laser energy EL = 2.41 eV in Fig. 1.5 (a-c)

show that the pristine HiPCO sample (black lines) consists of both m- and s-SWNTs

by analyzing the RBM and G band. After the NHFA treatment followed by thermal

annealing at 900 ◦C, the m-SWNTs with small diameters were removed completely, while

the s-SWNTs still remained without damage (red lines). This observation was confirmed
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by the significant reduction in Breit-Wigner-Fano (BWF) component in the G band, as

shown in Fig. 1.5(a,b). In m-SWNTs, the G band becomes soft and the spectra shows

asymmetry around the peak position which can be fitted to BWF lines [64]. Then, the G′

band for the NHFA-treated sample was significantly suppressed since the m-SWNTs were

removed. If the m-SWNTs with a diameter approximately 0.94 nm were present in the

NHFA-treated sample, a strong G′ band intensity would be expected due to the scattering

resonance condition for the G′ band at EM
11 . This suggests that the dependence of the G′

band intensity on the metallicity is dominated by the incident photon resonance of the

s-SWNTs. In the case of EL = 1.96 eV in Fig. 1.5 (d-f), more m-SWNTs with large

diameters (> 1nm) remained in the sample, while the s-SWNTs with small diameters

were removed after NHFA treatment. The BWF line for the NHFA treatment sample are

stronger than that for the pristine sample due to the higher m-SWNT component which

can be seen in RBM peak in the metallic resonance condition. In this case, the G′ band

intensity becomes stronger. For EL = 1.58 eV in Fig. 1.5 (g-f), the s-SWNTs can be

resonant to ES
22 even after the NHFA treatment. The metallicity dependence of the G′

band is not well recognized in this Raman spectra, because the its G′ band intensity is

much smaller than the G band intensity.

In Chapter 5, we will calculate the G′ band intensity for m- and s-SWNT and explain

the origin of the metallicity dependence of the G′ band.

1.4.3 G′ band measurement of multi-layer graphene

Finally, we introduce the G′ band measurement of multi-layer graphene which is done by

A. Reina in MIT as our collaborator. The graphene samples were prepared on Si substrates

with a 300 nm SiO2 over-layer following the procedure given in previous publications

[28,31]. After graphene deposition by micro-mechanical cleavage [31], the substrates were

inspected under an optical microscope and one to three layer (1L, 2L and 3L) graphene

regions were identified by both color contrast in the optical microscope and the atomic

force microscopy (AFM) height measurements, as shown in Fig. 1.2 (a) (page 5). The

Raman spectra were taken with a homemade confocal Raman spectrometer with 7 laser

excitation energies from 1.83 eV to 2.72 eV. The laser spot size is 0.5 µm2 and the power

of the laser is 1.5 mW at each excitation energy. Intensity calibration of the spectrometer,

at each laser energy, was carried with a white tungsten lamp. The experimental spectra



16 CHAPTER 1. INTRODUCTION

shown here are normalized with the G band intensity for each laser energy. Raman spectra

of single, double, and triple layer graphenea at excitation laser energy EL = 2.32 eV are

given in Fig. 1.2 (b). The width and peak position of the G′ band become larger and

blue-shifted with increasing number of graphene layers.

In Chapter 6, we will calculate the G′ band spectra shape and intensity for multi-layer

graphene.



Chapter 2

Geometry and electronic structure of

SWNT

2.1 Geometry of SWNT

A carbon nanotube rolled up a single graphene sheet is called a single wall carbon nanotube

(SWNT), and a carbon nanotube made of concentrically arranged cylinders rolled up

several graphene sheets is referred to as a multi-wall carbon nanotube (MWNT). In this

thesis, the SWNT is our main work.

This Section provides some basic definitions about the structure of SWNTs and the

construction of one dimensional (1D) Brillouin zone of SWNT in relation to two dimen-

sional (2D) Brillouin zone of graphene sheet. A carbon nanotube is a hollow cylinder

of 2D graphene sheet. The structure of carbon nanotube has been investigated by the

transmission electron microscopy (TEM) [1–3] and the scanning tunneling microscopy

(STM) [65], yielding that the carbon nanotube is a seamless cylinder rolled up a graphene

sheet with the honeycomb lattice. There are many ways to roll a graphene sheet into a

cylindrical carbon nanotube, resulting in different diameter and helical structures of the

nanotubes. These carbon nanotubes are defined by the diameter and the chiral angle

which means the angle of the hexagon helix around the nanotube axis [5]. The physi-

cal properties of SWNTs significantly depend on the structure, including the electronic

energy band structure, in particular, their metallic or semiconducting properties [4].

17
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Figure 2.1: (a) The unit cell of graphene sheet is shown as the dotted rhombus. The red

and blue dots in the dotted rhombus indicate the A and B sub-lattices, respectively. The

real lattice unit vectors a1 and a2 are shown by arrows in the x, y coordinates system.

(b) The first Brillouin zone is by a shaded region. The reciprocal lattice vectors b1 and

b2 are shown by arrows in the kx, ky coordinates. (c) The first Billouin zone of (b). Γ,

K, K ′, and M indicate the high symmetry points. In general, energy dispersion relations

are obtained along the side of the dotted triangle connecting the high symmetry points,

Γ, K and M [5].

2.1.1 Graphene is 2D

Graphene is one atomic layer of graphite. The nearest neighbor distance between two

carbon atoms in the graphene sheet is 0.142 nm (aCC). The unit cell and the Brillouin

zone of graphene are expressed, respectively, by a1 and a2 unit vectors in real space, and

by b1 and b2 reciprocal lattice vectors in the k space as shown in Fig. 2.1. In real space,

the unit vectors a1 and a2 are given by:
a1 =

√
3a

2
x̂ +

a

2
ŷ,

a2 =

√
3a

2
x̂ − a

2
ŷ,

(2.1.1)

where a =
√

3aCC = 0.246 nm is the lattice constant of graphene sheet. x̂ and ŷ are the

unit vectors in x and y directions of graphene sheet, respectively. These two unit vectors

a1 and a2 make an angle 60◦ in Fig. 2.1 (a). The reciprocal lattice vectors b1 and b2 are

related to the real space vectors a1 and a2 according to following definition:

ai · bj = 2πδij, (2.1.2)
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where δij is the Kronecker delta function. Therefore, the reciprocal unit vectors b1 and

b2 are given by: 
b1 =

2π√
3a

x̂ +
2π

a
ŷ,

b2 =
2π√
3a

x̂ − 2π

a
ŷ,

(2.1.3)

where the unit vectors b1 and b2 make an angle 120◦ in Fig. 2.1 (b). These reciprocal

lattice unit vectors define the first Brillouin zone of the graphene sheet and then, the first

Brillouin zone has the same hexagon shape as the real space unit cell, but the hexagon

orientation is different by 90◦ from each other. In the Brillouin zone as shown in Fig.

2.1 (c), we define three high symmetry points, Γ, K, and M as the center, the hexagonal

corner, and the center of a hexagon side, respectively. In general, the energy dispersion

of the graphene sheet is calculated for the electron wave vectors on the ΓKM triangle, as

shown in Fig. 2.1 (c).

2.1.2 1D unit cell

The structure of a SWNT is conveniently described in terms of its 1D unit cell [5]. The

1D unit cell is defined by the chiral vector Ch and the translation vector T, as shown in

Fig. 2.2. The chiral vector Ch can be represented by the 2D graphene unit vectors a1

and a2 in Eq. (2.1.1):

Ch = na1 +ma2 ≡ (n,m), (2.1.4)

where (n,m) is a pair of integers uniquely defining the particular structure of SWNT

(n ≥ m). Many properties of SWNTs such like their electronic band or phonon structures

change dramatically with the chiral vector, even though they have similar diameter or

similar chiral vector direction [5]. Figure 2.2 shows the unit cell of SWNT with the chiral

vector Ch = (4, 2), and the chiral angle θ between the chiral vector Ch and the zigzag

direction (θ = 0), and the unit vector a1 and a2 of the graphene sheet. The chiral angle

θ is given by:

θ = tan−1
( √

3n

2m+ n

)
. (2.1.5)

Therefore, the zigzag (n, 0) and armchair (n, n) nanotubes correspond to chiral angle

θ = 0 and 30◦, respectively, and the chiral (n,m) nanotubes correspond to 0 < θ < 30◦.
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Figure 2.2: (right) The unrolled graphene sheet of nanotube. OA and OB define the

chiral vector Ch and the translation vector T of the SWNT, respectively. Here Ch = (4, 2),

T = (4,−5). The chiral angle θ is the angle between a1 and Ch. Therefore, the chiral

angle θ = 0 along the zigzag axis. When we connect four sites O, A, B′, and B, a SWNT

can be constructed. The rectangle OAB′B defines the 1D SWNT unit cell. The vector R

indicates a symmetry vector; R = (1,−1). (left) The rotation angel ψ and the translation

τ constitute the basic symmetry operation R = (ψ|τ) for the SWNT. The number of

hexagons per unit cell of the SWNT is denoted by N . For (4,2) SWNT, N = 28 [5].

The diameter dt of a (n,m) SWNT is given by:

dt =
Ch

π
=
a

π

√
n2 + nm+m2, (2.1.6)

where Ch is the length of chiral vector Ch, and a =
√

3aCC.

The translation vector T is normal to the chiral vector Ch and is parallel to the

nanotube axis in the unrolled graphene sheet. The translation vector T corresponds to

the vector
−−→
OB (which is normal to Ch) with the first lattice point B and can be expressed

by unit vectors a1 and a2:

T = t1a1 + t2a2 ≡ (t1, t2), (2.1.7)
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where t1 and t2 are obtained by using the condition Ch · T = 0:
t1 =

2m+ n

dR

,

t2 = −2n+m

dR

,

(2.1.8)

where dR = gcd(2n + m, 2m + n), and gcd(i, j) denotes the greatest common divisor of

two integers i and j. The quantity dR is obtained by repeated use of Euclid’s law which

gcd(i, j) =gcd(i− j, j) if i > j. Namely, the quantity d = gcd(n,m) defined by the chiral

vector Ch is related to dR = gcd(2n+m, 2m+ n) introduced in the translation vector T:
d = gcd(n,m) = gcd(n−m,m),

dR = gcd(2n+m, 2m+ n) = gcd(n−m, 2m+ n) = gcd(n−m, 3m).

(2.1.9)

Then, we can relate dR to d:

dR =

d, if mod(n−m, 3d) 6= 0,

3d, if mod(n−m, 3d) = 0,
(2.1.10)

where mod(i, j) is the remainder (or modulus) of the division of i by j. The unit cell of

the SWNT is defined by the chiral vector Ch and the translation vector T. The area of

the SWNT unit cell is given by the absolute value of the vector product of Ch and T,∣∣Ch ×T
∣∣. The number of hexagons per unit cell of the SWNT, N is obtained by dividing

the area of the SWNT unit cell by the area of the hexagonal unit cell in the graphene

sheet,
∣∣a1 × a2

∣∣, of Fig. 2.1:

N =

∣∣Ch × T
∣∣∣∣a1 × a2

∣∣ =
2(n2 + nm+m2)

dR

. (2.1.11)

Consequently, (4, 2) SWNT in Fig. 2.2 has dR = d = 2, T = (4,−5), and N = 28.

The length of the translation vector T is given by:

T = |T| =

√
3a

dR

√
n2 + nm+m2 =

√
3Ch

dR

. (2.1.12)

The translational length T is significantly diminished when gcd(n,m) 6= 1. For example,

in the case of (9, 9) armchair nanotube, we have dR = 3d = 27, T = (1,−1), and N = 18

and for (9, 0) zigzag nanotube, dR = 9, T = (1,−2), and N = 18, while for (9, 8) chiral

nanotube, dR = d = 1, T = (25,−26), and N = 434.



22 CHAPTER 2. GEOMETRY AND ELECTRONIC STRUCTURE OF SWNT

Γ

µ=0

µ=27

K
1

T

2π
d
t

2

K
2

Γ

µ=0

µ=27

K
1

T

2π

T

2π

T

2π
d
t

2

d
t

2

K
2

Γ

µ=0

µ=27

K
1

T

2π
d
t

2

K
2

Γ

µ=0

µ=27

K
1

T

2π

T

2π

T

2π
d
t

2

d
t

2

K
2

Figure 2.3: The Brillouin zone of (4,2) SWNT is represented by the set of N = 28 parallel

cutting lines. The vector K1 and K2 are the reciprocal lattice vectors which correspond

to Ch and T, respectively. The cutting lines are labeled by the angular momentum index

µ, which defines integer values from 0 to N −1 = 27. The length of cutting line is defined

by 2π/T = 2π/
√

21a, where a =
√

3aCC = 0.246 nm [5].

2.1.3 Cutting line

In Section 2.1.2, we determined the unit cell of SWNT, and in this section, we construct

1D Brillouin zone of a SWNT. Along the circumference vector Ch of the SWNT, any

allowed wave vector k is quantized according to the periodic boundary condition. The

wave function of an electron of the SWNT has a boundary-condition-satisfied phase of an

integer multiple of 2π for the circumference vector Ch:

k · Ch = 2πµ, (2.1.13)

where µ is the angular momentum of standing wave in the SWNT and is an integer from

µ = 0 to N−1. In terms of the 2D Brillouin zone of graphene sheet, the allowed electronic

states k lie along parallel lines separated by a spacing of 2π/Ch = 2/dt. These lines are

called to cutting lines [66, 67]. Whereas the 1D unit cell of SWNT in the real space is

expressed by the chiral vector Ch and the translation vector T, the corresponding vectors

of SWNT in reciprocal space are the reciprocal lattice vectors K1 along the circumferential

direction and K2 along the nanotube axis. Therefore, by using the relations, Ri · Kj =

2πδij, between the real lattice vector Ri (= Ch or T) and the reciprocal lattice vector

Kj, the reciprocal lattice vector of SWNT, K1 and K2 are defined by:
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T · K1 = 0, Ch · K1 = 2π,

Ch · K2 = 0, T · K2 = 2π.
(2.1.14)

We substitute Ch and T from Eqs. (2.1.4) and (2.1.7) into Eq. (2.1.14), and then we

express a1 and a2 in K1 and K2 as b1 and b2 by comparing Eqs. (2.1.1) and (2.1.3):


K1 =

−t2b1 + t1b2

N
,

K2 =
mb1 − nb2

N
,

(2.1.15)

The reciprocal lattice vectors, K1 and K2 define the separation between the neighboring

cutting lines, and the length of the cutting lines, respectively. The magnitudes of K1 and

K2 are given by: ∣∣K1

∣∣ =
2π

Ch

=
2

dt

,
∣∣K2

∣∣ =
2π

T
, (2.1.16)

Therefore, the N parallel cutting lines are related to discrete value of the angular momen-

tum µ in Eq. (2.1.13) and the length of the cutting line
∣∣K2

∣∣ determines the periodicity

of the 1D momentum k that has continuous wave vector in the K2 direction for an infinite

SWNT length because of the translational symmetry of the vector T. The allowed wave

vector k of a SWNT takes the following form:

k = µK1 + k
K2

K2

, (2.1.17)

where µ = 0, · · · , N − 1, and k = −π/T < k < π/T . The unit cell of the SWNT has N

hexagons, and then the first Brillouin zone of the SWNT consists of N cutting lines. In

Fig. 2.3, the reciprocal lattice vectors, K1 and K2, for a (4,2) chiral SWNT are shown,

in which N = 28, K1 = (3
√

3, 1)π/14a, and K2 = (1/
√

3, 3)π/7a. For the N cutting

lines, N 1D energy bands for each 2D energy band and N 1D phonon dispersions for each

phonon mode will appear. The wave vectors in the K2 direction for a SWNT with infinite

tube length are continuous because of its translational symmetry, but, for a SWNT with

finite tube length L, the spacing between wave vectors is 2π/L, and its effect on energy

band was observed in experiment [68].
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2.2 Electronic structure

2.2.1 Electronic structure of graphene

Next, we review a simple tight-binding (STB) model that plays an important role to

understand the electronic structure of a graphene sheet and a SWNT. The electronic

structure of a SWNT using STB model is derived from that of graphene. For obtaining

a good agreement with recent optical experiments, we have to extend the STB model

by including the long-range atomic interactions and the σ molecular orbitals, and by

optimizing the geometrical structure. The resulting model is hereafter called to extended

tight-binding (ETB) model, which we explain below.

In graphene, the π electrons in 2pz orbital are valence electrons which are relevant to

the transport and other optical properties. The π electron has an energy band structure

near the Fermi energy, so that electrons can be optically excited from the valence (π) to

the conduction (π∗) band.

The electronic energy dispersion relations of a graphene are obtained by solving the

single particle Schrodinger equation:

ĤΨb(k, r, t) = i~
∂

∂t
Ψb(k, r, t), (2.2.1)

where the single-particle Hamiltonian operator Ĥ is given by the following expression:

Ĥ = − ~2

2m
∇2 + U(r), (2.2.2)

where ∇ is the gradient operator, ~ is the Plank’s constant, m is the electron mass, U(r) is

the effective periodic potential, Ψb(k, r, t) is one electron wave function, b (= 1, 2, ..., 8) is

the electron energy band index, k is the electron wave vector, r is the spatial coordinate,

and t is time. The one electron wave function Ψb(k, r, t) is constructed from four atomic

orbitals, 2s, 2px, 2py, and 2pz, for the two inequivalent carbon atoms at A and B in the

unit cell of graphene as shown Fig. 2.1 (a), and is approximated by a linear combination

of atomic orbitals (LCAO) in terms of Bloch wave function [69]:

Ψb(k, r, t) = eiEb(k)t/~
A,B∑

s

2s,...,2pz∑
o

Cb
so(k)Φso(k, r), (2.2.3)

where Eb(k) is the one electron energy, the Cb
so is the wave function coefficient for the

Bloch function Φso(k, r). The Bloch wave function Φso(k, r) is given by a sum over the



2.2. ELECTRONIC STRUCTURE 25

atomic wave function φo(r) for each orbital at the u-th unit cell in a graphene sheet:

Φso(k, r) =
1√
U

U∑
u

eik·Rusφo(r − Rus), (2.2.4)

where the index u (= 1, ..., U) spans all the U unit cells in a graphene sheet and Rus is

the atomic coordinate for the u−th unit cell and s−th atom. Since the electron wave

functions Ψb(k, r, t) should also satisfy Bloch’s theorem, the summation in Eq. (2.2.3) is

taken only for the Bloch wave function Φso(k, r) with the same value of k. The eigenvalue

Eb(k) as a function of k is given by:

Eb(k) =
〈Ψ(k)|Ĥ|Ψ(k)〉
〈Ψ(k)|Ψ(k)〉

. (2.2.5)

Substituting Eq. (2.2.3) into Eq. (2.2.5), we obtain the following equation:

Eb(k) =

∑
s′o′

∑
so

Cb∗

s′o′(k)Hs′o′so(k)Cb
so(k)∑

s′o′

∑
so

Cb∗

s′o′(k)Ss′o′so(k)Cb
so(k)

, (2.2.6)

where the transfer integral Hs′o′so(k) and overlap integral Ss′o′so(k) matrices are given by:

Hs′o′so(k) =
1

U

U∑
u

eik·(Rus−Ru′s′ )

∫
φ∗

o′(r − Ru′s′)Hφo(r − Rus)dr,

Ss′o′so(k) =
1

U

U∑
u

eik·(Rus−Ru′s′ )

∫
φ∗

o′(r − Ru′s′)φo(r − Rus)dr.

(2.2.7)

When we fix the values of the n×n (n = 8) matrices Hs′o′so(k) and Ss′o′so(k) in Eq. (2.2.7)

for a given electron wave vector k, the wave function coefficient Cb∗

s′o′(k) is optimized so

as to minimize Eb(k). The coefficient Cb∗

s′o′(k) as a function of k is a complex variable

with a real and a complex part, and both Cb∗

s′o′(k) and Cb
so(k) are independent each other.

Taking a partial derivative for Cb∗

s′o′(k) while fixing the coefficient Cb
so(k), we can get the

variational condition for finding the minimum of the ground state energy [5]:

∂Eb(k)

∂Cb∗
s′o′(k)

= 0. (2.2.8)

By substituting the ground state energy Eb(k) from Eq. (2.2.5) into Eq. (2.2.8), Eq.
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(2.2.8) becomes:

∂Eb(k)

∂Cb∗
s′o′(k)

=

∑
so

Hs′o′so(k)Cb
so(k)∑

s′o′

∑
so

Cb∗

s′o′(k)Ss′o′so(k)Cb
so(k)

−

∑
s′o′

∑
so

Cb∗

s′o′(k)Hs′o′so(k)Cb
so(k)(∑

s′o′

∑
so

Cb∗

s′o′(k)Ss′o′so(k)Cb
so(k)

)2

∑
so

Ss′o′so(k)Cb
so(k)

=

∑
so

Hs′o′so(k)Cb
so(k) − Eb(k)

∑
so

Ss′o′so(k)Cb
so(k)∑

s′o′

∑
so

Cb∗

s′o′(k)Ss′o′so(k)Cb
so(k)

= 0,

(2.2.9)

and then upon multiplying both side of Eq. (2.2.9) by
∑
s′o′

∑
so

Cb∗

s′o′(k)Ss′o′so(k)Cb
so(k), we

can obtain simple following equation:∑
so

Hs′o′so(k)Cb
so(k) − Eb(k)

∑
so

Ss′o′so(k)Cb
so(k) = 0. (2.2.10)

Eq. (2.2.10) is expressed by a matrix form when we define the Cb
so(k) as a column vector:(

H(k) − Eb(k)S(k)
)
Cb(k) = 0,

Cb(k) =


Cb

2sA

...

Cb
2pB

z

 , (b = 1, · · · , 8).
(2.2.11)

The eigenvalues of Hs′o′so(k) are calculated by solving the following secular equation for

each k:

det
[
H(k) − Eb(k)S(k)

]
= 0, (2.2.12)

where Eq. (2.2.12) gives eight eigenvalues of Eb(k) for the energy band index b = 1, · · · , 8
for a given electron wave vector k. Considering four atomic orbitals per one carbon atom

(2s, 2px, 2py, 2pz) and two carbon atomic site (A,B) per unit cell of a graphene sheet, we

obtain the 8 × 8 Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices, and then these

matrices are expressed by 2 × 2 sub-matrix for two sub-atoms:

H(k) =

HAA(k) HAB(k)

HBA(k) HBB(k)

 and S(k) =

SAA(k) SAB(k)

SBA(k) SBB(k)

 , (2.2.13)
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where HAA (HBB) and HAB (HBA) are expressed by 4 × 4 sub-matrix for four orbitals.

The matrix elements between 2pz orbital and 2s, 2px, and 2py are zero because of the

odd (even) function 2pz (2s, 2px, and 2py) of z for the both cases of HAA (HBB) and HAB

(HBA):

HAA(k) =


〈2sA|H|2sA〉 〈2sA|H|2pA

x 〉 〈2sA|H|2pA
y 〉 〈2sA|H|2pA

z 〉
〈2pA

x |H|2sA〉 〈2pA
x |H|2pA

x 〉 〈2pA
x |H|2pA

y 〉 〈2pA
x |H|2pA

z 〉
〈2pA

y |H|2sA〉 〈2pA
y |H|2pA

x 〉 〈2pA
y |H|2pA

y 〉 〈2pA
y |H|2pA

z 〉
〈2pA

z |H|2sA〉 〈2pA
z |H|2pA

x 〉 〈2pA
z |H|2pA

y 〉 〈2pA
z |H|2pA

z 〉



=


〈2sA|H|2sA〉 0 0 0

0 〈2pA
x |H|2pA

x 〉 0 0

0 0 〈2pA
y |H|2pA

y 〉 0

0 0 0 〈2pA
z |H|2pA

z 〉


= HBB(k),

HAB(k) =


〈2sA|H|2sB〉 〈2sA|H|2pB

x 〉 〈2sA|H|2pB
y 〉 〈2sA|H|2pB

z 〉
〈2pA

x |H|2sB〉 〈2pA
x |H|2pB

x 〉 〈2pA
x |H|2pB

y 〉 〈2pA
x |H|2pB

z 〉
〈2pA

y |H|2sA〉 〈2pA
y |H|2pA

x 〉 〈2pA
y |H|2pB

y 〉 〈2pA
y |H|2pB

z 〉
〈2pA

z |H|2sA〉 〈2pA
z |H|2pB

x 〉 〈2pA
z |H|2pB

y 〉 〈2pA
z |H|2pB

z 〉



=


〈2sA|H|2sB〉 〈2sA|H|2pB

x 〉 〈2sA|H|2pB
y 〉 0

〈2pA
x |H|2sB〉 〈2pA

x |H|2pB
x 〉 〈2pA

x |H|2pB
y 〉 0

〈2pA
y |H|2sA〉 〈2pA

y |H|2pA
x 〉 〈2pA

y |H|2pB
y 〉 0

0 0 0 〈2pA
z |H|2pB

z 〉


= TH∗

BA(k).

(2.2.14)

In a flat graphene sheet, these matrices are partitioned into the 6 × 6 and 2 × 2 sub-

matrices corresponding to the σ and π molecular orbitals, respectively, because the atomic

orbital 2s, 2px, and 2py are even functions of z, which parallel to the graphene sheet, while

the 2pz orbital is an odd function of z.

The STB model neglects the σ molecular orbitals and the long-range atomic inter-

actions, R > aCC. Therefore, in the STB model, we solve for the 2 × 2 sub-matrix to

determine the dispersion relation Eb(k) and the electron wave function coefficients for the

π electrons in a flat graphene sheet. When we consider only nearest-neighbor interactions,
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there is only an integration over a single atom in HAA(k) and HBB(k), and then these

2 × 2 matrix Hamiltonians are obtained by Eq. (2.2.7) [5]:

HAA(k) =
1

U

U∑
u

eik·(RuA−Ru′A)

∫
φ∗

π(r − Ru′A)Hφπ(r − RuA)dr

=
1

U

U∑
u=u′

ε2p +
1

U

U∑
RuA=Ru′A±a

e±ika

∫
φ∗

π(r − Ru′A)Hφπ(r − RuA)dr

+(terms equal to or more distance than RuA = Ru′A ± 2a)

= ε2p + (terms equal to or more distance than RuA = Ru′A ± a),

(2.2.15)

where the maximum contribution to the matrix element HAA(k) comes from u = u′, and

this gives the orbital energy of the 2p level, ε2p. The next order is neglected for simplicity.

The absence of nearest-neighbor interactions within the same unit cell atom A or B

yields the diagonal Hamiltonian and overlap matrix elements, HAA(k) = HBB(k) = ε2p

and SAA(k) = SBB(k) = 1. For the HAB(k) and the SAB(k) matrix elements, the inter-

atomic vectors Rn
A from A atom site to its three nearest-neighbor B atoms (n = 1, 2, 3)

in Eq. (2.2.7) are given as follows:

R1
A =

( 1√
3
, 0

)
a, R2

A =
(
− 1

2
√

3
,
1

2

)
a, R3

A =
(
− 1

2
√

3
,−1

2

)
a, (2.2.16)

where a is the lattice constant of a graphene sheet. Similarly, the inter-atomic vector

Rn
B is defined to Rn

A with minus sign, Rn
A = −Rn

B. Substituting these vectors into Eq.

(2.2.7), we obtain the matrix elements:

HAB(k) =
1

U

U∑
u

eik·(RuB−Ru′A)

∫
φ∗

π(r − Ru′A)Hφπ(r − RuB)dr

= t

3∑
n

eik·Rn
A

= tf(k),

SAB(k) =
1

U

U∑
u

eik·(RuB−Ru′A)

∫
φ∗

π(r − Ru′A)φπ(r − RuB)dr

= s

3∑
n

eik·Rn
A

= sf(k),

(2.2.17)
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where t is transfer integral, s is the overlap integral between the nearest-neighbor A and

B atoms, and f(k) is defined by starting from an A atom and going out to the three

nearest-neighbor B atoms:

t =

∫
φ∗

π(r − Ru′A)Hφπ(r − RuB)dr,

s =

∫
φ∗

π(r − Ru′A)φπ(r − RuB)dr,

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos
(kya

2

)
.

(2.2.18)

The HBA(k) and SBA(k) matrix elements are derived in a similar method to inter-atomic

vector Rn
B from B atom site to its three nearest-neighbor A atoms, that is, HBA(k) =

tf∗(k), and SBA(k) = sf ∗(k). It is note that the H(k) and S(k) are Hermite matrices.

Therefore, the secular equation Eq. (2.2.12) for H(k) and S(k) can be written as the

explicit forms: ε2p tf(k)

tf∗(k) ε2p

Cb
Aπ(k)

Cb
Bπ(k)

 = Eb(k)

 1 sf(k)

sf ∗(k) 1

Cb
Aπ(k)

Cb
Bπ(k)

 . (2.2.19)

Solving the secular equation Eq. (2.2.12), the eigenvalues Eb(k) are obtained as a function

of w(k): ∣∣∣∣∣∣ ε2p − Eb(k) f(k)
(
t− sEb(k)

)
f∗(k)

(
t− sEb(k)

)
ε2p − Eb(k)

∣∣∣∣∣∣ = 0, (2.2.20)

and then we get: 
Ev(k) =

ε2p + tw(k)

1 + sw(k)
,

Ec(k) =
ε2p − tw(k)

1 − sw(k)
,

(2.2.21)

where the band indexes b = v, c denote the valence and conduction bands, t is negative

(t < 0), s is positive (s > 0), and w(k) is the absolute value of the phase factor f(k),

w(k) =

√
|f(k)|2 =

√
1 + 4 cos

(√3

2
kxa

)
cos

(1

2
kya

)
+ 4 cos2

(1

2
kya

)
. (2.2.22)

The overlap integral s is responsible for the asymmetry between the valence and conduc-

tion energy bands. When the overlap integral s becomes zero (s = 0), the valence and

conduction bands become symmetrical around E = ε2p which can be understood from

Eq. (2.2.21).
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Substituting the energy eigenvalues Eb(k) of Eq. (2.2.21), the wave function coeffi-

cients Cb
A(k) and Cb

B(k) for the energy bands b = v, c are yielded:
(
ε2p − Eb(k)

)
Cb

A(k) + f(k)
(
t− sEb(k)

)
Cb

B(k) = 0,

f∗(k)
(
t− sEb(k)

)
Cb

A(k) +
(
ε2p − Eb(k)

)
Cb

B(k) = 0,

therefore,
Cv

A(k) =
f(k)

w(k)
Cv

B(k) , Cv
B(k) =

f∗(k)

w(k)
Cv

A(k) for b = v,

Cc
A(k) = − f(k)

w(k)
Cc

A(k) , Cc
B(k) = −f

∗(k)

w(k)
Cc

A(k) for b = c.

(2.2.23)

The orthonormal conditions for the electron wave function of Eq. (2.2.3) can be expanded

in terms of Bloch wave functions:

〈Ψb′(k, r, t)|Ψb(k, r, t)〉

=

A,B∑
s′

A,B∑
s

Cb′

s′
∗
(k)Cb

s(k)Ss′s(k)

= Cb′

A

∗
(k)Cb

A(k) + sf(k)Cb′

A

∗
(k)Cb

B(k) + sf ∗(k)Cb′

B

∗
(k)Cb

A(k) + Cb′

B

∗
(k)Cb

B(k)

= δb′b, (b′, b = v, c).

(2.2.24)

Thus, we obtain the wave function coefficients Cb
A(k) and Cb

B(k) for π electrons which are

related to each other by complex conjugation, for valence band b = v,

Cv
A(k) =

√
f(k)

2w(k)(1 + sw(k))
, Cv

B(k) =

√
f ∗(k)

2w(k)(1 + sw(k))
, (2.2.25)

for conduction band b = c,

Cc
A(k) =

√
f(k)

2w(k)(1 − sw(k))
, Cc

B(k) = −

√
f∗(k)

2w(k)(1 − sw(k))
. (2.2.26)

In order to reproduce the first principle calculation for the energy dispersion relations

of the graphene sheet [70], we use the parameters, that is, the transfer integral t = −3.033

eV, and overlap integral s = 0.129, after setting the atomic orbital energy equal to the

origin (ε2p = 0) in the energy scale [5], as shown in Fig. 2.4.

The wave function formation for the valence and conduction electrons can be under-

stood from the Bloch wave function coefficients given by Eqs. (2.2.25) and (2.2.26) and
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(a) (b)Γ

KK'
M

(a) (b)Γ

KK'
M

Figure 2.4: Electronic energy dispersion relations of a graphene sheet given by Eq. (2.2.21)

with STB parameters, transfer integral t = −3.033 eV, overlap integral s = 0.129 eV, and

atomic orbital energy ε2p = 0 eV, (a) for the whole region of the Brillouin zone and (b)

along the high symmetry direction of K − Γ −M − K − Γ (Fig. 2.1 (c)). The valence

and conduction bands are labeled by v and c, respectively [5].

the phase factor of f(k). At the Γ point (k = 0), Cv
A = Cv

B, while Cc
A = −Cc

B. Therefore,

the wave functions become Ψv(r) = ΦA(r) + ΦB(r) and Ψc(r) = ΦA(r) − ΦB(r). Away

from the Γ point (k 6= 0), the Bloch wave functions, ΦA(k, r) and ΦB(k, r), have different

phase factor, f(k). At the K point, if f(k) = 0, we get Ψb(r) = ΦA(r) or ±ΦB(r), where

± corresponds to the energy bands b = v and b = c, respectively.

The energy band structure of a graphene sheet has a linear dispersion relation around

the K and K ′ points near the Fermi level. Around the K point in the first Brillouin

zone, the electron wave vector k is written to the form kx = ∆kx and ky = −4π/(3a) +

∆ky, where ∆kx,∆ky ¿ 1/a. Substituting these wave vectors into Eq. (2.2.22) and

approximating the cosine function up to the second order in the Maclaurin series as

functions of ∆kxa and ∆kya, we can obtain w as a function of ∆k (distance from the K
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point),

w(k) =

√
1 + 4 cos

(√3

2
∆kxa

)
cos

(
−2

3
π +

1

2
∆kya

)
+ 4 cos2

(
−2

3
π +

1

2
∆kya

)
≈

√
3

2
∆ka,

(
∆k =

√
∆k2

x + ∆k2
y , cosx = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
,

(2.2.27)

and then the energy dispersion relations for the valence and conduction bands are yielded

by substituting w into Eq. (2.2.21):
Ev(∆k) = ε2p −

√
3

2
(ε2ps− t)a∆k,

Ec(∆k) = ε2p +

√
3

2
(ε2ps− t)a∆k.

(2.2.28)

Eq. (2.2.28) shows that the energy band for the valence and conduction band are linear

in ∆k. The density of electronic states (DOS) at Fermi level is zero, indicating that a

graphene sheet is a zero-gap semiconductor. The DOS is proportional to |E|, because of

linear energy dispersion relation.

2.2.2 Electronic structure of SWNT

The electronic structure of a SWNT is derived by the STB calculation for the π electrons

of carbon atoms, using the definition of the structure of SWNTs discussed in Section 2.1.

We discussed the energy band structure of a graphene sheet in detail in Section 2.2.1,

because the electronic structure of a SWNT is obtained simply from that of the graphene

sheet.

The allowed wave vectors k, cutting lines [66, 67], around the carbon nanotube cir-

cumference (the chiral vector Ch direction) become quantized (see Eq. (2.1.17)), taking

only discrete values. Along the nanotube axis (the direction of the translational vector

T), in contrast, the cutting lines are continuous for a nanotube of infinite length(see Eq.

(2.1.17)). The real lattice of the SWNT is formed by rolling the real lattice of a graphene

sheet, therefore the reciprocal lattice of the SWNT is obtained by folding the reciprocal

lattice of the graphene sheet. This is called to zone-folding approximation [5, 71]. The

basic idea of the zone-folding method is that the energy dispersion relations of a SWNT

is given by the corresponding energy dispersion relations of the graphene sheet along the
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Figure 2.5: (a) Cutting lines of the (10,10) SWNT. One of red cutting lines passes through

K and K ′ points of the Brillouin zone of a graphene sheet. (b) The energy dispersion

relations of the (10,10) SWNT when the different cutting lines are folded together into the

1D Brillouin zone. The length of the 1D Brillouin zone is 2π/T . The energy sub-bands are

labeled by band index b = v, c and by sub-band number i progressively increasing away

from the Fermi level. (c) The electronic density of states (DOS) for the (10,10) SWNT.

A finite DOS at Fermi level EF = 0 eV indicates that the (10,10) SWNT is metallic.

The sharp spikes in the DOS as a function of energy are known as van Hove singularities

(vHSs). The vHSs associated with different sub-band edges are labeled by Ebi.

cutting lines. This zone-folding technique for SWNTs is also applicable to the phonon

modes and other quasi-particle excitations.

A good example to see the power of zone-folding method is the metallic and semi-

conducting properties of the SWNTs. While 2/3 of SWNTs are semiconductors, the rest

1/3 are metallic or small-gap semiconducting [4]. This peculiar property is explained

by the energy band structure of the graphene sheet. Since the valence and conduction

bands of the graphene touch to each other at the K point of the Brillouin zone, if the

K point of the graphene lies on the allowed states of a SWNT, it is metallic. Otherwise,

the SWNT is semiconducting with a moderate energy gap. When the 1D cutting lines
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Figure 2.6: (a) Cutting lines of the (10,0) SWNT. None of red cutting lines passes through

K or K ′ point of the 2D Brillouin zone. (b) The energy dispersion relations of the (10,0)

SWNT. The energy sub-bands are labeled by band index b = v, c and by sub-band number

i progressively increasing away from the Fermi level. (c) The electronic DOS of the (10,0)

SWNT. Vanishing DOS at the Fermi level EF = 0 eV indicates that the (10,0) SWNT is

semiconducting. The vHSs associated with different sub-band edges are labeled by Ebi.

µK1 + kK2/ |K2| of a SWNT in Eq. (2.1.17) are superimposed on the 2D electronic en-

ergy dispersion surface of the graphene sheet in Eq. (2.2.21), N pairs of energy dispersion

relations Eb
SWNT(µ, k) of SWNT are obtained:

Eb
SWNT(µ, k) = Eb

2D

(
µK1 + k

K2

|K2|

)
,

(
µ = 0, · · · , N − 1, −π

T
< k <

π

T

)
, (2.2.29)

where µ is the angular momentum of a standing wave in the SWNT, which shows how

many nodes of the wave function exhibit along the circumference of the SWNT [72], N is

the number of hexagons in the translational unit cell of the SWNT as explained in Section

2.1, k is the 1D momentum along the SWNT axis, and T = |T| is the length of a SWNT

translation. For a particular (n,m) SWNT, if a cutting line passes through a K or K ′

point of the Brillouin zone of the graphene sheet, where the valence and conduction bands

of the graphene touch to each other, the 1D electronic energy bands of the SWNT have

a zero energy gap, and therefore, they become metallic (DOS at EF is finite), as shown
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in Fig. 2.5. However, if a cutting line does not pass through a K or K ′ point, the (n,m)

SWNT is semiconducting with a finite energy band gap, as shown in Fig. 2.6.

The electronic states are restricted to the 1D wave vector k in the graphene sheet that

fulfills the condition k · Ch = 2πµ that the ratio of the length of the circumference |Ch|
to an electron wave length λ = 2π/k = |Ch|/µ around the circumference of the SWNT

must be an integer. For the particular SWNT (4, 2), the K point is not allowed for any k

and then, the SWNT (4, 2) becomes semiconducting. The K point of the Brillouin zone

of the graphene is at (2b1 +b2)/3, defining as K. The b1 and b2 are the reciprocal lattice

vectors of the grapheen sheet as explained in Section 2.1. Thus, a SWNT (n,m) is a

metallic if the 1D momentum k is equal to K point;

k · Ch = K · Ch

=
(2b1 + b2)

3
· (na1 +ma2)

=
2

3
(2n+m)π

= 2πµ,

(2.2.30)

that is,

2n+m = 3µ, (2.2.31)

where µ is an integer. Therefore, we find that a SWNT (n,m) is metallic if mod(2n +

m, 3) = 0 and otherwise semiconducting, where mod(x, y) is the residual of the division

of x by y, as shown in Fig. 2.7. The latter condition, mod(2n + m, 3) =1 and 2, shows

that there are twice as many semiconducting SWNTs as metallic SWNTs.

If we project the ΓK vector pointing toward the K point on the K1 direction normal

to the cutting lines, we can find the projection:

ΓK · K1

K1 · K1

=
1
3
(2b1 + b2) · 1

N
(t1b2 − t2b1)

1
N

(t1b2 − t2b1) · 1
N

(t1b2 − t2b1)

=
2n+m

3
,

(2.2.32)

where N = 2(n2 + nm +m2)/dR, t1 = (2m + n)/dR, t2 = −(2n +m)/dR, dR=gcd(2n +

m, 2m + n), and the function gcd(i, j) denotes the greatest common divisor of the two

integers i and j. If (2n+m)/3 is an integer, ΓK has an integer number of K1 components,

and then one of the cutting lines passes through the K point, that is, this SWNT is

metallic. If (2n+m)/3 is not an integer, namely the residual is 1 or 2, the K point exists
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Figure 2.7: Three possible configurations of the cutting lines in the vicinity of the K point

depending on the value of mod(2n + m, 3). The red lines indicate the cutting lines, the

black solid dot shows the K point, and the black lines represent the KM directions. If

mod(2n +m, 3) = 0, a SWNT is metallic (M0), if mod(2n +m, 3) = 1 or 2, a SWNT is

semiconducting (S1) or (S2).

1/3 or 2/3 position between two cutting lines near the K point, and then the SWNT

becomes semiconducting [66, 67]. Thus, these three types of SWNTs are referred to as

M0, S1, and S2, respectively:

mod(2n+m, 3) = 0 ⇒M0

mod(2n+m, 3) = 1 ⇒ S1

mod(2n+m, 3) = 2 ⇒ S2.

(2.2.33)

In Figure 2.8, the chiral vectors for M0, S1, and S2 SWNTs are shown with different

color, white, violet, and light cyan, respectively. Within the triangular graphene sheet, the

diagonal lines of each hexagon are connected to a diagonal lines of the adjacent hexagons,

which are shown as the dashed red lines in Fig. 2.8, and then these lines with constant

value of 2n + m, 2m + n, and n − m are called the family lines. All M0, S1, and S2

SWNTs along the same dashed line in Fig. 2.8 can be said to belong to the same family.

For example, a SWNT with the chiral vector (6, 2) belongs to families, 2n + m = 14,

2m + n = 10, and n −m = 4, as shown in Fig. 2.8. The (n,m) SWNTs with the same

family constant 2n + m = 14 are (7,0), (6,2), and (5,4) and for 2m + n = 10, there are

(10,0), (8,1), (6,2), and (4,3) and for n −m = 4, there are (4,0), (5,1), (6,2), and (7,3).

These SWNTs are semiconducting and can be classified to S2 type, since mod(2n+m, 3) =

mod(14, 3) = 2. However, for the same SWNT (6,2), mod(2m + n, 3) = mod(10, 3) = 1
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Figure 2.8: Classification of M0, S1, and S2 in the graphene sheet. The (n,m) indexes

are written in the hexagon of the corresponding chiral vector. The white, violet, and light

cyan hexagons correspond to the chiral vectors of M0, S1, and S2 SWNTs, respectively.

The dashed red lines indicate the families of constant 2n +m, 2m + n, and n−m. The

numbers of the triangle graphene sheet side indicate the values of 2n + m, 2m + n, and

n−m for each family [72].

and mod(n−m, 3) = mod(4, 3) = 1. Thus, the definition of S1 and S2 types is given by

the 2n+m family line. In Fig. 2.8, the M0, S1, and S2 type SWNTs are classified by the

definition of the family 2n +m =constant. The 2n +m families of the M0, S1, and S2

type SWNTs have the closest diameters, compared with the 2m+ n and n−m families.

Moreover, we can classify M0 SWNTs as M1 and M2 according to whether dR = 3d

or dR = d [66], respectively, which d is the greatest common divisor of two integers,

d =gcd(n,m). If mod(3m/dR, 3) = 0, the M0 SWNT becomes M1 type, otherwise M2

type. The Fermi energy of the M1 type is located at the Γ points of the 1D Brillouin

zone, while the Fermi energy of M2 type is located at a 5
6

(or 1
6
) position on a cutting

line. The M2 type SWNTs further divide into M2+ and M2−, according to whether

mod(3m/dR, 3) = 1 or 2 [66]. While the K point of 2D Brillouin zone of the graphene is

located at the center of the cutting line for the M1 type SWNTs, for the M2+ and M2−
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Figure 2.9: The electronic density of states (DOS) of typical 3D, 2D, 1D, and 0D systems.

The representative 3D materials are diamond and graphite, for 2D, graphene sheet, for 1D,

nanotube and nanowire, and for OD, fullerene. The DOSs of 3D and 2D systems are both

increasing with increasing energy. The DOSs of 1D and 0D systems show singularities at

certain energy values [73].

types, the K points are located at a 1
6

and 5
6

position of the cutting line, respectively.

The S1 (S2) type SWNT also divides into S1+ and S1− (S2±) for which satisfies the

condition mod(N, 3) = 1 or 2 [66], respectively. However, in general, the M0, S1, and S2

classification for 2n+m =constant family is sufficient for describing the optical properties

of SWNTs.

2.2.3 Electronic density of states of SWNT

The electronic density of states (DOS), i.e., the number of available electrons for a given

energy interval, is useful to understand the application of the electronic properties and

the experimental study. The DOS is known to depend on the dimension of a system, as

shown in Fig. 2.9. For the parabolic bands as found in most of semiconductors, the DOS

rises as the square root of the energy above the energy band bottom E0 in the 3D case

such as diamond and graphite, g(E) ∝ (E −E0)
1
2 , in 2D systems such as graphene sheet,
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exhibits a step-like function, in 1D systems such as nanotube and nanowire, diverges as

the inverse of a square root, g(E) ∝ (E − E0)
− 1

2 , and finally, in 0D systems such as

fullerene, is a δ-function, g(E) ∝ δ(E − E0).

For a 3D system, E0 might correspond to the energy gap for the onset of optical

transitions, or to a band edge state such as an exciton in a semiconductor. For a 2D

system, E0 would correspond to the energy at which a new sub-band or a quantum

confinement level is formed. For a 1D system, E0 is equal to the sub-band edge energy

Eb
i , where the magnitude of the DOS becomes singular as known as van Hove singularity

(vHS) . The SWNT are one-dimensional material and an energy band can always be

approximated as parabolic around its minimum and maximum, E(µ, k) = Cµk
2 (Cµ > 0).

Thus, we expect a 1√
E−E0

behavior for the DOS of the SWNTs, as shown in Figs. 2.5(c)

and 2.6(c).

2.2.4 Extended tight binding model

In the previous sections, we used a model for the electronic energy dispersion relation of

SWNTs based on the confinement of the π electrons in small stripes of graphene, that is,

STB model. In this section, we present the extension of the zone-folding approximation

and the STB model to the smaller diameter region (dt <1.2 nm) which agrees well with

the experimental Kataura plot obtained by the band gap PL measurements of SWNTs

suspended by SDS surfactant in D2O aqueous solution and was developed by Ge. G.

Samsonidze et al. [14].

The Kataura plot describes the transition energy Eii from Ev
i to Ec

i vHS energies as

a function of SWNT diameter dt or inverse SWNT diameter 1/dt, as shown in Fig. 2.10,

where the index i specifies the vHS in the valence and conduction bands away from the

Fermi level. The Eii energies for M0, S1, and S2 SWNTs show a distinct behavior, while

there is no obvious difference between M1 and M2 subtypes of M0 type. Within the

M0, S1, and S2 types, each Eii energy follows the family patterns of constant 2n + m

group in the Kataura plot. The Eii energies within each family of constant 2n+m group

are connected by one line labeled by 2n + m values. By adjusting the STB parameters

to the resonance Raman spectra from individual SWNTs on a SiO2 substrate [74], the

Kataura plot is calibrated with the fitting STB parameters, ε = 0 eV, t = −2.89 eV, and

s = 0, as shown in Fig. 2.10. While the STB approach provides reliable results for the
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Figure 2.10: The Kataura plot for all possible (n,m) SWNTs calculated within the simple

tight binding (STB) method of Section 2.2.2 as a function of the SWNT diameter dt

(left) and the inverse diameter 1/dt (right). Green and orange circles correspond to

semiconducting and metallic SWNTs, respectively.

larger diameter SWNTs (dt >1.2 nm), because the electronic structures of SWNTs with

large diameter are similar to those of the graphene sheet, it fails in the smaller diameter

region (dt <1.2 nm), as has been shown in photoluminescence (PL) and resonance Raman

spectra studies of SWNTs dispersed by a surfactant (sodium dodecyl sulfate, SDS) in an

aqueous solution (deuterium oxide, D2O) [60] which was discussed in Chapter 1.

When comparing the experimental Kataura plot [75] with the one calculated from the

STB model [10], two major differences can be found. First, the experimental ES
22/E

S
11 ratio

in the large dt limit is less than 2, while the ES
22/E

S
11 ratio by STB model approaches 2

with increasing dt (the ratio problem) [76]. Second, in the small dt limit, the experimental

spread of the ES
ii energies within the same constant 2n+m family is much larger than the

corresponding spread of the STB ES
ii energies. While the ratio problem can be explained

by many-body effects [76], the family spread is mainly attributed to the curvature effects
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Figure 2.11: Electronic energy dispersion relations for the σ and π bands of a graphene

sheet along the K − Γ −M −K direction.

and to the C-C bond length optimization in SWNTs with small diameter (dt <1.2 nm)

[77] which are missing in the STB model, where we neglected the long-range atomic

interactions and the σ molecular orbitals. In small dt range, the long-range interactions

of the π orbitals are not negligible [78], and the curvature of SWNT sidewall changes the

lengths of the inter-atomic bonds as well as the angles of the hexagon. This leads the

sp2 − sp3 re-hybridization, which has an effect on the electronic band structure of the π

electrons around the Fermi level.

In graphene, the π molecular orbitals cannot mix with the σ orbitals because the π

orbitals are perpendicular to the flat graphene sheet, while the σ orbitals are parallel to

the graphene sheet. The σ (or σ∗) energy bands of the graphene lie several eV away

from the Fermi level, in contrast to the π energy bands, and are obtained by solving the

Eq. (2.2.10) for the σ molecular orbitals, as shown in Fig. 2.11. However, the π and σ

orbitals on the curved sidewall of SWNT with small diameter dt mix to each other and

form hybrids that are partly of sp2 state and partly of sp3 state. In a small dt limit, the
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geometrical structure of SWNT deviates from the rolled-up graphene sheet, and thus the

geometrical structure optimization should be performed to allow for atomic relaxation to

equilibrium position [77]. The curvature effect can be included in the tight binding model

by extending the basis set to the atomic 2s, 2px, 2py, and 2pz orbitals at Eq. (2.2.3) that

form the σ and π molecular orbitals according to the Slater-Koster formalism [69].

Thus, we can extend the STB model by including (1) the long-range atomic interac-

tions and (2) the σ molecular orbitals, and (3) by optimizing the geometrical structure of

SWNT. This model is called to the extended tight binding (ETB) model [14]. The ETB

model makes use of the four transfer integrals tss(R), tsσ(R), tσσ(R), and tππ(R) and four

overlap integrals sss(R), ssσ(R), sσσ(R), and sππ(R) as functions of the inter-atomic dis-

tance R calculated within a density functional theory (DFT) framework [79] and the two

atomic orbital energies, ε2s = −13.57 eV, and ε2p = −5.372 eV. At the nearest neighbor

inter-atomic distance R = aCC = 0.142 nm, the ETB parameter tππ and sππ have the value

−3.351 eV and 0.150 eV, respectively, while the STB parameter tππ = −3.033 eV and

sππ = 0.129 eV. At the second neighbor inter-atomic distance R = a =
√

3aCC = 0.246

nm, the ETB parameters tππ and sππ have the values −0.248 eV and 0.008 eV, which the

STB parameters are neglected. In order to get the geometrical structure optimization of

the SWNT, we have to minimize the total energy of the SWNT system which is given by a

sum of the electronic band energy and the repulsive energy equal to a sum of short-range

repulsive potentials between pairs of atoms. The total energy per a carbon atom of a

graphene sheet is given by [72]:

Etot =
8∑
b

nbEb +
1

4U

U∑
uu′

∑
ss′

v(|Rus −Ru′s′|), (2.2.34)

where the electron occupation number nb is 2 and 0 for the valence bands and for the

conduction bands at T = 0 K, respectively, Eb is the electronic band energy, U is the

number of the hexagonal unit cells of graphene, and the summation on atomic site s in

unit cell u is carried out over the third neighbors of atomic site s′ in unit cell u′. The

factor 1
4

indicates that each atomic pair in the second term of Eq. (2.2.34) is counted

twice.

For the geometrical structure optimization of a SWNT, one needs the electronic band

energy Eb and the repulsive energy v(R) contributions to the forces acting on the carbon

atoms. The electronic energy band contribution to the force on the atom with a position
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Figure 2.12: The Kataura plot for all possible (n,m) SWNTs calculated within the ex-

tended tight binding (ETB) method as functions of the SWNT diameter dt (left) and the

inverse diameter 1/dt (right). Green, violet, and orange circles correspond to S1, S2, and

M0 SWNTs, respectively. The Eii energies within the family constant 2n+m group are

connected by gray lines and labeled by 2n+m values.

vector Ru′s′ is given by the Hellmann-Feynman theorem, F = ∂Eb/∂Ru′s′ . The repulsive

energy contribution is the first derivative of the total repulsive energy with respect to

Ru′s′ .

The ETB Kataura plot considered for the optimized geometrical structure shows a

similar family spread to the PL and RRS experimental Kataura plots as shown in Fig.

2.12. The experimental family spread is attributed to the relaxation of the geometri-

cal structure of the SWNTs. Even though the family spread of ETB model is good

agreement with the PL and RRS Kataura plots, it still remains an overall blue-shift of

EExp
ii (200 − 300 meV) from the ETB Kataura plot. The differences between the exper-

imental PL energies EPL
ii and the corresponding ETB calculated energies EETB

ii , ∆Eii,

depend on the chiral angle weakly and dt monotonically. These energy differences can
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be explained by many-body effects [80–85]. The many-body (exciton) effect consists of

electron-electron Coulomb repulsion and the electron-hole Coulomb attraction. Because

of the 1D SWNT structure, electron-electron Coulomb repulsion exceeds the electron-hole

Coulomb attraction so that the energies Eii by the many-body effect have blue-shifted

value from one-electron energies Eii.



Chapter 3

Calculation method

In this Chapter, we introduce the electron-photon and electron-phonon interactions, and

then explain how to calculate the resonance window in Chapter 4, and the G′ Raman

spectra for the SWNT and multi-layer graphene, respectively, in Chapters 5 and 6.

3.1 Electron-photon interaction

The optical transition in solid consists of the absorption and emission of photons with

the excitation and annihilation of an electron-hole pair, respectively. These processes are

determined by the electron-photon interaction. The most important term in the electron-

photon interaction is the dipole-allowed transition, where the probability of the transition

is determined by the matrix element.

Within time-dependent perturbation theory, the electron-photon matrix elements for

the dipole transition between the initial ki and final kf electronic states is given by:

M b′λb
el−op(kf ,p,ki) = 〈Ψb′(kf , r, t)|Hλ

el−op(p, r, t))|Ψb(ki, r, t)〉, (3.1.1)

where b is the band index, λ is the polarization index, p is the photon wave vector,

Ψb(k, r, t) is one electron wave function in the b-th electronic energy band of Eq. (2.2.3),

r is the spatial coordinate, and Hλ
el−op(p, r, t) is the perturbation Hamiltonian acting on

an electron and generates its transition from the initial ki and final kf electronic states:

Hλ
el−op(p, r, t)) = i

e~
m

Aλ(p, r, t)) · ∇, (3.1.2)

where e is the elementary charge, m is the electron mass, Aλ(p, r, t) is the vector potential

of the electromagnetic field, and ∇ is the gradient operator. Optical transitions occur

45
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vertically in the k space, connecting an occupied energy band to an unoccupied one with

almost the same wave vector as a result of energy-momentum conservation of the light

and electron. Therefore, p is neglected, p = 0, and ki = kf = k.

The vector potential of the electromagnetic field is obtained by solving Maxwell equa-

tions:

Aλ(0, r, t) =

√
~nλ

±

2κκ0V ω
ei(κr∓ωt)Pλ, (3.1.3)

where κ is the dielectric constant of the material, κ0 is the dielectric permittivity of free

space, V is the quantization volume for the electromagnetic field, nλ
± is the photon occu-

pation number for the emission (+) and absorption (−), ω is the photon frequency, and

Pλ is the photon polarization vector. The electron-photon matrix elements for the photon

induced absorption and spontaneous emission processes, M cλv(k, 0,k) and M vλc(k, 0,k),

respectively, are given by substituting Eqs. (2.2.3) and (3.1.3) into Eq. (3.1.2):
M cλv

el−op(k, 0,k) = i
e~2

mEL

√
I

2
√
κκ0c

Pλ · Dcv(k, 0,k),

M vλc
el−op(k, 0,k) = i

e~2

mEL

√
EL

2κκ0V
Pλ · Dvc(k, 0,k),

(3.1.4)

where I is the radiant flux density of the incoming light beam, EL is the incident laser

energy, and Db′b(k, 0,k) is the dipole vector to represent the transition from the b-th

energy band to the b′-th energy band:

Db′b(k, 0,k) = 〈Ψb′(kf , r, t)|∇|Ψb(ki, r, t)〉

=
∑
s′o′

∑
so

Cb′∗

s′o′(k)Cb
so(k)Ds′o′so(k, 0,k),

(3.1.5)

where Ds′o′so(k, 0,k) is the atomic dipole matrix elements:

Ds′o′so(k, 0,k) =
1

U

U∑
u

eik·R
∫
φ∗

o′(r)∇φ0(r − R)dr, (3.1.6)

where R = Rus − Ru′s′ connects the two interacting atoms, and φ(r) is the atomic wave

function in Eq. (2.2.4). As for Ds′o′so(k, 0,k), we consider only 2pz orbital in the nearest

neighbor interaction [36].
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3.2 Electron-phonon interaction

A periodic displacement of atoms around the equilibrium position gives rise to the electron-

phonon interaction which can be treated in first-order time-dependent perturbation the-

ory. The electron-phonon interaction plays an important role in the calculation of the

Raman intensity or the lifetime of a photo-excited carrier. The electron-phonon interac-

tions can also induce subtle changes in the electronic band structure and open a small

band gap at the Fermi level of metallic SWNTs [86, 87]. The matrix element of the

electron-phonon interaction is determined by a scalar product of the derivative of the

periodic potential V with respect to an atomic displacement vector in the ν-th phonon

eigenvector [8, 12, 34]. The electron-phonon interaction matrix element from an initial ki

to the final kf electronic states in the SWNT system can be written by the following form:

M b′νb
el−ph(kf ,q,ki) = 〈Ψb′(kf , r, t)|δV ν(q, r, t)|Ψb(ki, r, t)〉, (3.2.1)

where Ψb(kf , r, t) is the one-electron wave function in the b-th electronic energy band of

Eq. (2.2.3), δV ν is the variation of the periodic potential for the ν-th phonon mode, which

is expressed by the deformation potential ∇v:

δV ν(q, r, t) = −
∑
u′s′

∇v(r − Ru′s′) · Sν(Ru′s′), (3.2.2)

where v(r − Ru′s′) is the Kohn-Sham potential of a neutral pseudoatom moving along

Ru′s′ , and Sν(Ru′s′) is the site position deviation from the equilibrium site Ru′s′ caused

by a vibration:

Sν(Rus) =

√
~nν

±(q)

2UMων(q)
eν

s(q)e∓i
(
q·Rus−ων(q)t

)
, (3.2.3)

where U is the number of two-atom unit cells, M is the carbon atom mass, ων(q) is

the ν-th phonon frequency, eν
s(q) is the phonon eigenvector, and nν

±(q) is the phonon

occupation number for the phonon emission (+) and absorption (−), respectively. At

equilibrium position, the phonon occupation number nν(q) is determined by the Bose-

Einstein distribution function:

nν(q) =
1

e~ων(q)/kBT − 1
, (3.2.4)

where kB is the Boltzmann constant and T is the temperature.
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Substituting Eqs. (2.2.3), (3.2.2), and (3.2.3) into Eq. (3.2.1), the electron-phonon

matrix element from ki in the b-th energy band to kf in the b′-th energy band coupled

by the ν-th phonon mode is given by:

M b′νb
el−ph(kf ,q,ki) = −

√
~nν

±(q)

2UMων(q)
mb′νb

el−ph(kf ,q,ki). (3.2.5)

Here, mb′νb
el−ph(kf ,q,ki) is expressed in the following form:

mb′νb
el−ph(kf ,q,ki) =

∑
s′o′

∑
so

Cb′∗

s′o′(kf )C
b
so(ki)D

ν
s′o′so(kf ,q,ki), (3.2.6)

where Dν
s′o′so(kf ,q,ki) is the atomic deformation potential matrix element:

Dν
s′o′so(kf ,q,ki) =

∑
u′′s′′

〈Φs′o′(kf , r)|∇v(r − Ru′′s′′) · eν
s′′(q)e∓i

(
q·Ru′′s′′−ων(q)t

)
|Φso(ki, r)〉,

(3.2.7)

where Φso(k, r) is the Bloch wave function in Eq. (2.2.4). By keeping only two-center

atomic matrix elements, Ru′′s′′ = Rus, Ru′′s′′ = Ru′s′ , and Ru′s′ = Rus, we can split Eq.

(3.2.7) into three terms:

Dν
s′o′so(kf ,q,ki) =

U∑
u

(
αo′o(Rus − Ru′s′) · eν

s′(q)
)
e−ikf (Rus−Ru′s′ )

+
(
βo′o(Rus − Ru′s′) · eν

s′(q)
)
eiki(Rus−Ru′s′ )

+
(
λo′o(Rus − Ru′s′) · eν

s′(q)
)
e±iq(Rus−Ru′s′ ),

(3.2.8)

where the atomic deformation potential vector αo′o(R), βo′o(R), and λo′o(R) are defined

as follows [12,72]: 
αo′o(R) =

∫
φ∗

o′(r)∇v(r − R)φo(r − R)dr,

βo′o(R) =

∫
φ∗

o′(r)∇v(r)φo(r − R)dr,

λo′o(R) =

∫
φ∗

o′(r)∇v(r − R)φo(r)dr,

(3.2.9)

where φo(r) is the atomic wave function for the o-th orbital, R connects the two interacting

atoms, αo′o(R) and βo′o(R) are the off-site atomic deformation potential vectors, and

λo′o(R) is the on-site atomic deformation potential vector.
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3.3 Raman resonance window

For a resonance system, the resonance window γ is related to the energy dissipation. In

quantum mechanics, γ is obtained by the uncertainty relation to the lifetime of the photo-

excited carriers. The dominant origin of the lifetime of the photo-excited carriers in the

Raman spectra is inelastic scattering by emitting or absorbing phonons. In this section,

we calculate the carrier lifetime [34] by considering electron-phonon matrix elements [8,12]

and the Fermi Golden rule.

3.3.1 Electron-phonon transition probability

In this section, we calculate the electron-phonon transition probability for a photo-excited

electron scattered to the other electronic states by emitting or absorbing a phonon. The

inverse of this transition probability is called to the relaxation time τ [13, 88] which is

inversely proportional to the resonance window, γ, and the γ satisfies the uncertainty

principle:

γ =
~
τ
. (3.3.1)

We consider the effect of a time-dependent perturbation Hamiltonian for the electron-

phonon interaction Hel−ph on the system which has eigenstates |i〉 of a given Hamiltonian

H0. IfHel−ph is oscillating as a function of time with an angular frequency ω, the transition

occurs from the initial state to other states, absorbing or emitting the phonon energy ~ω.

In both cases, the one-to-many transition probability per unit of time, Wi→f , from the

initial state |i〉 to a set of final states |f〉 is given by first order perturbation theory to be

called to Fermi Golden rule [13,88]:

Wi→f =
2π

~
∑

f

|〈f |Hel−ph|i〉|2δ(εf − εi ± ~ω), (3.3.2)

where the delta function δ(εf − εi ± ~ω) expresses the energy-momentum conservation,

and 〈f |Hel−ph|i〉 indicates the electron-phonon interaction matrix element in Eqs. (3.2.1)

and (3.2.5).

Therefore, the transition probability for the scattering of an excited electron from an

initial state k to a final states k′ by the ν-th phonon mode per unit time can be obtained
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by substituting Eq. (3.2.5) into Eq. (3.3.2):

W ν
k→k′ =

2π

~
~

2UMων(q)
|mb′νb

el−ph(k
′,q,k)|2

×
{
nν(q)δ

(
εf − εi − ~ων(q)

)
+

(
nν(q) + 1

)
δ
(
εf − εi + ~ων(q)

)}
.

(3.3.3)

Here, the electron wave vector k of a SWNT can be expressed by the cutting line, µK1 +

kK2/K2. The wave number k becomes continuous along the K2 axis because the SWNT

is sufficiently long in the direction of nanotube axis:∑
k

→ L

2π

∫
dk

=
SU

2π2dt

∫ [
dE

dk

]−1

dE,

(3.3.4)

where L is the SWNT length, S denotes the area of the 2D graphene unit cell. The surface

area of a SWNT is given by US = πdtL. Therefore, we can obtain the final form of the

transition probability from an initial state k to all possible final states k′:

Wk =
∑
k′,ν

W ν
k→k′

=
S

2πMdt

∑
µ′,k′,ν

|mb′νb
el−ph(k

′,q,k)|2

ων(q)

[
dE(µ′, k′)

dk′

]−1

×

{
δ
(
ε(k′) − ε(k) − ~ων(q)

)
eβ~ων(q) − 1

+
δ
(
ε(k′) − ε(k) + ~ων(q)

)
1 − e−β~ων(q)

}
,

(3.3.5)

where β = 1/kBT , µ′ is the cutting line index of the final state, and [dE(µ′, k′)/dk′]−1

is the density of final state. The relaxation process is restricted to satisfying energy-

momentum conservation. The first and second terms in brace in Eq. (3.3.5), respectively,

represent the absorption and emission processes of the ν-th phonon mode with phonon

energy ~ων(q). In Eq. (3.3.5), the phonon absorption rate for optical phonons with high

phonon energy is very small compared with the emission rate at the room temperature,

since when the phonon energy ~ων(q) increases relative to kBT , the number of phonons

for the absorption and emission approach 0 and 1, respectively.

3.4 Double resonance Raman scattering

Double resonance Raman scattering consists of (1) two-phonon scattering processes and

(2) one-phonon and one-elastic scattering process [7,52–57]. Two-phonon scattering pro-
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Figure 3.1: Schematic two-phonon Raman scattering processes. The optical transition

occurs from the valence band i state with k wave vector to the conduction band a state

with the same wave vector by absorbing a photon. Then, the electron-phonon interaction

Mel−ph which was explained in Section 3.2 creates (or annihilates) a phonon and the

excited electron scatters from a state around the K point to b state around the K ′ state,

changing its energy. The electron at b state scatters back to c state by interacting another

phonon, and finally, recombines with a hole at i state by emitting a photon. The solid

red arrows indicate the double resonance Raman scattering processes, and the two solid

red circles at a and b represent the resonance points.

cesses involve the same phonon modes (an overtone mode) and different phonon modes

(a combination mode). In graphene and SWNT, the D band which appears at around

1350 cm−1 is related to one-phonon and one-elastic scattering process, and the G′ band

which appears at around 2700 cm−1 is due to two-phonon Raman scattering processes.

In Chapters 5 and 6, we will explain the properties of the G′ Raman spectra for SWNTs

and multi-layer graphene.

3.4.1 G′ band of SWNT

The two-phonon scattering processes for the G′ band intensity are calculated by the

extended tight-binding (ETB) method. The electronic energy dispersion of a SWNT was

obtained by using the ETB method, in which 2s, 2pz, 2py, and 2px atomic orbitals are

taken into account to reproduce the Eii values for a SWNT particularly for a smaller
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diameter SWNT, as explained in Section 2.2.4. The phonon dispersion relation, ~ων(q),

was calculated using the force-constant tight binding model, in which the force constant

was taken up to the 20th nearest neighbor atomic sites given by Dubay and Kresse [89],

which reproduces the phonon dispersion obtained by the inelastic X-ray scattering [90].

The Raman intensity for the G′ band Raman spectra, I(ω,EL), is given as a function of

excitation laser energy EL and the sum of two phonon energies ω = ω1 + ω2 using the

following formula:

I(ω(q), EL) =
∑

i

∣∣∣∣∣ ∑
a,b,ω1,ω2

Ja,b

(
ω1(q), ω2(q)

)∣∣∣∣∣
2

, (3.4.1)

where Ja,b

(
ω1(q), ω2(q)

)
is given by:

Ja,b

(
ω1(q), ω2(q)

)
=

Mel−op(i, c)Mel−ph(c, b)Mel−ph(b, a)Mel−op(a, i)

∆Eai(∆Ebi − ~ω1(q))(∆Eai − ~ω1(q) − ~ω2(q))
, (3.4.2)

and ∆Eai = EL− (Ea−Ei)− iγ is the incident resonance condition, γ denotes the Raman

resonance window, i, a, b and c denote the initial, the excited, the first scattered, and

the second scattered states of the photo-excited electron, respectively. The two-phonon

scattering processes involve q and −q scattering phonon wave vectors, so that a photo-

excited electron can return to its original k electron wave vector after the electron-phonon

scattering. In two-phonon scattering processes for the SWNTs, a valence electron (1)

absorbs a photon at a k electron state, (2) scatters to k + q state by emitting a phonon

with q wave vector in conduction band, (3) scatters back to the k state by emitting

another phonon with −q wave vector , and (4) emits a photon by recombining with a

hole at the k state in valence band. The phonon scattering is inelastic by emitting a

phonon, as shown in Fig. 3.1.

For simplicity, only electron-phonon scattering but no hole-phonon scattering pro-

cesses were taken into account in the present thesis. Mel−ph and Mel−op indicate the

electron-phonon and electron-photon interaction matrix elements, respectively, which were

calculated using the ETB electronic wave function and the force-constant tight-binding

phonon modes. In the calculation of electron-phonon interaction matrix elements, the

amplitude of the atomic vibration for each carbon atom was calculated for a large unit

cell with a length of 1000 nm and at a temperature of 300 K. In the summation of the

phonon frequencies ω1 and ω2, the energy-momentum conservation is required for the
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matrix elements, either for Mel−ph(b, a) or for Mel−ph(c, b), in order to satisfy the dou-

ble resonance condition, either for the incident resonance or for the scattered resonance,

respectively. For ω1 and ω2, 48 (= 6 × 2 × 2 × 2) possible electron-phonon scattering

processes which satisfy the energy-momentum conservation can exist as far as the scat-

tered electronic states are unoccupied, because there are (1) six phonon modes in the

2D graphite Brillouin zone, (2) two intra-valley and inter-valley scatterings, where the

intra-valley and inter-valley scatterings denote the scattering of an electron from K to K

(or K ′ to K ′) and from K to K ′ (or K ′ to K), respectively, (3) two scattering directions

(forward and backward scatterings) and (4) phonon absorption and emission. For the G′

band intensity calculation, we select some of these possible cases, that is, two phonon

modes (in-plane transverse optic (iTO) and longitudinal optic (LO) mode), inter-valley

scattering, forward and backward scatterings, and only phonon emission. In the denomi-

nator (∆Eai = EL − (Ea −Ei)− iγ) of Eq. (3.4.2), the Raman resonance window, γ, was

calculated from the uncertainty principle for a finite lifetime of a photo-excited electron

due to the electron-phonon interaction for each (n,m) SWNTs using the Fermi Golden

rule [61] (See the Eq. (3.3.1) and Eq. (3.3.5)). The calculated γ values were checked in

order to reproduce the resonance window of the Raman excitation profile for the RBM

modes observed by single nanotube spectroscopy.

3.4.2 G′ band of graphene

single layer graphene

The G′ band of the graphene which appears at around 2650 cm−1 is the two-phonon

double resonance Raman scattering process similar to that of SWNT. The two-phonon

scattering process for the G′ band of the graphene sheet is an inter-valley scattering

process which connects two high symmetry points K and K ′ of first Brillouin zone of the

graphene. For the calculation of the G′ band of the graphene, we also have to consider

the electron-photon and electron-phonon matrix elements similarly in Section 3.4.1. In

order to calculate the G′ band Raman intensity of the graphene at frequency ω for the

laser excitation energy EL, we use a similar formula to Eqs. (3.4.1) and (3.4.2) [7]. The

electronic band structure of the graphene is calculated by the ETB method as explained in

Chapter 2. The band structure of the graphene shows a linear energy dispersion relation
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Figure 3.2: Equi-energy contours for incident laser energy E = E(ki), interaction energy

E(ki +qinter), and scattered energy E(kf ) are shown as red, brown, and blue solid circles,

respectively, around the hexagonal corners of the K or K ′ points in the 2D Brillouin

zone of the graphene sheet. Solid arrow with qinter denote an inter-valley scattering from

a given electron wave vector k as shown around the upper-right K point. When we

measure phonon wave vectors q from the Γ point, qinter = kf − ki exists on brown solid

circles around the K ′ point for the given electron wave vector k by considering momentum

conservation.

around the K and K ′ points near the Fermi level and the valence and conduction bands

touch each other at the K and K ′ points.

In order to find the phonon wave vector q as shown in Fig. 3.2, we select an equi-

energy contour with the same incident excitation laser energy around the K point and

another equi-energy contour around the K ′ point after one phonon scattering. Therefore,

the phonon states q are obtained around the K ′ point that connects the electronic states

ki and kf on the contours around the K and K ′ points according to the momentum

conservation relative to q = kf − ki. The phonon dispersion relations of the graphene

are obtained by the force-constant model in which we consider up to the 20-th nearest
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neighbor atomic sites [89] so as to reproduce the inelastic X ray scattering for the phonon

dispersion [90]. The ∆Eai in the denominator of Eq. (3.4.1) which denotes the Raman

resonance condition includes the energy uncertainty, γ, attributed to the experimental

resonance window. Here we simply use γ=10 meV for all the cases. In previous section,

we showed how to calculate the γ values for SWNTs [61]. In the case of the graphene, we

use the γ value averaged over the equi-energy line. For comparison with the experiment,

we calculate five spectral profiles I(ω,EL) for excitation energies EL=1.65, 1.75, 1.92,

2.06, and 2.41 eV. Around the K point, we have three phonon modes iTO (in-plane

transverse optical), iLO (in-plane longitudinal optical), and iLA (in-plane longitudinal

acoustic) from the higher frequency range. Here we consider only the iTO phonon mode

since the G′ band comes from the iTO overtone modes along the KΓ direction [7, 23].

The results will be shown in Chapter 6.

double and triple layer graphene

In order to understand the G′ Raman band of the double and triple layer graphenes, we

first calculate the electronic band structure. By considering the unit cells of double and

triple layer graphenes with an AB layer stacking, we calculate the electronic energy band

structures for each of the number of layers. Figure 3.3 shows the atomic structures of the

double and triple layer graphenes. Two nonequivalent atoms A and B give rise to a unit

cell with four and six atoms in double and triple layer graphene systems, respectively.

The Slonczewski-Weiss-McClure (SWM) model [37,38] for the graphite has six constants

γ0, γ1, γ2, γ3, γ4 and γ5 corresponding to a pair of atoms associated with the hopping

processes.

Thus, the two linear electronic bands for a single graphene layer around the Fermi level

are split into two or three energy bands according to the interlayer interaction between

graphene layers. This energy band splitting plays an important role in determining the

G′ band shape and intensity in double and triple layer graphenes. For a given excitation

laser energy EL, we get the different phonon wave vectors q, since the initial electronic

states ki for the optical transitions are different for the different energy bands, and since

there are several intermediate states for the different energy bands. We will neglect the

splitting effect of the phonon branches in double and triple layer graphenes because of

the very small splitting of these phonon branches (1.5 cm−1) [32]. Figure 3.4 shows the
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Figure 3.3: The atomic structure of (a) double layer graphene and (b) triple layer

graphene. We distinguish the two inequivalent atoms A and B in each plane giving

rise to a unit cell with four and six atoms for the double and triple layer systems, respec-

tively. Since the unit cells of double and triple layer graphenes are the same for graphite

in the Bernal stacking structure, the electronic energy dispersion relations of double and

triple layer graphenes are represented in terms of the Slonczewski-Weiss-McClure (SWM)

model for graphite. The SWM constants γ0, γ1, γ2, γ3, γ4, and γ5 are associated with the

transfer integral calculated for the nearest neighbor atoms.

electronic energy band structure of the double and triple layer graphenes along the ΓKM

direction. The electronic energy band structure of the double layer graphene around

the Fermi level has two split parabolic bands in the valence and conduction bands. In

the case of the triple layer graphene, there are two linear k bands between two convex

parabolic conduction bands and two concave parabolic valence bands around the Fermi

level. According to the theory [91], the electronic structure of the multi-layer graphene

around the Fermi level depends on the number of layers n of the graphene, that is, if n is

odd, the graphene has two-linear bands between n−1 convex parabolic conduction bands

and n − 1 concave parabolic valence bands, and if n is even, the graphene only has 2n

parabolic bands.

Therefore, we can get two or three equi-energy contours in the conduction bands near

the K and K ′ points for the double or triple layer graphenes, respectively, as shown in Fig.
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Figure 3.4: The electronic band structure of (a) double layer and (b) triple layer graphenes

along the ΓKM direction. The electronic energy band around the Fermi level splits to

two and three for the double and triple layer graphenes, respectively, compared with that

of single layer graphene (see the Fig. 2.4).

3.5, because of the splitting of the energy bands around the Fermi level. The phonon state

q is obtained from the resonance condition for the possible double resonance processes.

In Fig. 3.5, the process P11 indicates scattering from the first equi-energy contour around

the K point to the first equi-energy contour around the K ′ point, and the phonon wave

vector becomes q11. In the case of the inter-valley scattering in the double layer graphene,

we can get four types of the phonon wave vector, q11, q12, q21, and q22. These phonon

wave vectors play a role to determine different subcomponents for the G′ band of the

double layer graphene, since the G′ peak depends on the magnitude of the phonon wave

vector. The magnitudes of four phonon wave vectors are enumerated by following:∣∣q11

∣∣ > ∣∣q12

∣∣ ∼ ∣∣q21

∣∣ > ∣∣q22

∣∣. (3.4.3)

Therefore, this means that the G′ band of the double layer graphene has three subcom-

ponent peaks. Similarly, in the case of the triple layer graphene, there are nine different

phonon wave vectors, q11, q12, q13, q21, q22, q23, q31, q32, and q33 The magnitude of these
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Figure 3.5: The equi-energy contours for (a) double layer and (b) triple layer graphenes

around the K and K ′ points in the 2D Brillouin zone of the graphene. In double resonance

scattering from K to K ′, there are four and nine possible optical processes for the double

and triple layer graphenes, that is, for the double layer case, (1→1), (1→2), (2→1),

(2→2), and for the triple layer case, (1→1), (1→2), (1→3), (2→1), (2→2), (2→3), (3→1),

(3→2), (3→3). The above optical processes indicate each peak component for the G′ band

of the double and triple layer graphenes. For example, the (1→1) and (1→2) processes

correspond to P11 and P12, respectively.

nine phonon wave vector are enumerated by following:

∣∣q11

∣∣ > ∣∣q12

∣∣ ∼ ∣∣q21

∣∣ > ∣∣q13

∣∣ ∼ ∣∣q22

∣∣ ∼ ∣∣q31

∣∣ > ∣∣q23

∣∣ ∼ ∣∣q32

∣∣ > ∣∣q33

∣∣. (3.4.4)

As the result, the G′ band of the triple layer graphene has five subcomponents peaks.



Chapter 4

Raman resonance window

In this Chapter, we show that Raman resonance windows of different (n,m) SWNTs

strongly depend on chirality and diameter. As explained in Section 3.3, in order to

calculate the resonance window, we have to consider the electron-phonon scattering matrix

elements, the density of state (DOS) at a final state, and the phonon occupation number.

For the electron-phonon scattering, we select 48 scattering processes, that is, intra- and

inter-valley, forward and backward, phonon emission and absorption, and six phonon

modes. For the semiconducting SWNTs (s-SWNTs), the DOS at a final state depends

on the S1 and S2 types due to the trigonal warping effect [92] around the K point in

the 2D Brillouin zone of the graphene sheet. The calculated resonance window values

are directly compared with the Raman spectral widths observed in the experiment. In

the case of metallic SWNTs (m-SWNTs), the calculated resonance window values deviate

from those for the experiment. We expect that the plasmon by free carrier excitation

might contribute to the metallic Raman resonance windows.

4.1 Electron-phonon scattering processes

Theoretical Raman resonance window γ can be simply expressed as the electron-phonon

scattering probability of Eq. (3.3.5) since the relaxation time τ is an inverse of the

scattering probability:

γ =
~
τ

= ~
∑
k′,ν

W ν
k→k′ . (4.1.1)

In this Section, we describe the electron-phonon scattering processes for the resonance

59
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Figure 4.1: (a) The schematic electron-phonon scattering processes around the K and

K ′ points of armchair SWNT. The open circle near the K point indicates an initial

k state in the first conduction band c1 for the m-SWNTs. The scattering processes

(arrows) for a and b indicate the intra-valley forward and backward scatterings, preserving

or changing the sign of the group velocity, respectively, and the corresponding phonon

modes are shown around the Γ point. In the electron-phonon scattering from K to

K ′ point, the processes c and d indicate inter-valley forward and backward scatterings,

respectively, and the corresponding phonon modes are shown around the bottom K point.

The electron-phonon matrix elements depend on the KΓ and KM direction, and then

the corresponding forward and backward scattering electron-phonon matrix elements may

have a quite different value compared with the backward scattering. (b) The energy band

of (10,10) SWNT.

windows of s- and m-SWNTs.

4.1.1 Semiconducting SWNTs

A photo-excited electron in the second conduction band c2 relaxes to a different state

according to the electron-phonon interaction, with requiring the energy-momentum con-

servation. For each phonon mode and for each energy band, we have (1) the emission and

absorption scatterings, (2) the intra- (K → K or K ′ → K ′) and inter-valley (K → K ′ or

K ′ → K) scatterings, and (3) the forward and backward scatterings, as shown in Figs.

4.1 and 4.2. In order to consider the intra- and inter-valley scatterings, we select a cutting
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Figure 4.2: The electron-phonon scattering processes of a photo-excited electron from the

second conduction band of (8,3) SWNT. The intra- and inter-valley scatterings indicate

the transition processes from K(K ′) to K(K ′) and from K(K ′) to K ′(K), respectively.

For the intra-valley scattering, the phonon wave vector has the value q ∼ 0, while q ∼ 2k

for the inter-valley scattering. Since there are six phonon branches, we expect 48 final k′

states for an initial k state of each conduction energy sub-band.

line to cover both K and K ′ regions by extending the cutting line to the K2 direction.

We select four M points in the KK ′ directions and connect four M points around the K

and K ′ point as a rectangular region (see Fig. 4.1 (a)), and then we can make cutting

lines within the rectangular region around the K and K ′ points. Figure 4.2 shows the

electron-phonon scattering processes of a photo-excited electron in the conduction band

of (8,3) SWNT which are obtained by selecting the cutting lines within the rectangular

region around the K and K ′ points. The intra- and inter-valley scatterings involve the Γ

point and K point phonon modes, respectively, as shown in Figs. 4.1 and 4.2. We should

mention that the Γ point phonon wave vector has the value q ∼ 0, while the K point

phonon wave vector has the value q ∼ 2k. The optical phonon modes at the Γ and K

points are related to the G and G′ bands, respectively, in the Raman spectra of SWNTs.
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The intra- (or inter-) valley scattering consists of the forward and backward scatterings as

shown in Fig. 4.1. The forward and backward scatterings are determined by the change

of the sign for the group velocity of photo-excited electron ∂E/∂k in the energy band.

Namely, the forward scattering preserves a sign of the group velocity, while the backward

scattering changes a sign of the group velocity, as shown in Fig. 4.1 (b). The intra-valley

forward and backward scatterings occur from K (K ′) to K (K ′) point (processes a and

b, respectively, in Fig.4.1), and have a phonon wave vector q ∼ 0 around the Γ point.

The inter-valley forward and backward scatterings occur from K (K ′) to K ′ (K) point

(process c and d, respectively, in Fig.4.1), and have a phonon wave vector q ∼ 2k around

the K point.

In graphene, there are six phonon modes, i.e., out-of-plane transverse acoustic (oTA),

in-plane transverse acoustic (iTA), in-plane longitudinal acoustic (iLA), out-of-plane trans-

verse optical (oTO), in-plane transverse optical (iTO), and longitudinal optical (iLO)

modes listed in order of increasing phonon frequency. These phonon modes can be ap-

plied to carbon nanotube by zone-folding method. Therefore, since we have six branches

of phonon modes in the SWNT, we expect 48 k′ final states for each initial state k of each

energy sub-band [12]. As an initial state k, we consider only a photo-excited electron in

the bottom of the second conduction band c2 (E22) which relaxes to the first conduction

band c1 , because only a few photo-excited electrons contribute to the scattering pro-

cess, and the relaxation rate by a phonon is 1000 times faster (0.1 ps) than the photon

emission process (0.1 ns) [59]. Thus, since the initial group velocity is zero, the forward

and backward scatterings are replaced with the scatterings along the high symmetry lines

KM and KΓ, in which we simply call KM and KΓ direction scatterings.

Figure 4.3 shows that the intra-valley scattering is mostly associated with 5 types of

phonon modes, namely, the LO, iTO, oTO, LA, and RBM phonon modes. We can exclude

the iTA phonon mode, because of the flatness of the phonon dispersion curves near the

Γ point. The electron-phonon couplings with the LO, RBM, and oTO phonon modes of

the six phonon modes are stronger than others and in particular, the LO phonon is the

strongest due to the longitudinal vibration of the C-C bond. In Fig. 4.3, the green- and

orange-filled solid circles represent the KM and KΓ direction scatterings, respectively.

In the RBM electron-phonon matrix elements, the KM direction scattering is certainly

stronger than theKΓ direction. The electron-phonon matrix elements around theK point
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Figure 4.3: Intra-valley electron-phonon scattering matrix elements of a photo-excited

electron for the s-SWNT at the E22 transition. We calculate six electron-phonon matrix

elements for six phonon modes, iTA, LA, RBM, oTO, iTO, and LO. We exclude the

calculation of relaxation process less than the cut-off energy 0.02 eV.

are sensitive to the electron wave vector. Therefore, the RBM matrix element in the KΓ

direction has a quite different value from that in the KM direction. We exclude the

electron-phonon scattering with phonon energy less than 0.02 meV for simplicity. Since

we calculate the Raman resonance window within 0.6 < dt < 1.5 nm, the RBM Raman

spectra is in the range 0.02 < ~ωRBM < 0.05 eV. Therefore, most of iTA and some of LA

phonon modes for the different (n,m) SWNTs are out of this range (see Fig. 4.3).

The inter-valley electron-phonon scattering corresponds to the phonon modes near the

K point, including all six phonon modes, since these all phonon modes have a large phonon

DOS in the vicinity of the K point. Among the six phonon modes, the LO and LA modes

give the strongest electron-phonon coupling and thus contribute strongly to relaxation
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Figure 4.4: Inter-valley electron-phonon scattering matrix elements of s-SWNT at E22

transition. Green-filled and orange-filled solid circles represent KM and KΓ direction

scatterings, respectively. The family spread strongly appears in LO and LA electron-

phonon scattering.

processes compared with the other modes, as shown in Fig. 4.4. The electron-phonon

matrix elements for the LO and LA phonon modes depend on the S1 and S2 types which

were explained in Section 2.2. For the LO phonon mode, the electron-phonon matrix

elements for the S1 type are larger than that for the S2 type, while for the LA phonon

mode, the electron-phonon matrix elements for the S1 type are smaller than that for

the S2 type. For the oTO electron-phonon matrix elements, the scattering in the KΓ

direction is stronger than that in the KM direction. Interestingly, for the LO and LA

phonon modes, the family spread for the KM direction scattering is broader than that

for the KΓ direction. Here, the family spread means the spread of the matrix elements

within the same 2n+m =constant family which is connected by the gray and brown lines
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Figure 4.5: Energy differences ∆Ec2−c1 at the energy extrema between the c1 and c2

conduction bands. Filled and open circles denote the S1 type and S2 type SWNTs, re-

spectively, as explain in Chapter 2. Red and blue dashed lines indicate the LO phonon

energy at the K(0.16 eV) and Γ(0.20 eV) points of the phonon dispersion relations, re-

spectively. If the energy difference ∆Ec2−c1 is smaller than the energy (0.16 eV) of the

K point LO phonon, the electron-phonon scattering from the energy extrema of c2 band

to c1 band is restricted (see right-top and bottom figure). The red color (n,m) SWNTs

have smaller ∆Ec2−c1 than the LO phonon energy at the K point. In left plot, the green

color numbers represent 2n+m =constant families.

in Fig. 4.4. While the intra-valley scattering gives almost same matrix elements for the

KM and KΓ direction scatterings except for the RBM phonon mode, the inter-valley

scattering gives quite different matrix elements for the KM and KΓ direction scatterings,

as shown in Figs. 4.3 and 4.4.

In a relaxation process, the energy difference between two neighbor conduction bands

gives the restriction on the electron-phonon scattering. In Fig. 4.5, we make a plot for the

energy difference between the conduction bands, c2 and c1, as a function of tube diameter

for the S1 and S2 type SWNTs as defined in Section 2.2. The red and blue dashed lines

in Fig. 4.5 (left) indicate the LO phonon energy at the K (0.16 eV) and Γ (0.20 eV)

points in the Brillouin zone of the graphene sheet, respectively. If the energy difference
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Figure 4.6: (a) The energy dispersion in the conduction bands c1 and c2. The energy

bands for the S1 type and S2 type SWNTs are plotted by the green solid lines and the

violet dashed lines, respectively. For comparing the S1 type conduction bands with the

S2 type, we overlap these conduction bands for the two types of tubes at the k axis. (b)

The trigonal warping effect around the K point in the 2D graphene Brillouin zone. The

flat side of the trigonal equi-energy contour faces on the KΓ direction, and the corner side

faces on the KM direction. (c) The density of states (DOS) plot as a function of energy

shows that the DOS of the S1 type is larger than that of the S2 type at the Ec1 .

∆Ec2−c1 is less than 0.16 eV, the electron-phonon scattering with phonon energy more

than 0.16 eV cannot occur due to the energy conservation, as shown in Fig. 4.5 (right).

Thus, (8,0), (7,2), (9,1), and (11,0) SWNT which have ∆Ec2−c1 less than 0.16 eV cannot

emit the LO and iTO phonon energies in intra- and inter-valley scatterings because of

the energy conservation requirements, and a relatively long lifetime (small γ value) is

obtained for these tubes (we will show it in Fig. 4.14 (a)). It should be mentioned that

∆Ec2−c1 for (8,0) nanotube is negative by the definition of the c1 and c2 energy bands, in

which the c1 (c2) band is defined not by the energy band bottom, but by the cutting line

closest (next closest) to the K point of the 2D Brillouin zone. The SWNTs lying on the
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blue dashed lines, such as (10,2), (8,3), (14,0) and (17,0), are remarkably resonant with

the LO phonon mode at the Γ and K points. Because, the S1 type SWNTs have a larger

DOS at the final state in the c1 band than the S2 type as shown in Fig. 4.6 (c), and

the Raman resonance window is proportional to the final DOS as explained in Section

3.3. The schematic figure for the energy difference ∆Ec2−c1 is shown in Fig. 4.6 (a). The

energy difference ∆Ec2−c1 shows the family pattern for both S1 and S2 type SWNTs,

and we see that ∆Ec2−c1(S1 type) < ∆Ec2−c1(S2 type), as shown in Fig. 4.5. The reason

why the S1 and S2 type SWNTs have different ∆Ec2−c1 family spread pattern is due to

the trigonal warping effect around the K point of the 2D Brillouin zone, as shown in Fig.

4.6 (b). In Fig. 4.6 (b), two cutting lines of the S1 type SWNT exist in the same equi-

energy contour, but those of the S2 type exist in the different equi-energy contours due

to the trigonal warping effect which results from the energy distortion with a triangular

asymmetry around the K point in the reciprocal space of the graphene sheet [92]. The

energy dispersion of the grahene quickly increases along the KΓ direction compared with

the KM direction. This means that the E11 and E22 cutting lines of the S2 type SWNTs

have lower and higher vHS than those of the S1 type, respectively.

Thus, the resonance or restriction effects related to phonon scattering appear only

for the S1 type SWNTs due to two reasons, small energy difference ∆Ec2−c1 and large

final DOS due to the trigonal warping effect as explained above. In Fig. 4.6, while the

two conduction bands for the S1 SWNTs (solid green lines) are parallel to each other, the

two curvatures for the S2 SWNTs (dashed violet lines) are different from each other, i.e.

the curvature for the c1 band is larger than the curvature for the c2 band. Figure 4.6 (b)

also shows the reason why the curvatures of the S1 type at the c1 band are smaller than

those of the S2 type. The trigonal warping effect around the K point makes the flat side

of trigonal equi-energy contour face on the KΓ direction and the corner side face on the

KM direction, resulting in large energy band curvature of the cutting line in the KM

direction. Accordingly, the DOS, (dE/dk)−1, of the final state for a photo-excited electron

which relaxes from the bottom point of the c2 band to c1 band depends on whether they

are S1 or S2 type SWNTs, since DOS(S1 type)>DOS(S2 type) as shown in Fig. 4.6 (c).

By considering the relation between the electron-phonon matrix elements and the

final state DOS, we can obtain the Raman resonance windows for different (n,m) s-

SWNTs which a photo-excited electron in the bottom of c2 band relaxes to the final
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Figure 4.7: Resonance Raman window for intra- (left) and inter-valley (right), emission

(top) and absorption (bottom) scattering processes. Filled and open circles represent the

S1 and S2 type, respectively.

states, satisfying the energy-momentum conservation. Before getting the total resonance

window which makes a summation of each scattering process, first of all, it is useful to

compare the contribution of the resonance window from each scattering process in order

to understand completely the Raman resonance window of carbon nanotube system.

Figure 4.7 shows that the resonance windows for the intra-valley scattering as a func-

tion of SWNT diameter are almost the same as those for the inter-valley scattering except

for (8,1) tube, even though the electron-phonon matrix elements depend on the Γ and K

point phonon modes as shown in Figs. 4.3 and 4.4. Interestingly, the emission process

gives much larger the resonance windows for different (n,m) SWNTs than the absorp-

tion process. In Eq. (3.3.3), the phonon occupation number nν(q) for the absorption

decrease exponentially with increasing the phonon energy at the room temperature, in

which nν(q) values of the LO phonon at the Γ and K points are about 4.4 × 10−4 and

2.1 × 10−3, respectively, while nν(q) for the cut-off phonon energy 0.02 eV is about 0.86.
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Figure 4.8: Comparison of the KM direction and KΓ direction resonance windows for

the intra- and inter-valley scattering processes, respectively. Green-filled and orange-filled

circles represent the KM and KΓ direction scatterings, respectively.

Therefore, the absorption process for the Raman resonance window calculation can be

neglected except for (8,1) and (10,0) SWNTs as shown in Fig. 4.7. In the case of the

emission process, 1 < nν(q) + 1 < 1.86 in the phonon energy range 0.02 < Eph < 0.2 eV.

Thus, the emission scattering process is dominant in relaxation processes. As motioned

above, the S1 type SWNTs have larger resonance windows than the S2 type.

Figure 4.8 shows the resonance windows of the KM and KΓ direction scatterings for

the intra- and inter-valley scattering processes, respectively. For the intra-valley scatter-

ing, the resonance windows for the KM direction scattering are slightly larger than those

for the KΓ direction scattering due to the RBM phonon mode as shown in Fig. 4.3. For

the inter-valley scattering, the resonance windows for the KM direction scattering are

similar to those for the KΓ direction scattering because of the similar electron-phonon

matrix elements for these two directions as shown in Fig. 4.4.



70 CHAPTER 4. RAMAN RESONANCE WINDOW

0

4

8

0

0.4

0.8

0

4

8

Re
so

na
nc

e 
w

in
do

w
 (m

eV
)

0

20

40

0.6 0.8 1 1.2 1.4
Diameter (nm)

0

0.4

0.8

0.6 0.8 1 1.2 1.4
Diameter (nm)

0

20

40

Intra-valley

iTO

iTA

RBM

LA

oTO

LO

(8,1)

(8,1)

(9,1)

(8,1)

KM
ΚΓ

(9,1)
(8,0)
(7,2) (11,0)

(7,2)
(8,1)

(9,1)(11,0)

Figure 4.9: Resonance windows for six Γ point phonons for intra-valley scattering. Green-

filled and orange-filled circles represent KM and KΓ direction scatterings, respectively.

Figure 4.9 shows the resonance windows for six Γ point phonon modes which are rele-

vant to the intra-valley scattering. The contributions to the resonance windows from the

LO, oTO, and RBM phonon modes are larger than those of the other phonon modes.

For the RBM phonon mode, the resonance windows of the KM direction scattering

(2 < γRBM < 6 meV) is quite larger than the KΓ direction scattering (0 < γRBM < 2

meV). Also, s-SWNTs near zigzag (θ ∼ 0◦) such as (7,2), (8,1), (9,1), and (11,0) have

relatively large resonance windows for the KM direction scattering, while for KΓ direc-

tion scattering, the values are almost zero. The resonance windows of the oTO phonon

mode are in the range γoTO < 13 meV except for (8,1) and (9,1) SWNTs. (8,1) and

(9,1) SWNTs have the resonance window values 40 and 21 meV, respectively. For the LO

phonon mode, all resonance windows are in the range less than 20 meV. In particular, the

relaxation processes for (8,0), (7,2), (9,1), and (11,0) are restricted as explained in Fig.
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Figure 4.10: Resonance windows for sixK point phonon modes for the inter-valley scatter-

ing. Green-filled and orange-filled circles represent the KM and KΓ direction scatterings,

respectively.

4.5, and thus the values of resonance window are suppressed. The LA and iTO phonon

modes have very small resonance windows in the range less than 1 meV.

The inter-valley scattering processes for each phonon mode give different behaviors

from intra-valley scattering processes as shown in Fig. 4.10. The contributions to the

resonance windows from the LO and LA phonon modes show a strong family spread

and they are larger than the other phonon modes, that is, γLO < 20 meV, γLA < 15

meV. Similar to the intra-valley scattering, the relaxation processes of (8,0), (7,2), (9,1),

and (11,0) SWNTs are restricted for the LO phonon mode. As shown in Fig. 4.10, the

resonance windows of the KM direction scattering for LO and LA phonon modes have

broader family spread than that of the KΓ direction scattering. For the oTO phonon
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Figure 4.11: Comparison of the KM direction and KΓ direction resonance windows for

(a) the intra- and (b)inter-valley scattering processes in metallic SWNT, respectively.

Green-filled and orange-filled circles represent the KM and KΓ direction scatterings,

respectively. (c) Relaxation processes from the first conduction band c1L to two linear

band for the metallic SWNTs. The inter- and intra-valley scatterings are divided into two

scatterings along the KM and KΓ directions, respectively. We consider the scattering

which a photo-excited electron relaxes from the c1L band (or c1H) to two linear metallic

bands (or to c1L).

mode, the KΓ direction scattering has larger resonance windows than the KM direction

scattering. The resonance windows for the iTO phonon mode show a relatively narrow

family spread and are in the range less than 2 meV.

4.1.2 Metallic SWNTs

Next, we consider the electron-phonon scattering process for the relaxation process of

metallic (m-) SWNTs. A photo-excited electron in the c1L band scatters to a metallic

energy band by interaction with a phonon, satisfying energy-momentum conservation,
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Figure 4.12: Resonance windows for six Γ phonon of metallic SWNT in the intra-valley

scattering. Green-filled and orange-filled circles represent the KM and KΓ direction

scatterings, respectively.

as shown in Fig. 4.11 (c). The γ value is obtained by calculating the electron-phonon

scattering probability which a photo-excited electron in the bottom of the c1L band (or

c1H) relaxes to two linear energy bands (or to c1L), after EL
11 (or EH

11) optical transition.

Here, H and L denote higher and lower energy for the metallic E11 energy band. In this

Section, we explain only for the case of the EL
11 transition because of the similar scattering

process with the EH
11 transition. We will show both calculated resonance windows in the

final result. We consider the same scattering processes as for s-SWNTs to calculate the

scattering probability of m-SWNTs. Figure 4.11 (a-b) shows the resonance windows of

the KM and KΓ direction scatterings for the intra- and inter-valley scattering processes,

respectively, when a photo-excited electron in the c1L band scatters to two linear bands.
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Figure 4.13: Resonance windows for six K phonon of metallic SWNT in the inter-valley

scattering. Green-filled and orange-filled circles represent the KM and KΓ direction

scatterings, respectively.

The KM direction scattering has relatively larger resonance windows than the KΓ di-

rection scattering for the intra- and inter-valley scatterings, respectively. The resonance

windows of both intra- and inter-valley scatterings are inversely proportional to SWNT di-

ameter. In m-SWNT, the inter-valley scattering gives relatively larger resonance windows

than the intra-valley scattering.

Also, we consider the electron-phonon scattering processes for six phonon modes when

a photo-excited electron in the c1L band to scatter to the two linear bands. Figure 4.12

shows the resonance windows for each phonon mode in the intra-valley scattering. The

RBM phonon mode gives quite larger resonance windows for the scattering in the KM

direction than those for the scattering in the KΓ direction. In metallic EL
11 transition, the
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resonance windows for the RBM and LO phonon modes are larger than those for other

phonon modes. For the m-SWNTs with small diameter, the electron-phonon scattering

probability by the RBM mode is the strongest, while the scattering probability by the

iTO mode is very small compared with the RBM scattering. Because of the curvature

effect, for the electron-phonon matrix element, the RBM phonon mode becomes large [12].

For the LO phonon mode, the KΓ direction scattering near the zigzag SWNT (θ ∼ 0◦)

gives relatively larger resonance window than the KM direction scattering, while both

direction scatterings have similar resonance window near the armchair SWNT (θ ∼ 30◦).

Figure 4.13 shows the resonance windows for six K point phonon modes in the inter-

valley scattering. The RBM, LA, and LO phonon modes have larger resonance windows

than others. For the LA phonon mode, the resonance windows near the zigzag SWNT

(θ ∼ 0◦) give similar values between the KM direction and KΓ direction scatterings,

while the contributions to the resonance windows from both direction scatterings near the

armchair SWNT (θ ∼ 30◦) give large difference. Also, the contributions to the resonance

windows from the scattering in the KΓ direction for the oTO phonon mode are larger

than those from the scattering in the KM direction. For iTO and LO phonon modes, the

scattering in the KM direction is larger than that in the the KΓ direction.

In next Section, we show the total Raman resonance window for 48 electron-phonon

scattering processes for s- and m-SWNTs, respectively, and compare with experiment.

4.2 Calculated result of resonance windows

Figure 4.14 (a) shows a plot of the resonance windows (hereafter, γ value) of s-SWNTs

for all possible relaxation processes which a photo-excited electron in the bottom of c2

band relaxes to the c1 band. The γ values for different (n,m) s-SWNTs in Fig. 4.14 (a)

are derived by substituting the electron-phonon scattering probability in Eq. (3.3.5) into

Eq. (4.1.1). In Fig. 4.14 (a), the γ values are inversely proportional to the diameter of s-

SWNTs, and the S1 type SWNTs give larger γ values than the S2 type SWNTs as shown

in Fig. 4.6. The γ value of s-SWNTs near the armchair tubes (θ ∼ 30◦) gives relatively

similar γ values between the S1 and S2 type SWNTs, while that of s-SWNTs near the

zigzag tubes (θ ∼ 0◦) gives a relatively large difference of the γ values between the S1

and S2 type SWNTs. In the small diameter range (< 0.9 nm), some s-SWNTs of the S1
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Figure 4.14: (a) The calculated total resonance windows γTH for s-SWNTs as a function

of SWNT diameter in the range 0.6 < dt < 1.5 nm. Filled and open circles indicate the

S1 type and S2 type SWNTs, respectively. The γTH value for an (8,0) SWNT is close to

0 meV, because of the absence of LO phonon scattering. The (8,1) SWNT has the largest

γTH of all (n,m) s-SWNTs (153 meV). Green color numbers represent 2n+m =constant

families. (b) Comparison of the calculated γTH with the experimental γEX. Experimental

γEX values were measured by plotting the RBM intensity for HiPCO-SWNTs in SDS

solution at 300 K by changing the laser energy, as explained Chapter 1. Filled and open

circles indicate the S1 type and S2 type SWNTs, respectively. The experimental fitting

for getting a resonance window is performed by making the integral in Raman intensity

formula, accurately (to ± 15 meV).

type near the zigzag tube (θ ∼ 0◦), such as (8,0), (7,2), (9,1), and (11,0) SWNTs, have

small γ values compared with those for the S2 type SWNTs. In the case of (9,1) SWNT,

however, because of the electron-phonon scattering with the iTA (7 meV) and RBM (7

meV) phonon modes at the K point and with the RBM (6 meV) and oTO (43 meV)

phonon modes at the Γ point, the γ value becomes relatively large (65 meV). These s-

SWNTs have small ∆Ec2−c1 values less than 0.16 eV which is the lower limit for scattering

with the LO (iTO) phonon mode as explained in Section 4.1. The (8,1) SWNT which

is S2 type has a large γ value contrary to other S2 type, because the conduction bands

c2, c3 and c4 appear in the small energy region, and thus, we can easily find a scattering

process to the many energy sub-bands. In Fig. 4.14 (b), the calculated resonance window
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Figure 4.15: (a) Calculated γ values for m-SWNTs as a function of diameter in the range,

0.6< dt <1.5 nm. Filled and open circles indicate the EH
11 and EL

11 optical transitions,

respectively. (b) Comparison of γTH with experimental γEX values for m-SWNTs. The

calculated γTH values are compared with the experimental γEX values for only EL
11 tran-

sition. The experimental fitting for getting a resonance window is performed by making

the integral in Raman intensity formula, accurately (to ± 15 meV).

γTH values are compared with the experimental resonance window γEX obtained from the

RBM Raman excitation profile (REP) for the HiPCO sample, as explained Chapter 1.

When we compare the calculated γTH value with γEX, the agreement is satisfactory. For

(6,4), (6,5), and (7,5) SWNTs, the calculated γTH and experimental γEX values (γTH, γEX)

correspond to (94, 100 meV), (62, 63 meV), and (60, 55 meV), respectively. Compared

with S1 SWNTs, all of experimental γEX for S2 type SWNTs are larger than calculated

γTH, suggesting that there are additional relaxation paths.

Next, we show a plot for the γ values of m-SWNTs in Fig. 4.15 (a). Two types of

transition appear in Fig. 4.15 (a) because of the DOS splitting due to the trigonal warping

effect [92]. One is an optical transition EH
11 (solid circles) between the c1H and v1H bands,

and the other is an EL
11 transition between the c1L and v1L bands (open circles). The

γ value for EL
11 shows a diameter dependence and no significant chirality dependence,

because the DOS of the final state in the two linear energy bands is constant (no chiral

angle dependence) in the case of phonon emission. In detail, even though the γ value

for LA scattering depends on the chirality and diameter, the KM and KΓ direction
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scatterings inversely depend on the chirality and diameter for the inter-valley scattering,

in which the zigzag tube for both direction scatterings has a similar value and the armchair

tube has a quite different value. The scattering in the KΓ direction for oTO phonon

and the scattering in the KM direction for LO phonon show the chirality and diameter

dependences.

However, the γ value for EH
11 shows both chirality and diameter dependences. The

chirality dependence comes from the additional scattering processes to the c1L band as

a final state compared with that for EL
11. Nevertheless, when we calculate the REP by

considering the electron-phonon matrix elements, the higher energy REP peak is gen-

erally smaller in intensity than the lower energy REP peak because of the large value

of the electron-phonon matrix element. Namely, since the Raman intensity is inversely

proportional to the resonance window γ, the higher energy REP peak with larger γ value

becomes smaller. Thus, even though the energy separation between EH
11 and EL

11 is suffi-

ciently small compared with the γ value, the overall γ values are not significantly affected

by the EH
11 peak. When we compare the above calculation results with the experiments,

the theoretical γTH values are always smaller than the experimental γEX, as shown in

Fig. 4.15(b). In the case of the (11,8) nanotube, for example, γTH and γEX are 25 and

140 meV, respectively. This implies that for the case of this m-SWNT, the additional

processes might also be important as well as the electron-phonon interaction.

One possibility for explaining the additional contribution to the relaxation process in

m-SWNTs is identified with the interaction between an excited electron and the conduc-

tion electrons in two linear energy bands, so-called plasmon. However, since the work is

not the original work for this thesis, we will not explain here (see the reference [61]).

4.3 Summary

In this Chapter, we have shown the calculated results of the resonance window of Raman

spectra in SWNTs, and we have compared the results of the calculated γ values with

experiment. We calculated the γ value as the lifetime of a photo-excited electron, starting

from identifying the resonance width with the energy dissipation, i.e. the lifetime of

the carriers. For the result, in the case of s-SWNTs, we could get the calculated γ

values which are in a good correlation with experiment, by considering the electron-
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phonon coupling model. We could see that the γ value shows a strong dependence on the

chirality and diameter for s-SWNTs. However, the γ value calculation for m-SWNTs needs

the additional contribution, such as might come from the electron-plasmon interaction,

because the calculated γ value that considers only the electron-phonon interaction is not

consistent with experimental results, i.e, we got a considerably underestimated γ value

compared with experiment.

The interaction between the excited electron in the conduction band and the plasmon

on two linear energy bands gives almost the same order of magnitude for γ as the γEX

value despite using very rough numerical estimations. In order to apply a detailed electron-

plasmon effect to the γ value calculation, we need to do more in deep research, in the

future.





Chapter 5

G′ band Raman spectra of SWNT

The G′ band of SWNTs is a double resonance Raman spectrum with a two-phonon scat-

tering process [7, 52]. The G′ band which is free from the defect structures, usually has

a higher intensity than the D band which consists of an inelastic phonon and a defect-

induced elastic scattering processes [7, 53–57]. In this Chapter, the G′ band Raman

intensity is calculated as a function of the excitation laser energy, EL, using the electron-

photon Mel−op and electron-phonon Mel−ph matrix elements for each (n,m) SWNT, as

explained in Chapter 3. Also, for more precise Raman intensity calculation, we will use

the Raman resonance window γ of each (n,m) SWNT obtained in Chapter 4.

Recently, there was a report on the exciton effect for the Raman intensity [93]. How-

ever, in this study, we do not use the exciton-phonon and exciton-photon interactions, but

use the electron-phonon and electron-photon interactions for simplicity. This is because

the exciton-phonon interaction gives a similar value to the electron-phonon interaction,

and the exciton-photon interaction does not change the relative intensity even though the

exciton-photon interaction enhances the optical transition significantly (∼ 100 times). In

conclusion of this Chapter, it will be shown that the present G′ band intensity calculation

can explain the metallicity dependence compared with the experiment.

5.1 Origin of G′ band

In double resonance Raman scattering processes, the G′ band in the Raman spectra

of SWNTs can be defined by (1) a second-order, (2) two-phonon, and (3) inter-valley

scattering processes, resulting in a resonant enhancement of the Raman intensity by two

81
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Figure 5.1: Theoretical phonon dispersion relations in graphene (top) and the experi-

mental Raman spectra of SWNTs [23] (bottom). Red elliptical box (bottom) shows the

G′ band in the Raman spectra and then the two phonon modes combination in the red

rectangular box (top) matches to the G′ frequency.

consecutive scattering processes. As shown in Fig. 3.1, if the first scattered phonon

energy Eb(k+q) and either the initial excited state energy Ea(k) or the second scattered

energy Eb(k) correspond to real electronic states on the energy band, the Raman intensity

is enhanced twice by two resonance condition factor in the denominator in the Raman

intensity formula of Eq. (3.4.2). This is known as double resonance Raman scattering

process. Inter-valley double resonance scattering process involves electrons with the wave

vector k in the vicinity of the K point of 2D Brillouin zone, and thus, the G′ band comes

from two phonons with wave vector q ∼ 2k. As shown in Fig. 5.1, the experimental G′

band frequency is 2625 cm−1, and the corresponding two-phonon combination around the
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K point in phonon dispersion relations is related to LA, LO, and iTO phonon modes, as

candidate of the origin of the G′ band of SWNTs. However, the dispersive behavior of

the LA phonon mode is negative along the KΓ direction, while the G′ band has a positive

dispersive behavior with increasing EL along the same direction. Near the G′ band, there

is a small Raman peak which appears at around 2450 cm−1, and its dispersive behavior

is small and negative. This peak is known as combination of iTO and LA phonon modes

at the K point [94]. This band is distinguished from the iTOLA band at the Γ point as

explained in Section 1.3. In order to avoid confusion, we call the combination mode of

iTO and LA at the K point to G∗ band in this thesis. Since the G∗ band is much weaker

than the G′ band in the experimental Raman spectra, the observation of the G∗ band is

required a good quality of sample and long exposure time. Thus, the LA phonon mode at

the K point contributes to the G∗ band. In comparison, the LO and iTO phonon modes

show a positive dispersive behavior along KΓ direction and are good candidates as the

origin of the G′ band.

5.2 Important factors of G′ band

As explained in Section 3.4, the G′ band involves four scattering processes which consist

of optical absorption and emission, and two electron-phonon scatterings by the phonon

emission (or absorption). First, the electron-photon matrix elements in SWNTs are ob-

tained by substituting the 1D angular and linear momentum µ, k in Eq. (2.1.17) instead

of the 2D momentum k into Eqs. (3.1.4), (3.1.5) and (3.1.6). The curvature effect of

SWNT is given by aligning the atomic orbitals in Eq. (3.1.6) along the tangential and

normal directions. The electron-photon matrix elements depend on light propagation

direction and polarization vector with respect on the SWNT axis. When the light prop-

agates perpendicular to tube axis and is linearly polarized parallel to the tube axis, the

electron-photon matrix element nearly reaches its maximum at the Eii transition in the

joint density of states (JDOS) [36,67,95,96]. However, for the perpendicular polarization

to tube axis, the electron-photon matrix element has a value for the Ei,i±1 transition in

the JDOS [36, 67, 95, 96]. In the present G′ band calculation, we consider only for the

parallel polarization to tube axis, which corresponds to light propagating perpendicular

to tube axis.
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Figure 5.2 shows the electron-photon matrix elements for each transition, ES
11, E

S
22,

EML
11 , EMH

11 , and ES
33, as functions of inverse diameter and excitation laser energy. The

matrix elements strongly depend on the excitation laser energy EL as seen in Eq. (3.1.4).

The EL dependence of electron-photon matrix elements affects the G′ band Raman inten-

sity, that is, the G′ band intensity decreases with increasing the excitation laser energy,

which will further be explained in detail in next Section. Also, the matrix elements Mel−op

for ES
11 and ES

22 transitions show strong diameter and chiral angle dependences, but for

EM
11 and ES

33 transitions, only chiral angle dependence is significantly seen. The strong

dependence of Mel−op on the chiral angle for each transition comes from the trigonal warp-

ing effect of the electronic structure [92], and the optical matrix elements increase from

K to M point in the high symmetry line KM , but decrease from K to Γ point in the

line KΓ [36]. Therefore, the matrix elements of S1 type SWNT at the ES
11 transition are

larger than those of the S2 type. For ES
22 transition, the matrix elements of the S2 type

are larger than those of the S1 type. Large family spread of the electron-photon matrix

elements appears at the higher transition energy due to the larger JDOS. The matrix

elements for each transition can be enumerated in the following order, as shown in Fig.



5.2. IMPORTANT FACTORS OF G′ BAND 85

0.6 0.8 1 1.2 1.4 1.6
1/dt (nm-1)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

M
el

-p
h (e

V
)

1 2 3 4
Laser energy (eV)

iTO iTO

LOLO

E22S
E33S

E11ML
E11MH

S2

S1
armchair

zigzag

zigzag

armchair
zigzag

zigzag

Figure 5.3: Electron-phonon matrix elements of the scattering along the KM direction for

the iTO (top) and LO (bottom) phonon modes as functions of inverse diameter (left) and

excitation laser energy (right). Blue, white, black, and red circles represent ES
22, E

ML
11 ,

EMH
11 , and ES

33 transitions, respectively.

5.2:

ES
11 > ES

22 > EM
11 > ES

33. (5.2.1)

Next, we consider the electron-phonon matrix element for which a photo-excited elec-

tron in the conduction band scatters to another K point by emitting a phonon with wave

vector q and energy ~ω(q). For a given initial electron state k in SWNT, there are four

possible electron-phonon scattering paths, i.e. intra- and inter-valley, forward and back-

ward scatterings for 6N different phonon modes, since the phonon wave vector in the

circumferential direction is discrete. For the G′ band intensity calculation, we select the

inter-valley, forward, and backward scatterings for LO and iTO phonon modes. Since we

select only a photo-excited electron in the bottom of the conduction band as an initial
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state k, the initial band velocity is zero, and thus we replace the forward and backward

scatterings with the scatterings along the high symmetry direction KM and KΓ lines,

respectively, as explained in Chapter 4.

Figure 5.3 shows the electron-phonon matrix elements of the scattering along the

KM direction for the iTO and LO phonon modes for ES
22, E

ML
11 , EMH

11 , and ES
33 optical

transitions, as functions of inverse diameter and excitation laser energy. While the iTO

electron-phonon matrix elements give a small family spread, the LO electron-phonon

matrix elements give a large family spread, as shown in Fig. 5.3. For ES
22 transition, the

LO electron-phonon matrix elements of S2 type SWNTs give almost zero value near the

zigzag direction (θ ∼ 0◦), but those of S1 type SWNTs have the largest value (∼0.4 eV)

near the zigzag direction. In the case of iTO electron-phonon matrix elements for ES
22

transition, the SWNTs near the armchair direction (θ ∼ 30◦) have similar values to one

another regardless of S1 and S2 types, and the difference of the matrix element between

the S1 and S2 types is smaller than that for the LO phonon mode. As the result, the

iTO electron-phonon matrix elements give a clear dependence of the transition energy, i.e.

ES
22, E

ML
11 , EMH

11 , and ES
33, similar to the case of the optical matrix element, but the LO

electron-phonon matrix elements do not give any transition energy dependence except for

the strong chiral angle dependence. Since the LO electron-phonon matrix elements give

larger values for some zigzag (n,m) SWNTs than those for the iTO phonon mode, the

LO+LO combination for the zigzag SWNT generally gives larger intensity (see Fig. 5.7).

The calculated G′ band intensity will be shown in next Section.

The electron-phonon matrix elements around the K point are sensitive to the electron

wave vector k. As shown in Fig. 4.2, the energy dispersion shows asymmetry near the K

point, and its asymmetry is relevant to quite different electron-phonon matrix elements

for the high symmetry lines KM and KΓ, respectively. Figure 5.4 shows the electron-

phonon matrix elements of the scattering along the KΓ direction for the iTO and LO

phonon modes for each transition, ES
22, E

ML
11 , EMH

11 , and ES
33, as functions of inverse

diameter and excitation laser energy. Comparison to the scattering in the KM direction

in Fig. 5.3, the LO electron-phonon matrix elements for EML
11 , EMH

11 , and ES
33 transitions

give small values, while the matrix elements for ES
22 transition have a similar family spread

and similar values to one another. The iTO electron-phonon matrix elements, similar to

the scattering in the KM direction, give a dependence on the transition energy except for
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the iTO (top) and LO (bottom) phonon modes in each transition, ES
22, E

ML
11 , EMH

11 , and

ES
33, as functions of inverse diameter (left) and excitation laser energy (right).

small diameter SWNTs. Some of iTO electron-phonon matrix elements for ES
33 transition

have almost similar values to those for the ES
22 transition in the small diameter range

SWNTs. As the result, we can enumerate the iTO electron-phonon matrix elements of

the scattering along the KΓ direction for each transition in the following order:

ES
22 < EM

11 < ES
33. (5.2.2)

In the case of inter-valley scattering at the ES
33 transition, a photo-excited electron in

c3 band can scatter to c2 band or to c1 band by emitting a phonon, satisfying energy-

momentum conservation. Figure 5.5 shows the comparison of electron-phonon matrix

elements by scattering from c3 to c2 band and by scattering from c3 to c1 band at the ES
33

transition. Figures 5.3 and 5.4 show the electron-phonon matrix elements only for the
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33 transition. Green and orange filled circles represent the inter-valley electron-phonon

scattering from c3 to c2 band and from c3 to c1 band, respectively.

scattering from c3 to c2 band at the ES
33 transition. As shown in Fig. 4.2, the scattered

phonon wave vectors from c3 to c2 band and from c3 to c1 in the KΓ direction scattering

have a small difference compared with the case of the KM direction scattering because

of asymmetry of the energy band around the K point of the Brillouin zone. For the LO

phonon scattering along the KΓ direction, the scattering from c3 to c1 band gives a larger

matrix element than the scattering from c3 to c2 band, in which the scattering from c3 to

c1 band for the S2 type SWNT is stronger than the scattering from c3 to c2 band. Along

the KM direction, the LO electron-phonon matrix elements from c3 to c2 band have

similar values to those from c3 to c1 band. We might suggest that the electron-phonon
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KM direction scattering for the LO phonon mode depends on the chiral angle, and the

KΓ direction scattering depends on the S1 and S2 types. However, for the iTO phonon

mode, the scattering matrix elements in both KM and KΓ direction give larger values

for the scattering from c3 to c2 band than for the scattering from c3 to c1 band.

Finally, we consider the Raman resonance window as an important factor of the G′

band intensity. The resonance window of Raman spectra is given by the life time of

the inelastic electron-phonon scattering for a given photo-excited state in the conduction

band. In Chapters 3 and 4, we already explained the calculation method and the result by

comparing with the experiment. Since the G′ band peak intensity is proportional to the

resonance window to minus forth power, γ−4, in Eqs. (3.4.1) and (3.4.2) due to the double

resonance Raman scattering, the G′ band peak intensity quickly increases with decreasing

the resonance window. As explained in Eqs. (3.3.3) and (3.3.5), the resonance window

is proportional to square of the electron-phonon matrix elements. Therefore, we suggest

that finally the G′ band peak intensity is inversely proportional to the electron-phonon

matrix elements, |Mel−ph|−4, where we use the fact that Mel−ph matrix elements appear

in the numerator of Eq. (3.4.2). Namely, small electron-phonon matrix elements for six
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phonons give large Raman peak intensity. Thus, the iTO phonon is remarkable in the G′

band intensity due to slightly small electron-phonon matrix elements compared with the

LO phonon matrix elements.

In this Chapter, however, we calculate the G′ band intensity based on Eqs. (3.4.1) and

(3.4.2), and use the total resonance window for each electron-phonon scattering path as

given in Figs. 4.14 and 4.15. The G′ band Raman intensity is obtained by substituting the

(n,m) resonance windows into Eq. (3.4.2). Figure 5.6 shows the total Raman resonance

windows considering all possible scattering paths for each transition, ES
22, E

ML
11 , EMH

11 ,

and ES
33, as functions of inverse diameter and excitation laser energy. As shown in Fig.

5.6, the resonance windows strongly depend on diameter and transition energy. Since, in

the electron-phonon scattering in the higher Eii energy, there are many possible scattering

paths, ES
33 transition has the largest resonance window of these transitions. In the case of

EM
11 transition, while the resonance windows for EML

11 only depend on diameter, the case

for EMH
11 depends on diameter and chiral angle. In particular, for less than 1.75 eV laser

energy, the EM
11 resonance windows are the smallest of the three transitions, ES

22, E
M
11 , and

ES
33. This result gives the large G′ band peak intensity compared with other transitions

and we will explain it in the next Section.

5.3 G′ band Raman intensity

The G′ band intensity is calculated for each Eii value of (n,m) SWNTs whose intensity

is normalized by per unit length of a SWNT. Three variables were already calculated to

obtain the G′ band intensity in previous Section: the electron-phonon matrix element,

electron-photon matrix element, and Raman resonance window. Using the phonon dis-

persion relation of the SWNT, we already explained that the G′ band might be related to

a combination of the LO and iTO phonon modes around the K point in the Brillouin zone

of graphene sheet. Moreover, the electron-phonon matrix elements at the K point for the

iTO phonon depend on the transition energy Eii. The electron-phonon matrix element

for the EM
11 transition for the metallic SWNTs is larger than that for the ES

22 transition

of the semiconducting SWNTs.

In Fig. 5.7, we show the calculated G′ band intensity for iTO+iTO (top) and LO+LO

(bottom) phonon combinations as a two-phonon scattering process for all (n,m) SWNTs
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Figure 5.7: The calculated G′ band Raman intensity for all (n,m) SWNTs in the diameter

range 0.6 < dt < 1.6 nm as functions of Raman shift (left) and excitation laser energy

(right) for the iTO overtone (top) and the LO overtone (bottom), respectively. White

and black filled circles indicate the lower metallic transition EML
11 and the higher metallic

transition EHM
11 , respectively and blue and red filled circles indicate the semiconducting

transitions ES
22 and ES

33, respectively.

in the diameter range, 0.6 < dt < 1.6nm, as functions of Raman shift and excitation

laser energy. The LO+LO optical phonon combinations do not provide a metallicity

dependence consistent with the experiment for the G′ band Raman intensity as shown in

Fig. 5.7. In Fig. 1.5, we showed that the G′ band intensity depends on metallicity in

the HiPCO SWNTs sample which removes the metallic SWNTs from the semiconducting

SWNTs in small diameter range, dt < 1.0 nm, by a chemical reaction which acts on

metallic SWNTs [24,25,97]. It should be noted that the G′ band by the LO+LO phonon

combination provides a stronger intensity for semiconducting SWNT than that for metallic

SWNT in the excitation laser energy range, EL < 1.2 eV. For larger excitation laser

energies (> 1.2 eV), a few metallic (n,m) tubes have a stronger intensity than that for
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Figure 5.8: The calculated G′ band Raman intensity for all (n,m) SWNTs in the diameter

range 0.6 < dt < 1.6 nm as functions of Raman shift (left) and excitation laser energy

(right) for combination of the iTO and LO phonon modes.

semiconducting SWNTs, in which a zigzag metallic tube (21,0) has a large intensity due

to the chiral angle dependence of the LO electron-phonon matrix elements as explained in

Fig. 5.3. However, the electron-phonon matrix elements for the LO phonon mode at the

K point are independent of the metallicity as explained in the previous Section. For the

combination of the iTO phonon mode, EM
11 provides a larger G′ band intensity than ES

22

and ES
33 as shown in Fig. 5.7. For the reason for this behavior, we found that the electron-

phonon matrix elements of the iTO phonon mode produce larger values for EM
11 than for

ES
22. For ES

33, the electron-phonon matrix elements have a similar value to EM
11 . However,

the γ value for ES
33 is larger than that for EM

11 , which reduces the Raman intensity for ES
33

as shown in Fig. 5.6. Because of the trigonal warping effect, EM
11 , the vHS peak is split

into two peaks at lower and the higher energies, ELM
11 and EHM

11 , respectively. The G′

band intensity for ELM
11 is definitely larger than that for ES

22 and ES
33 at all laser excitation

energy ranges which is consistent with the experimental observation.

The Raman shift of the G′ band for iTO overtone in the calculation was blue-shifted

(100 cm−1) compared with the experimental value. The agreement of the theoretical

prediction with experiment values will be improved if the Kohn anomaly, which is more

dispersive around the K point, is considered.
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In Fig. 5.8, the G′ band intensities for combination of the iTO and LO phonon modes

for all (n,m) SWNTs in the diameter range 0.6 < dt < 1.6 nm have small values compared

with those for the iTO+iTO phonon combination, even though the iTO+LO intensity

gives the dependence of metallicity in the excitation laser energy range, 1.2 < E <1.75

eV. Therefore, we can say that the iTO+iTO combination for the G′ band is dominant

compared with the iTO+LO combination.

5.4 Summary

The G′ band is defined as double resonance Raman scattering, two-phonon scattering, and

inter-valley scattering. By considering these starting points, we calculated the G′ band

and could investigate a peculiar phenomenon in the G′ band Raman intensity of SWNTs.

The intensity of the G′ band was strongly related to the metallicity of the SWNT sample.

This metallicity dependence is explained by electron-phonon interactions (mostly iTO

phonon modes) from the extended tight-binding calculations. These results demonstrate

that the intensity of the G′ band in Raman spectroscopy is a measure of the metallicity

of carbon nanotube samples.

However, the optical and relaxation properties of SWNTs are affected by excitonic

effect, and the free electron model fails to quantitatively reproduce the relative inten-

sities of the spectral features observed in experiments, for example, tube length depen-

dence. The exciton-photon and exciton-phonon transition matrix elements are calculated

upon substituting the excitonic wave functions obtained within the ETB framework. Fu-

ture calculations of the Raman spectra involving the exciton-photon and exciton-phonon

transition matrix elements are expected to provide better agreement with the results of

experimental observations.





Chapter 6

G′ band of multi-layer graphene

In this Chapter, we present the electronic energy band structure for multi-layer graphene

and calculate the Raman G′ band as a function of the number of graphene layers, and

compare the calculated results with the experiment. As explained in Section 3.5, the

inter-layer interaction in multi-layer graphene gives the energy band splitting near the

Fermi level. Since the G′ band is a double resonance Raman scattering process, the split

energy band structure for multi-layer graphene results in different sub-peaks in the G′

band region. Therefore, in order to understand the electronic energy band structure for

multi-layer graphene, we need to analyze sub-peaks of the G′ band in experimental Raman

spectra.

6.1 Raman scattering processes

In the case of single layer graphene, we already described in detail the double resonance

Raman scattering process in section 3.5. Since the energy dispersion for π electron of

single layer graphene gives only two linear bands at the K point in the Brillouin zone of

a graphene sheet, we just consider one possible optical scattering process. As the result,

the G′ band shows a sharp peak with small spectral width.

In double layer graphene, the energy band around the K point shows two parabolic

bands for up and down bands which are split from two linear band of single layer graphene

due to inter-layer interaction between π electrons (see Fig. 3.4 (a)). The splitting of the

energy band around the K point plays an important role to determine the G′ band as

explained above. For the G′ band calculation of double layer graphene, we have to find

95
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Figure 6.1: Possible optical absorption processes (left top). By the optical matrix elements

calculation, the optical absorption processes from vi to ci (i = 1, 2) are possible, where

i indicates the energy sub-band index. The light polarization vector Pλ is in the zigzag

direction (left bottom) and the optical matrix elements is given as a function of polar angle

φ along the contour of EL = 2.41 eV (right). Black, red, blue, and green arrows correspond

to the electron-photon matrix elements
〈
v1|Hel−op|c1

〉
,
〈
v2|Hel−op|c2

〉
,
〈
v2|Hel−op|c1

〉
, and〈

v1|Hel−op|c2
〉
, respectively [72].

possible Raman scattering processes. First, we check possible electron-photon absorp-

tion processes, when a valence electron is excited to the conduction band of double layer

graphene, as shown in Fig. 6.1. In order to calculate the electron-photon matrix ele-

ment Mel−op for double layer graphene, we have to consider four optical transitions from

the valence band to the conduction band. For double layer graphene, the optical matrix

elements Mel−op(v1 to c2) and Mel−op(v2 to c1) become almost zero by theoretical calcu-

lation which can be understood by the symmetry, as shown in right plot of Fig. 6.1. The

electron-photon matrix elements calculation is based on Section 3.1. In comparison, the

optical matrix elements Mel−op(v1 to c1) and Mel−op(v2 to c2) within the same layer are

similar to that for single layer graphene. Thus, we have two possible optical absorption
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Figure 6.2: Schematic double resonance Raman scattering processes of double layer

graphene. We find four possible optical processes in the energy band structure of double

layer graphene.

processes and we can make two equi-energy contour around the K point as explained in

Section 3.5. An electron which is excited from vi to ci enery band scatters to one of two

parabolic bands at the K ′ point, emitting a phonon, where i (=1,2) indicates the energy

sub-band index.

Therefore, we have four possible double resonance Raman scattering processes for the

double layer graphene along the Γ−K−M−K ′−Γ direction, as shown in Fig. 6.2. These

four possible inter-valley double resonance Raman scattering processes might lead to the

observation of four sub-peaks in the double layer graphene. P11 process represents that an

electron with wave vector k1 in v1 band scatters to c1 band, absorbing the incident laser

energy EL, and scatters to another electronic state k′
1 in c′1 band by emitting a phonon

with wave vector q11, and scatters back to c1 band, and finally recombines with a hole in

v1 band, where q11 = k1 −k′
1. P22 process involves the optical absorption process from v2
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Figure 6.3: Schematic double resonance Raman scattering processes of triple layer

graphene. We find nine possible optical processes in the electronic band structure of

triple layer graphene.

to c2 band with electron wave vector k2 and the electron-phonon scattering process from

c2 to c′2 band by emitting a phonon with wave vector q22 = k2−k′
2. Similarly, P12 and P21

processes also involve the optical process of an electron with k1 and k2, respectively, and

involve the electron-phonon scattering process for a phonon with wave vector q12 and q21,

respectively, where q12 = k1 − k′
2, and q21 = k2 − k′

1. As explained in Chapter 5, the G′

band comes from the overtone of iTO phonon mode. Since the wave vector of iTO phonon

mode q11 associated with P11 process is the largest of these four wave vetors, as shown

in Fig. 6.2, the P11 process corresponds to the highest frequency subpeak in the G′ band

of double layer graphene. On the other hand, the P22 process gives the lowest frequency
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Figure 6.4: Theoretical (left) and experimental (right) G′ band spectra for single layer

graphene for the different excitation laser energies. The number for each peak indicates

the excitation laser energy. The experimental result is given by Mr. A. Reina in MIT in

the collaboration with our group [26].

sub-peak due to the smallest phonon wave vector q22. The inter-mediate sub-peaks are

associated with the P12 and P21 processes. The ETB calculation for the energy dispersion

relations for the double layer graphene gives same phonon wave vector for q12 and q21.

Thus, the inter-mediate sub-peaks for the P12 and P21 processes are degenerated at same

frequency.

For the case of triple layer graphene, we can also neglect the optical matrix elements

which connect different subband indexes of the valence and conduction bands, because

of the appearance of a similar dipole selection rule to the double layer case. As the

result, there are nine possible double resonance Raman scattering processes in triple layer

graphene, as shown in Fig. 6.3. The P11 and P33 processes give the highest and lowest

frequency sub-peaks in the G′ band spectra with corresponding the phonon wave vectors

q11 and q33, where q11 = k1 − k′
1, and q33 = k3 − k′

3. The other sub-peaks in the G′

band spectra for the triple layer graphene are associated with the degenerated processes

P21 + P12, P22 + P13 + P31, and P23 + P32, which give similar phonon wave vectors to one

another for each sub-peak.
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Figure 6.5: The G′ band calculation for excitation laser energies EL =1.65, 1.75, 1.92,

2.06, and 2.41 eV, for single layer graphene without considering EL factor in the optical

matrix elements of Eq. (3.1.4). Thus, the calcuated G′ band intensity as a function of

the excitation laser energy becomes similar to the experiment in right panel of Fig. 6.4.

6.2 G′ band spectra

6.2.1 Single layer graphene

Figure 6.4 shows the theoretical (left) and experimental (right) G′ band spectra for the

different excitation laser energies for the single layer graphene. Since the calculated G′

band spectra-widths for different excitation laser energies are similar to one another, the

comparison of the peak intensities should apply to the values of integrated intensity. The

calculated peak intensity of the G′ band decreases with increasing laser energy, while the

experimental results show an irregular behavior. The experimental G′ band spectra shown

in Fig. 6.4 are obtained by normalizing the measuredG′ band peak intensity to that for the

G band. As the excitation laser energy changes from 1.83 eV to 2.41 eV, the experimental

G′ band peak intensity behavior does not show any special tendency whether it decreases

or not with increasing excitation energy as shown in right panel of Fig. 6.4, contrary to

the calculated result. In Chapter 5, we showed that the optical matrix elements Mel−op of
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SWNTs decrease with increasing excitation laser energy. For the graphene sheet, we also

obtain the same result. This excitation laser energy dependence appears in Eq. (3.1.4)

for the optical matrix elements calculation. By substituting the absorption and emission

optical matrix from Eq. (3.1.4) into Eq. (3.4.1), we can get the result that the G′ band

Raman intensity is proportional to E−3
L . The excitation laser energy dependence of the

electron-phonon matrix elements for iTO phonon are small and can be neglected. Thus,

theoretical G′ band intensity shows the dependence of electron-photon matrix element on

the excitation laser energy EL.

However, if we neglect the EL dependence of the optical matrix element formula in

Eq. (3.1.4), the calculated G′ band Raman intensity as a function of the excitation energy

EL becomes similar to the experiment, as shown in Fig. 6.5, which can be compared

with the experiment, since the marix element for G band also depends on the electron-

photon matrix element. The EL dependence in Eq. (3.1.4) comes from the fact that the

stimulated absorption and spontaneous emission optical processes occur for Mab
el−op and

M em
el−op, respectively.

6.2.2 Double layer graphene

Figure 6.6 shows the peak fitting results of the experimental and calculated G′ bands

for double layer (2L) graphene with EL =2.41 eV. Even though there are four possible

double Raman scattering processes which contribute to the G′ band spectra of double

layer graphene, our calculation shows only three sub-peaks, P11, P12 +P21, and P22, since

the phonon wave vectors q12 and q21 are almost the same. As explained in previous

Section, the peak P11 is arranged a higher frequency component compared with P12 +P21

and P22 sub-peaks. Therefore, the experimental G′ band spectra of 2L graphene is also

fitted to three peak components, as shown in Fig. 6.6 (bottom). In the calculation, the

middle sub-peak intensity is the strongest of the three components, but in experiment,

the P11 peak has the strongest intensity.

We should mention that, for comparing the calculated frequency with the experiment

for the G′ band, we did not use the calculated phonon energy dispersion but numerically

the experimental fitting formula for iTO phonon frequency [33], ω(cm−1) = 1241(cm−1)+

313(cm−1Å)q, where q is the phonon wave vector from the K point. It is because that the

calculated phonon energy dispersion does not reproduce the dispersion of the experimental
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Figure 6.6: Theoretical (top) and experimental [26] (bottom) fitting of the G′ band spectra

for the double layer graphene with three Lorentzian components at the excitation laser

energy 2.41 eV. Red, blue, and green solid lines represent P11, P12+P21, and P22 scattering

processes, respectively.

G′ band frequency. If the Kohn anomaly [90, 98], which gives more dispersive phonon

frequency around the K point, is considered in the calculation of the phonon dispersion

relation, the comparison of the calculation with the experiment will be further improved.

Figure 6.7 shows the dispersion of the G′ band sub-peaks for the double layer graphene

as a function of laser excitation energy for the calculation (left) and the experiment (right).

The dispersion of the G′ band for the single layer graphene is also shown as red line. It

can be expected that the single layer G′ band frequency lies midway between the optical

processes P11 and P22 and is similar with the P12 + P21 peak position, as shown in the

calculation result. However, the experimental middle peak component of double layer
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Figure 6.7: The theoretical (left) and experimental (right) [26] phonon energy dispersions

of the G′ band as a function of the excitation laser energy for the three sub-peaks fitting

to the G′ band of double layer graphene, respectively. Red line indicates the G′ band

dispersion of single layer graphene. In the left panel, brown and gray lines mean the G′

band calculation for different inter-layer distance between upper and bottom graphene

layers, 0.34 and 0.30 nm, respectively.

graphene, which accounts for the P12 + P21 processes, is up-shifted with respect to the

single layer G′ band frequency. It might be that the blue-shift of the middle peak for

the double layer graphene results from environment effect such as the interaction between

bottom layer and SiO2 substrate. The calculated G′ band width is narrow in comparison

to experiment. The G′ band width depends on the inter-layer distance between upper and

bottom graphene layers. In general, the experimental inter-layer distance is known as 0.34

nm. In left panel of Fig. 6.7, brown and gray lines represent the G′ band calculation for

different inter-layer distance, 0.34 and 0.30 nm, respectively. Even though the inter-layer

distance 0.30 nm is very narrow experimentally, the theoretical comparison shows that

the G′ band width becomes broad with deceasing inter-layer distance.
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Figure 6.8: Theoretical (top) and experimental [26] (bottom) fittings of triple layer

graphene G′ band spectra with five peak components at the excitation laser energy 2.41

eV. Red, violet, green, pink, and blue solid lines represent P11, P12 +P21, P13 +P22 +P31,

P23 + P32, and P33 scattering processes. In this plot, we simply label the degenerated

components P12 + P21, P13 + P22 + P31, P23 + P32 to P21, P22, P23, respectively.

6.2.3 triple layer graphene

In Fig. 6.8, we show the peak fitting of the theoretical (top) and experimental (bottom)

G′ bands with 2.41 eV. As already explained in Section 6.1, the triple layer graphene has

nine possible double resonance Raman processes which contribute to the G′ band spectra,

but five sub-peaks appear in the calculation such as P11, P21 + P12, P13 + P22 + P31,

P23 + P32, and P33, due to same phonon wave vector. Hereafter, we simply label the

degenerated sub-peak components P12 + P21, P13 + P22 + P31, P23 + P32 to P21, P22, P23,

respectively. Therefore, a fit is made of five peaks in the G′ band spectra of triple layer

graphene for the experimental Raman spectra with EL =2.41 eV, as shown in Fig. 6.8. In

the calculation, the G′ band peak position for the triple layer graphene is consistent with
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Figure 6.9: Theoretical (left) and experimental (right) [26] phonon energy dispersions

of the five peak components P11, P12, P22, P32, and P33 in the G′ band of triple layer

graphene as a function of the excitation laser energy. Red line indicates the G′ band

dispersion of single layer graphene. In the left panel, brown and gray lines mean the G′

band calculation for the different inter-layer distance between upper and bottom graphene

layers, 0.34 and 0.30 nm, respectively.

the sub-peak P22 position. However, in the experiment, the P22 peak slightly deviates

from the G′ band peak position.

In Fig. 6.9, the dispersion of the G′ band sub-peaks for the triple layer graphene is

shown as a function of excitation laser energy for the calculation (left) and the experiment

(right). In experiment, the dispersion for the single layer graphene G′ band peak (red

line) is almost consistent with that of the peak P23 in triple layer graphene G′ band, as

shown in Fig. 6.9. The calculated dispersion of single layer graphene is overlapped to the

sub-peak P22. Similar to the case of double layer graphene, when the inter-layer distance

decreases from 0.34 (brown line) to 0.30 nm (gray line), the G′ band for the triple layer

become broad from the center peak P22, as shown in left panel of Fig. 6.9.

Finally, we compare the G′ band for different number of graphene layers, and compare
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Figure 6.10: The dependence of the G′ band intensity for EL = 2.41eV as a function of the

number of layers for the calculation (left) and experiment [26] (right), respectively. Black,

red, and green lines indicate the G′ band for single, double, and triple layer graphenes,

respectively.

the calculation with the experiment. In Fig. 6.10, the calculated G′ band peak intensity

decreases with number of layers, agreeing with the experimental G′ band spectra calcu-

lations. The experimental G′ band peak intensity of double layer graphene is 20% larger

than that of the triple layer graphene, whereas the G′ band peak intensity of single layer

is 25% larger than that of double layer as shown in Fig. 6.10. However, in the calculation,

the G′ band peak intensity of the double layer graphene is 46% larger than that of the

triple layer graphene, and that of the single layer graphene is 77% larger than that of

the double layer graphene. In the experiment, the double layer G′ band spectra-width

(55 cm−1) is nearly twice of single layer graphene (28 cm−1), which agrees with our cal-

culation. The calculated spectra-widths of the double and single layer graphenes are 29

cm−1 and 19 cm−1, respectively. Since we use γ = 10 meV for all numbers of layers,

the calculated spectra-width comes from the fact that each peak of the double resonance

scattering process shifts to one another. The experimental spectra-width of triple layer

graphene is only 10-20 % larger than that of double layer graphene. For the calculated G′
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band spectra-width, we obtained a spectra-width (24 cm−1) for triple layer graphene that

is slightly small compared with that of double layer graphene (29 cm−1). Even though

the G′ band of triple layer graphene has more optical processes (nine) than that of double

layer graphene (four), both outside peaks (P11 and P33) of the nine G′ band components

have a much smaller intensity than the main components, and the split width of the

energy band near the Fermi level for triple layer graphene does not become larger than

that of double layer graphene, so that we get a smaller calculated spectra-width for triple

layer graphene than for double layer graphene. The split width of the energy band near

the Fermi level depends on the interlayer distance, in which we fixed it as 0.34 nm. If

the interlayer distance decreases, the split width of the energy band becomes larger as

explained above. This fact results in the increase of the G′ band spectra-width for the

double and triple layer graphene. Moreover, the experimental G′ band center frequency

increases with increasing number of layers as shown in Fig. 6.10. However, the increase

between single and double layer is 20 cm−1 while the increase between 2L and 3L is only

10 cm−1. Such a G′ band peak frequency shift with number of layers might be caused by

the interaction between the SiO2 substrate and the bottom layer graphene. According to

the double resonance Raman theory, if an environmental effect does not exist, then there

should not be a shift in the averaged G′ band peak frequency as the number of graphene

layers changes.

6.3 Summary

We calculated the G′ band Raman spectra of single, double, and triple layer graphenes

and in particular, analyzed the peak FWHM, frequency, and peak intensity for different

number of layers and for the different excitation laser energies. The G′ band calculation

is based on the double resonance Raman theory. As the result, we found that there are

four and nine optical processes that contribute to the G′ band for the double and triple

layer graphenes, respectively. In the other papers which have studied the G′ band of

double layer graphene, four peak components are used to describe the G′ band [32, 33].

However, theoretically, each peak position depends on a wave vector, and then the two

middle peak components are degenerate. Therefore, we suggest that the G′ band of

double layer graphene can be described by three components and correspondingly triple
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layer graphene has five components. This point might explain the reason why the G′ band

width of graphite does not become much larger than that of double layer graphene. The

dependence of the G′ band peak intensity on the excitation laser energy is predicted to

decrease due to decrease of the electron-photon matrix elements with increasing excitation

laser energy. When we discuss the relative intensity of G′ band to G band, the energy

dependence of electron-photon matrix elements disappears and thus the agreement with

the experimental results that are given by the peak intensity ratio G′/G is satisfactory.



Chapter 7

Conclusion

In this thesis, we calculated the double resonance Raman scattering processes for the single

wall carbon nanotubes (SWNTs) and the multi-layer graphene based on the double reso-

nance Raman theory. The double resonance Raman theory requires the electron-photon

matrix elements, the electron-phonon matrix elements, and the resonance windows for sat-

isfying the resonance condition and for obtaining the Raman intensity. Such a calculation

involves the electron and phonon dispersion relations, and we adopt the extended tight

binding method for the calculation as explained in Chapter 2. For the intensity calculation

of the resonance Raman spectroscopy (RRS), the electron-photon and electron-phonon

matrix elements are obtained by the dipole vector and the atomic deformation potential

vector, respectively. Until now, these matrix elements have given many information for

the experimental optical spectra for SWNT and graphene. However, we showed in Chap-

ter 4 that we need more precise Raman intensity calculation for different (n,m) SWNTs

and we need to calculate the Raman resonance windows. The Raman resonance window

is defined as the energy dissipation by inelastic electron-phonon scattering and obtained

by calculating the transition probability of the excited electron in the conduction band.

The transition probability calculated by electron-phonon scattering is given by the Fermi

Golden rule. As the result, the resonance windows for different (n,m) SWNTs depend

on S1 and S2 type in semiconducting SWNTs, and diameter and chiral angle. Also, the

resonance windows depend on the transition path, for example, ES
22, E

M
11 , and ES

33, be-

cause the higher transition has the more relaxation paths. The calculation results are in

a good agreement with the experiment except for metallic SWNTs. In the case of metal-

lic SWNTs, we expect that the relaxation of a photo-excited electron in the conduction

109
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band results from not only the electron-phonon scattering but also the electron-plasmon

scattering due to two linear energy band around the Fermi level.

Based on the results of electron-photon, electron-phonon matrix elements, and the

Raman resonance widows, we calculated the G′ band Raman spectra which appears at

2650 cm−1 as one of important features in RRS of SWNTs, in Chapter 5. The G′ band

of SWNTs is positively dispersive with increasing the excitation laser energy, and results

from two-phonon inter-valley scattering, and has a strong metallicity dependence of the

intensity. We suggested that the G′ band comes from the overtone of the iTO phonon

mode by deducing the G′ band properties. The electron-phonon matrix elements for the

iTO phonon mode show the dependence on the electronic transition energies such as ES
22,

EM
11 , and ES

33. The resonance windows for metallic SWNTs give smaller values than those

for semiconducting SWNT. This is the main reason why the G′ band intensity depends

on the metallicity in SWNTs.

Furthermore, we expend the G′ band calculation to the case of multi-layer graphene.

Comparison with single layer graphene, the multi-layer graphene has inter-layer inter-

action between π electrons on the different layers, and then the electronic energy band

structure of the multi-layer graphene is split to several energy sub-bands around the Fermi

level. The split energy bands make many double resonance Raman scattering processes,

and give broad G′ band compared with single layer graphene. Also, we checked that the

G′ band intensity of multi-layer graphene depends on the number of layers because the

electron-phonon matrix elements decrease with increasing the number of graphene layers.

The calculated results are in a good agreement with the experiment.
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