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Abstract

The atomic motions at different locations in a crystal are usually at random phase.
However, when the atoms receive ultrashort force they can start oscillating at the same
time and become in-phase in the crystal lattices. These lattice vibrations are called
coherent phonons. Single wall carbon nanotubes (SWNTs) and graphene nanoribbons
(GNRs) have been particularly an important material providing a one-dimensional
model system to study the dynamics and interactions of electrons and phonons. These
properties are known to be very sensitive to their geometrical structure. With rapid
advances in ultrafast pump-probe spectroscopy, it has recently been possible to observe
lattice vibrations of SWNTs in terms of the oscillations of either the differential trans-
mittance or reflectance corresponding to the coherent phonon oscillations, although
the related phenomena in GNRs are not observed yet.

In this thesis, we develop a microscopic theory for the generation and detection of
coherent phonons for SWNTs and GNRs within an tight binding model and effective
mass theory. We particularly examine the so-called radial breathing mode (RBM)
and radial breathing like mode (RBLM), in SWNTs and GNRs, respectively, in which
the tube diameter and the ribbon width can initially expand or contract depending
on the SWNT and GNR geometrical structure, and depending on the laser excitation
energy. We find that the expansion and contraction of these materials originate from
the electron-phonon interaction of each SWNT and GNR as a function of the one-
dimensional wavevectros of these materials. Based on our calculations, we predict the
expansion and contraction phenomena for different SWNT and GNR structures.

Furthermore, it is known that excitons, or electron-hole pairs bound by Coulomb
interaction, have a large binding energy (up to 1 eV) so that the excitons can survive
even at room temperature. All optical processes in SWNTs thus should be expressed
in terms of excitons. The excitons in SWNTs are localized spatially with a typical
size of about 1 nm. Therefore, when we consider the exciton-phonon interactions
the coherent vibrations should occur locally at each site where an exciton is exists.
In order to connect the observed macroscopic oscillations in terms of the differential
transmittance (or reflectance) with the microscopic localized vibrations, we propose
theoretically that the pump-probe spectroscopy can only measure a spatial average of
localized coherent phonon amplitudes in the SWNTs. By taking an average of the cal-
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culated amplitudes per nanotube length, we obtain time-dependent coherent phonon
amplitudes that resemble homogeneous oscillations observed in the pump-probe ex-
periments. We also calculate the time-dependent absorption spectra as a result of
macroscopic atomic displacements induced by the coherent phonon oscillations and
thus reproduce the oscillation feature of the transmission or reflectance in the pump-
probe measurements.
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Chapter 1

Introduction

1.1 Purpose of the study

Low-dimensional nanocarbon materials, such as single wall carbon nanotubes (SWNTs),
graphene, and graphene nanoribbons (GNRs), have been an exciting material to be
explored because of their unique physical properties, which are very promising for
future optoelectronic applications [1, 2, 3]. In particular, SWNTs (graphene sheets
rolled up into a seamless cylinder) and GNRs (strips of graphene sheet with ultra-thin
width) provide a one-dimensional (1D) model system for studying the dynamics and
interactions of electrons, photons, and phonons, that strongly depend on their geo-
metrical structure [4]. With rapid advances in ultrafast pump-probe spectroscopy, it is
possible to probe electronic and vibrational dynamics of solids in real time by measur-
ing the change in transmittance (∆T/T ) or reflectance (∆R/R) within a pump-probe
technique. Oscillations observed in the transmittance or reflectance as a function of
probe delay time are utilizing the so-called coherent phonons, which are collective and
in-phase atomic vibrations in solids.

Coherent phonons can be generated when the pump pulse width is much smaller
than a typical phonon period. For example, the radial breathing modes (RBMs) in
SWNTs, which correspond to the lattice vibration along the nanotube diameter direc-
tion, have a phonon period of about 100−150 fs, thus sub-10-fs pulses are commonly
used to generate the RBM phonons coherently [5]. Recent experiments have given
us some hints that the coherent phonon amplitudes for a particular SWNT strongly
depends on the excitation energy [6, 7, 8]. Moreover, it was also noticed that some
SWNTs might start their coherent RBM vibrations by initially expanding their diam-
eters [8], while others might start their RBM vibrations by initially shrinking their
diameters [9]. However, the systematic behavior related to the SWNT structure is not
well-understood yet. On the other hand, there were no observations on the coherent
phonons in GNRs system, yet we think that coherent phonon behavior in the GNRs is
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2 Chapter 1. Introduction

similar to that in the SWNTs because they share similar uniqueness on their electronic
structure.

The purpose of the present study is to understand and to predict theoretically
coherent phonon properties in both SWNTs and GNRs. In this thesis, a microscopic
theory for the generation and detection of coherent phonons in SWNTs and GNRs is
developed within the extended tight-binding approximation and effective mass theory.
For SWNTs, we also particularly consider the excitonic effects on the coherent phonon
generation. Since the physical properties of SWNTs and GNRs are characterized by
their geometrical structures, we present the dynamics of coherent phonons in SWNTs
and GNRs with different structures. Based on some special characteristics of each
material, the purpose of this thesis is categorized into two subthemes.

1.1.1 Coherent phonon amplitudes in SWNTs and GNRs

In SWNTs and GNRs, there are several phonon modes that can be coherently excited.
We will particularly focus on the so-called the radial breathing mode (RBM) phonons
in SWNTs and radial breathing like mode (RBLM) phonons in GNRs. The RBM
phonons correspond to the radial oscillations along the nanotube diameter, while the
RBLM phonons correspond to the oscillations along the nanoribbon width. These two
modes are interesting because they are directly related to the change in the SWNT and
GNR electronic properties, i.e. the bandgaps can be modulated by the coherent RBM
and RBLM oscillations. In this thesis, we calculate the RBM and RBLM coherent
phonon amplitudes as a function of laser excitation energy. We also consider different
geometrical structures of SWNTs and GNRs, characterized by the nanotube chirality
(n,m) and the number of carbon atom pairs in the ribbon width Nab, respectively. We
would like to understand how the SWNT diameter and the GNR width could change
in response to femtosecond laser excitation. We will discuss that the coherent phonon
amplitudes change the sign depending on the pump excitation energy, and that the
phase of oscillations for each SWNT or GNR is strongly structure-dependent. From
this simulation, we propose a simple rule that determines whether the SWNT diameter
and GNR width initially increase or decrease.

1.1.2 Excitonic effects on coherent phonon dynamics in SWNTs

In 1D materials such like SWNTs, a photoexcited electron and a hole can form ex-
citons, strongly bound by Coulomb interaction. The excitons in SWNTs exist even
at room temperature. Therefore, we should discuss the electron-phonon and electron-
photon interactions in terms of the exciton-phonon and exciton-photon interactions,
respectively. The problem which then arises is that how the excitons will affect the
coherent phonon oscillations. As observed in the experiments, ∆T/T or ∆R/R data
show oscillating feature as a function of time, which indicate that the phonon oscilla-



1.2. Organization of the thesis 3

tions have the same phase along the nanotube axis. We can observe such macroscopic
oscillations of ∆T/T or ∆R/R because the coherent phonon oscillations modulate the
electronic and optical properties of the SWNTs. However, the excitons in SWNTs are
localized spatially with a typical size of about 1 nm in the direction along the nan-
otube axis and thus when we consider the exciton-phonon interactions the coherent
oscillations should occur locally at the exciton sites. We then need to bridge such a
gap between the macroscopic picture of coherent phonon spectroscopy and the micro-
scopic picture of excitons, which will be discussed by assuming that coherent phonon
spectroscopy can only measure a spatial average of localized coherent amplitudes in
the SWNTs.

1.2 Organization of the thesis

This thesis is organized into six chapters. Chapters 1-3 form basic foundations of
this thesis. In Chapter 1, all necessary backgrounds for the thesis are introduced. In
Chapter 2, the fundamentals of carbon nanotubes and graphene are reviewed, espe-
cially regarding the geometrical structure, electronic properties, and vibrational prop-
erties. The electronic structure is considered within the simple tight-binding (STB)
and extended tight-binding (ETB) models. The vibrational properties are calculated
by the force constant model. In Chapter 3, the calculation methods and formulations
used in this thesis are discussed. The microscopic coherent phonon theory based on
some previous works is reviewed [10, 11], and is extended in the present study for
SWNT and GNR systems [12, 13]. The main (original) results of this thesis are pre-
sented in Chapters 4 and 5. In Chapter 4, we show the calculation results for coherent
phonon amplitudes of SWNTs and GNRs within the ETB model and effective mass
theory [12, 13]. In Chapter 5, we show the recent results of excitonic effects on co-
herent phonons in SWNTs [14]. Finally, in Chapter 6, a summary of this thesis is
given.

1.3 General backgrounds

In this section, we review some important backgrounds that motivate the present work.
We will start with some general concepts on coherent phonon spectroscopy and then
review some recent experimental results related to this thesis.

1.3.1 Coherent phonon spectroscopy

The development of ultrafast, femtosecond laser sources has enabled researchers to
study dynamical properties coupled with lattice vibrations of a wide variety of semi-
conductor nanostructures. These lasers are ideal for studying electron and hole dy-
namics since scattering times of photoexcited carriers typically span from 10−100 fs
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in most semiconductors. The most common femtosecond experiment is a pump-probe
experiment where the pump laser pulse creates a nonequilibrium distribution of pho-
toexcited electrons and holes, while the probe laser pulse is used to trace the change
in the dielectric function due to the carriers and lattice vibrations in the materials.

One can study the relaxation dynamics of nonequilibrium photoexcited carriers
back to equilibrium by measuring the transmission or reflection of the probe pulse
as a function of probe delay time with respect to the pump pulse. The decay of the
transmission or reflection of the probe pulse as a function of delay time from the pump
pulse provides valuable information concerning details of the nonequilibrium carrier
dynamics. The differential transmission ∆T/T is defined as

∆Tt
T

=
Tt − T
T

, (1.1)

where T is the transmission in the absence of the pump pulse, while Tt is the trans-
mission with the presence of the pump pulse, measured after a certain time delay ∆t.
It should be noted that depending on the experimental setup of the samples, the mea-
surement of differential reflectance ∆R/R might be preferable instead of ∆T/T . In-
formation obtained from such experiments includes the electronic structure, scattering
rates of photoexcited carriers, relaxation dynamics and mechanisms, and many-body
effects in a given material [5].

In addition to the carrier dynamic effects, ultrafast pump-probe experiments pro-
duce oscillating signals superimposed on the background carrier dynamics signal. For
example, in Fig. 1.1, we show ∆T/T as a function of time delay of the probe pulse
with respect to the time of the pump pulse for a SWNT system. In the raw pump-
probe signal shown in Fig. 1.1, we can see oscillating signals in ∆T/T superimposed on
the background carrier dynamics (decay) signal. The beating amplitudes come from
superposition of several oscillation frequencies which are close to each other. These
oscillations match one of the phonon modes of the material and are assigned as co-
herent phonons [6, 15]. A typical phonon mode can be excited coherently because the
ultrashort laser pulse have a duration shorter than the period of the lattice vibration.
If we subtract off the background signal, the oscillation can be seen more clearly as
shown in the inset of Fig. 1.1. One can perform a Fourier transforms to calculate
the power spectrum (or intensity), which is proportional to the square of the Fourier
coefficient amplitudes. The power spectrum gives information of the phonon modes
that are coherently excited in the system, whereas the original ∆T/T data provides
the real time information of the coherent oscillations. The study of these oscillations
is then known as coherent phonon spectroscopy. Coherent phonon spectroscopy thus
allows the direct measurement of excited state phonon dynamics in the time domain
and includes information on the phase of the vibration, the electron-phonon coupling,
and the dephasing times [5].
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Figure 1.1 Time-resolved change in transmission (∆T/T ) of the laser probe pulse as a
function of time delay of probe with respect to the pump pulse for a SWNT system. The
oscillations superimposed on the background electron and hole relaxation dynamics signal are
known as coherent phonons. Inset shows the pump-probe signal after background substrac-
tion. To study the coherent phonons, it is necessary to subtract off the signal of background
carrier dynamics from the raw pump-probe signal and then performs a Fourier transform to
calculate the power spectrum.

1.3.2 Coherent phonons and incoherent phonons

In early years of the coherent phonon research, the oscillations observed in the differen-
tial transmission and reflectivity data are interpreted in terms of a phenomenological
driven harmonic oscillator [15]. The evolution of a coherent phonon amplitude Q in
the presence of a driving force exerted by ultrafast laser pulse can be expressed by

∂2Q(t)

∂t2
+ 2γD

∂Q(t)

∂t
+ ω2

0Q(t) =
F (t)

m
, (1.2)

where ω0 is the frequency of the phonon mode, γD is the damping parameter, m is the
mass of the oscillator, and F is the driving force. This force can be fitted as function
of carrier density, temperature, or other parameters of the system. The damping
parameter γD is the inverse of the dephasing time of the coherent phonon mode [16].
However, at that time it was unclear how the coherent phonons can be generated and
how the oscillations in ∆T/T should be described quantum mechanically.

Fig. 1.1: fig/fch1-deltaT.eps
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conduction band

valence band

incoherent

phonons

(a) (b)

coherent

phonons

displacement

Figure 1.2 (a) Femtosecond laser excitation generates electronhole pairs across the gap which
relax and lose energy through phonon emission. These phonons are incoherent phonons and
do not lead to oscillations in the differential transmission or reflection. (b) Coherent phonon
wavepackets as a function of the harmonic oscillator displacement. These are formed from
the superposition of two or more of the eigenstates of the harmonic potential. They oscillate
back and forth in the harmonic potential without broadening.

It was then realized that when an ultrafast optical laser pulse rapidly creates pho-
toexcited electron-hole pairs across the bandgap in a semiconductor, the optical and
and acoustic phonons emitted during the electron-hole relaxation are actually inco-
herent phonons and are not related to the oscillations observed in the differential
transmission or reflectivity spectra [10]. In Fig. 1.2(a) we show an illustration for
the incoherent phonons emitted during the photoexcited carrier relaxation. The inco-
herent phonons are emitted at random times and have no distinct phase relationship
and thus not responsible for the oscillations in the pump-probe signal. Instead, the
incoherent phonons are responsible for the decay of the background signal. Coherent
phonons, on the other hand, are formed from a coherent superposition of phonon har-
monic oscillator eigenstates, i.e. the states with definite phonon number. If a large
number of phonon harmonic oscillator eigenstates can be excited, then the canonical
coherent states can be defined for each complex number z in terms of eigenstate of
harmonic oscillator,

Ψcoh = |z〉 =
∑
n

zn√
n!
e−z

2

|n〉, (1.3)

where |n〉 are the eigenstates of the harmonic oscillator.
The coherent phonon states in Eq. (1.3) are essentially the same as those used

in quantum optics to describe the quasi-classical photon states of the electromag-
netic field. These states are eigenfunctions of the phonon annihilation operator bq
for phonons with wavevector q, i.e. bq|z〉 = z|z〉, and represent minimum-uncertainty
Gaussian wavepackets that oscillate back and forth in the parabolic potential without

Fig. 1.2: fig/fch1-cohincoh.eps
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broadening, as illustrated in Fig. 1.2(b). When the amplitude z is large, the coherent
phonons will behave like a macroscopic harmonic oscillator. The idea of quantum
mechanical coherent phonon states can thus explain the oscillations of ∆T/T . In
general, both coherent and incoherent phonons can be generated at the same time.
That is why a typical ∆T/T data consist of an oscillating feature and also a decay
feature, corresponding to the generation of coherent phonons and incoherent phonons,
respectively.

1.3.3 Generation mechanism of coherent phonons

Based on the idea of the coherent phonons described above, we might then ask how
one can generate coherent phonons. A simple explanation for the generation of the
coherent phonons is shown in Fig. 1.3 for two prototypical systems [17]: (a) a bulk semi-
conducting system (GaAs), and (b) a molecular system. The electron-phonon coupling
in GaAs is weaker than that in the molecular system. Therefore, the electron-phonon
coupling is treated as a perturbation to the electronic states (i.e. band structure) in
GaAs, while in the molecular system we consider the combined electronic-vibrational
levels.

GaAs is a polar semiconductor, thus the electrons in GaAs prefer to couple with
the phonons by the polar coupling because the polar coupling is stronger than the
deformational electron-phonon coupling. It is then possible to have a depletion region
near the surface of the GaAs sample. The depletion region could come either from
surface states or an externally applied electric field. The energy band diagram for
bottom of the conduction band and top of the valence band are shown in Fig. 1.3(a).
Bending of the bands near the surface lead to a depletion of charge carriers for a certain
width from the surface. This leads to large external electric fields near the surface.
Before photoexcitation, in response to the surface depletion field, the Ga and As ions
are slightly displaced by an amount x1 and x2 from their equilibrium positions deep
within the semiconductor. After photoexcitation by the pump laser pulse, electrons
and holes are photoexcited which create carriers near the semiconductor surface that
can (partially) screen out the depletion field. If the photoexcited carriers are created
on a fast time scale, the displaced Ga and As ions want to return to their equilibrium
(no depletion electric field) position and then trigger the coherent oscillation.

A similar situation is shown in Fig. 1.3(b) for a typical molecule. Shown in the
figure are the combined electronic and vibrational states for the ground state and the
first excited state. The pump pulse creates a rapid photoexcitation of an electron from
the ground state energy surface to the excited state energy surface. Since the minimum
in the excited state energy surface is at different point from that in the ground state
energy surface, the rapid photoexcitation to the higher state energy surface triggers
the coherent oscillation.
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Figure 1.3 Generation mechanisms for coherent phonons. (a) A conventional polar semi-
conductor like GaAs. Before photoexcitation by the pump pulse, the surface depletion field
cause the Ga and As ions to be displaced by an amount x1 and x2 from their equilibrium
(no depletion field) position. After photoexcitation, the electrons and holes generated near
the surface will screen the depletion field, causing the Ga and As ions to return to their equi-
librium position, and trigger the coherent phonon. (b) A typical molecule. The combined
electronic and vibrational energy levels for the grounds state energy surface and an excited
state energy surface are shown. The ground state and excited state energy surfaces have
different minima, and thus photoexcitation by the pump pulse from the grounds state to the
excited state triggers the coherent phonon and the system wants to move to a new minima.

From these two simple examples, we see that the coherent phonon generation
mechanism varies depending on the material properties. However, the coherent phonon
oscillations in various materials can be explained within the same equations of motion
such like Eq. (1.2). The difference in the generation mechanism between one material
and another will particularly contribute to the different form of driving force term in
Eq. (1.2). Consideration of such an explicit form of the driving force is actually the
main issue of this thesis, especially for the SWNT and GNR systems.

1.3.4 Coherent phonons in SWNTs and GNRs

SWNTs and GNRs are interesting to be studied as a model system for coherent phonon
generation because they lie between the simple molecular systems and the bulk semi-
conducting systems. In addition, the electron-phonon coupling in these carbon based
nanostructures is not polar like in GaAs. In calculating and modeling the coherent
phonon spectra in carbon nanotubes and graphene, several important effects must be
addressed. These include: (1) electronic structure (needed to determine the electron
and hole states), (2) optical matrix elements (needed to determine what states are
excited by the pump laser pulse), (3) phonon modes, (4) electron phonon matrix ele-
ments (to determine which coherent phonon modes are triggered by the photoexcited

Fig. 1.3: fig/fch1-coh.eps
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electrons) and (5) the generation and detection mechanisms. Each of these effects will
be discussed further in the later chapters.

In the following, we briefly reviewed some experimental observations of coherent
phonons in SWNTs and also previous theoretical studies which attempt to explain the
coherent phonon properties in SWNTs. The experimental observations for coherent
phonons in GNRs, however, are not available yet till now, and thus it will be shown
in this thesis how the coherent phonon properties in GNRs are predicted similarly to
those in SWNTs.

Observation of coherent phonons in SWNTs

Coherent phonon spectroscopy applied to SWNTs has several advantages over other
spectroscopic techniques such as resonant Raman spectroscopy and photolumines-
cence spectroscopy [7, 18]. In coherent spectroscopy there is no photoluminescence
signal or Rayleigh scattering background. Coherent phonons in an ensemble of micelle
suspended SWNTs have been generated by ultrafast laser pulses and detected using
femtosecond pump-probe spectroscopy. These coherent phonon spectroscopy experi-
ments measure periodic changes in nanotube optical properties induced by coherent
lattice vibrations and, unlike Raman or photoluminescence spectroscopy, allows one to
directly measure phonon dynamics, including phase information, in the time domain.

Using pulse shaping techniques to create a train of pump pulses resonant with
the coherent phonon period, it is possible to generate and detect coherent phonons in
nanotubes of a specific chirality in an ensemble sample [8, 18]. These resonant coher-
ent phonon spectroscopy experiments provide information on the chirality-dependence
of light absorption, coherent phonon generation, and coherent phonon-induced band
structure changes. The lowest frequency coherent phonons that can be photoexcited in
SWNTs using ultrafast laser pulses are coherent radial breathing mode (RBM) phonons
with phonon wavevector q = 0 corresponding to a mode in which the diameter of the
nanotube periodically expands and contracts.

Actually real-time observation of coherent RBM oscillations is already possible
without pulse shaping by applying standard femtosecond pump-probe spectroscopy [6].
However, we will observe several chiralities in the coherent phonon spectra instead of
obtaining detailed information on a specific nanotube chirality. Figure 1.4(a) shows
transmission modulations of the probe beam induced by coherent lattice modulations,
which were generated by pump pulses with a pulse width of 50 fs and a central wave-
length of 800 nm (1.55 eV). The time-domain beating profiles reflect the simultaneous
generation of several RBM frequencies from nanotubes in the ensemble with different
chiralities, which are clearly seen in Fig. 1.4(b) with the Fourier transformation of the
time-domain data. Although resonance conditions and mode frequencies lead to the
assignment of chiralities to their corresponding peaks, obtaining detailed information
on dynamical quantities such as the phase information of phonon oscillations becomes
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Figure 1.4 Generation and detection of coherent RBM phonons in SWNTs. (a) Time-
domain transmission modulations due to coherent RBM vibrations in ensemble SWNT solu-
tion that were generated by standard pump-probe spectroscopy without pulse shaping. (b)
Fourier transformation of time-domain oscillations with chirality assigned peaks. Reproduced
from Ref. [8].

rather challenging. Additionally, if adjacent phonon modes overlap in the spectral
domain, this can lead to peak distortions.

By introducing pulse shaping, multiple pulses with different repetition rates are
used to excite RBM oscillations. As shown in Figs. 1.5(a)-(d), chirality selectivity
was successfully obtained. With the appropriate repetition rate of the pulse trains,
a single specific chirality dominantly contributes to the signal, while other nanotubes
are suppressed. For example, by choosing a pump repetition rate of 7.07 THz, we
can selectively excite only the (11, 3) as seen in Fig. 1.4(a). Similarly, with a pump
repetition rate of 6.69 THz, the (10, 5) nanotubes are selectively excited, as seen
in Fig. 1.5(b). The accuracy of selectivity depends on the number of pulses in the
tailored pulse train as well as the distribution of chiralities in the nanotubes ensemble.
Furthermore, selective excitation of a specific chirality also requires the pump energy
to be resonant with the corresponding band-to-band transition (in this case the E22

transition) for each chirality-specific nanotubes.
The ability to excite single-chirality nanotubes also allows us to perform detailed

studies of excited states of single-walled carbon nanotubes. For example, by plac-
ing a series of 10 nm bandpass filters in the probe path before the detector, we can
measure the wavelength dependence of RBM-induced transmission changes in order
to understand exactly how the tube diameter changes during coherent phonon RBM
oscillations and how the diameter change modifies the nanotube band structure. In
Fig. 1.6, the differential transmission is shown for three cases, from top to bottom,
corresponding to probe photon energies above, on, and below resonance, respectively,
for selectively excited (11, 3) carbon nanotubes.

Although the transmission is strongly modulated at the RBM frequency 7.07 THz

Fig. 1.4: fig/fch1-pulse1.eps
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Figure 1.5 (Left) Time-domain coherent RBM oscillations selectively excited by multiple
pulse trains via pulse shaping with corresponding repetition rates from 6.15 to 7.07 THz.
(Right) Fourier transformations of corresponding oscillations, with their dominant nanotube
chirality (n,m). Reproduced from Ref. [8].

for all three cases in Fig. 1.6, the amplitude and phase of oscillations vary noticeably for
varying probe wavelengths. Specifically, the amplitude of oscillations becomes minimal
at resonance and, in addition, there is clearly a π-phase shift between the above- and
below-resonance traces. Since the bandgap energy and diameter are inversely related
to each other, and since it is the RBM frequency at which the diameter is oscillating,
we can conclude from this data that the energy of the E22 resonance is oscillating
at the RBM frequency. Namely, when the band gap is decreasing, absorption above
(below) resonance is decreasing (increasing), resulting in positive (negative) differential
transmission. Furthermore, it is also possible to determine the initial response of the
SWNT lattice based on this experiment, i.e. the given nanotube may start vibration
by expanding or shrinking its diameter depending on the excitation energy, although
more observations are needed to clarify such phenomena.

Fig. 1.5: fig/fch1-pulse2.eps
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Figure 1.6 Differential transmission as a function of time delay at probe wavelengths of 780,
795, and 810 nm for the selective RBM excitation of the (11, 3) nanotube. There is a π-phase
shift between the 780 and 810 nm data. These three wavelengths (from the top to the bottom
of the figure) correspond to photon energies above, at, and below the energy of the second
exciton resonance, respectively, of the (11, 3) nanotube. Reproduced from Ref. [8].

Previous theoretical studies

There were a number of theoretical studies previously done regarding coherent phonons
in SWNTs [19, 20, 21, 22]. However, most of them mainly dealt with molecular-
dynamics simulation to study how the defects in SWNTs interact with laser pulses. A
particularly useful theoretical study related to this thesis was done by Sanders et al.
who developed a microscopic theory for the coherent RBM phonon generation [11]. By
using a simple tight-binding approximation for the electronic states and force constant
model for the phonon dispersion, they calculated coherent phonon intensities for the
RBM phonons of two nanotube families, namely, the type-I [mod(2n + m, 3) = 1]
and the type-II [mod(2n + m, 3) = 2] semiconducting SWNTs, and found that the
coherent phonon intensity in type-I nanotubes was generally larger than that in type-
II nanotubes.

By calculating the driving force for the coherent phonon generation and solving
the equation of motion like that in Eq. (1.2) (but without damping term), Sanders et
al. also noticed that some SWNTs start their coherent RBM vibrations by initially
expanding their diameters, while others start their RBM vibrations by initially shrink-
ing their diameters. As shown in Fig. 1.7, these phenomena might depend on the laser

Fig. 1.6: fig/fch1-pulse3.eps
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(a) Excitation dependence (b) Chirality dependence

Figure 1.7 (a) Coherent phonon generation in a (11, 0) nanotube by photoexcitation at the
E11 and E22 transition energies. (b) Coherent phonon generation in (11, 0) type-I and (13, 0)
type-II semiconducting nanotubes by photoexcitation at the E22 transition energy. In both
(a) and (b), the upper panel shows the density of photoexcited electron-hole pairs per unit
length, the middle panel shows the coherent phonon driving function, and the bottom panel
shows the RBM coherent phonon amplitude. Reproduced from Ref. [11].

excitation energy, or these may depend on the nanotube chirality. In Fig. 1.7(a), the
photoexcited carrier density n(t), the coherent phonon driving function S(t), and the
coherent phonon amplitude Q(t) are plotted for RBM coherent phonons in a (11, 0)

tube for 50 fs z-polarized laser pulses with photoexcitation energies of 1.07 and 2.05 eV.
These energies correspond to the E11 and E22 transitions in the (11, 0) tube, respec-
tively. The photoexcited carrier density n(t) determine the strength of the driving
force. However, the coherent phonon driving functions S(t) and amplitudes Q(t) have
different signs in the two cases. This means that for photoexcitation at the E11 tran-
sition in type-I nanotubes the tube diameter decreases and oscillates about a smaller
equilibrium diameter. On the other hand, the opposite situation is true for photoex-
citation at the E22 transition energy.

Furthermore, a comparison of the coherent phonon motion between different chi-
rality, i.e. (11, 0) type-I and (13, 0) type-II nanotubes, is shown in Fig. 1.7(b), but
now the laser energy used to excite the nanotubes is the one that only match the E22

transition in each chirality. For the (11, 0) tube the pump energy is set to be 2.05 eV

and for the (13, 0) tube the pump energy is 1.84 eV. It can be seen that for the (11, 0)

tube the coherent phonon driving function and corresponding coherent phonon am-

Fig. 1.7: fig/fch1-theo.eps
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plitude are positive (indicating initial expansion of the tube diameter), while for the
(13, 0) tube the driving function and corresponding coherent phonon amplitude are
found to be negative (indicating initial contraction of the tube diameter. A detailed
physical reason for the excitation energy-dependent and chirality-dependent coherent
phonon amplitude is not yet understood in that work. Such properties will be one of
main issues to be discussed in this thesis, especially to understand the origin of the co-
herent phonon phenomena, and to also apply the theory for the graphene nanoribbon
systems.

1.3.5 Excitons in carbon nanotubes

In this part we briefly review some historical aspects of the finding of excitons in
SWNTs and how the excitons can affect optical properties of SWNTs. We will also
give a general idea for the excitonic effects on coherent phonon dynamics in SWNTs.

Basically, an exciton consists of a photo-excited electron and a hole bound to each
other by the Coulomb interaction in a semiconducting material. In most semicon-
ductors, we can calculate the binding energy of an exciton in bulk materials by a
hydrogenic model with a reduced effective mass and a dielectric constant. The re-
sulting binding energy is typically on the order of 10 meV, thus optical absorption to
exciton levels is usually observed only at low temperatures. However, in SWNTs, be-
cause of its 1D properties, the electron-hole attraction energy becomes larger and can
be as large as 1 eV, so exciton effects can be observed at room temperature. Excitons
are therefore essential for explaining optical processes in SWNTs.

Pioneering researches on excitons in SWNTs originally came from a curiousity
that there always be systematic discrepancies between the calculated single particle
bandgaps and the optical transition energies Eii observed in some experiments [23, 24,
25]. To explain the observed Eii, much insight has actually been gained from the simple
(nearest-neighbor) tight-binding (STB) model of the single particle band structure of
SWNTs [26]. This method predicts the transition energies varying approximately
as the inverse of diameter and having a weak dependence on the chiral angle, as
shown in the STB Kataura plot (energy as a function of diameter) in Fig. 1.8(a).
However, experimental results point out the fact that the single particle approximation
is insufficient for an accurate description of the optical transitions in SWNTs. For
example, as has been reported by Weisman et al., the Eii values calculated by the
STB model are lower than those measured in their photoluminescence experiment [25].
They also observed the so-called family spread, in which nanotubes with the same
(2n+m) show a unique pattern for the smaller diameter.

The electron-electron and electron-hole interactions change the Eii dependence on
diameter significantly. Both the electron-electron and electron-hole interactions are
due to the screened Coulomb interactions. The former describes the repulsive energy,
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Figure 1.8 (a) Optical transition energy as a function of nanotube diameter, known as the
Kataura plot, considered within the STB approximation. The vertical energy axis is simply
the nanotube bandgap [26]. (b) Single particle band gap Eg is not simply the transition
energy. Self energy Σ and binding energy Ebd corrections give the true transition energy Eii.

called self-energy Σ, that is needed to add an additional electron to the system, hence,
increases the band gap. In contrast, the electron-hole interaction gives the attractive
Coulomb interaction, called exciton binding energy Ebd, which lowers the excitation
energy. The overall effect is a blue-shift so that the positive self energy dominates over
the negative exciton binding energy. This is illustrated in Fig. 1.8(b).

The importance of many-body effects in the form of excitonic electron-hole attrac-
tion and Coulombic electron-electron repulsion in SWNTs was discussed extensively
in the context of the so-called ratio problem [23, 24], where the ratio between the
second and first transition energies in semiconducting SWNTs are not equal to two as
predicted by the STB model [26]. Some experiments such as two-photon absorption
measurements [27, 28], then provided strong evidence for the excitonic nature of the
lower energy transition. In particular, a two-photon experiment by Wang et al., which
is the first breakthrough in the nanotube Ebd measurements, is described in Fig. 1.9,
after Ref. [27].

From the theoretical point of view, the importance of excitons in SWNTs was in-
troduced much earlier by T. Ando who studied excitations of nanotubes within a static
screened Hartree-Fock approximation [29]. He especially calculated the dynamical con-
ductivity in SWNTs taking the exciton effects into account. After some experimental
results started to show the rise of excitons, detailed first-principles calculations of
the effects of many-body interactions on the optical properties of SWNTs were then
performed [30, 31]. Some descriptions of excitons in nanotubes based on simpler or

Fig. 1.8: fig/fch1-kata.eps
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Figure 1.9 Two-photon experiment by Wang et al. [27]. (a) In the exciton picture, the 1s
exciton state is forbidden under two-photon excitation. The 2p exciton and continuum states
are excited. They relax to the 1s exciton state and fluoresce through a one-photon process.
(b) In the simple band picture, two-photon excitation energy is the same as emission energy,
but this case is not observed. (c) Contour plot of two-photon excitation spectra of SWNTs.
By comparison with the solid line describing equal excitation and emission energies, it is
clear that the two-photon excitation peaks are shifted above the energy of the corresponding
emission feature. The large shift arises from the excitonic nature of the nanotube optical
transitions. Ebd is found to be as large as up to 1 eV, thus excitons play an important role
in the nanotube optics.

different models were also developed [32, 33].
In this thesis, we will use the extended tight-binding (ETB) model to calculate

the exciton energies and corresponding wavefunctions based on the previous work by
Jiang et al [34, 35]. The Bethe-Salpeter equation is solved for obtaining the exci-
tation energies Eii that already include the self energy corrections and the exciton
binding energy. The ETB model includes the curvature effects through the σ-π hy-
bridization that cannot be neglected for nanotubes of small diameter. Furthermore,
exciton-photon and exciton-phonon matrix elements can be obtained to replace the
electron-photon and electron-phonon interactions as the driving force for the coherent
phonon oscillations. It is found that the excitons in SWNTs are localized spatially
with a typical size of about 1 nm. Therefore, when we consider the exciton-phonon
interactions the coherent vibrations should occur locally at each site where an exciton
is generated.

1.3.6 Lineshapes of coherent phonon excitation profile

Another issue related to the presence of excitons in SWNTs is regarding the lineshapes
of the coherent phonon excitation profile, i.e. the coherent phonon signal intensity plot-

Fig. 1.9: fig/fch1-tp.eps
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Figure 1.10 Coherent phonon intensity at the RBM frequency as a function of pump-probe
energy for several type-I semiconducting nanotubes at the E22 transition. The experimental
coherent phonon spectra are in the right panel and the simulated coherent phonon spectra
are in the left panel. The upper four curves in each panel are for nanotubes within family
mod(2n + m, 3) = 22 and the lower four curves are for tubes within mod(2n + m, 3) = 25.
Each curve is labeled with the chirality (n,m) and the RBM phonon energy in meV is given
on the plots.

ted as a function of several different excitation energies in a given SWNT. It was firstly
noticed by Lim et al. that the coherent phonon excitation profile for a particular mode
shows symmetric double-peak features [7]. They argued that such features are directly
related to the excitonic nature of the SWNT. Furthermore, Sanders et al. also calcu-
lated the coherent phonon intensity within the single particle picture and compared
it with the experimental data. They found a clear difference in the lineshape of the
intensity, as shown in Fig. 1.10. Both theoretical calculation and experimental results
show two peaks; however, the calculation within the single particle picture give asym-
metric lineshapes in the double peak-features, unlike the experimental observations
which give symmetric lineshapes.

The reason why the symmetric double-peak features appear in the coherent phonon
excitation profile can be explained as follows. The generation of coherent RBM
phonons modifies the electronic structure of SWNTs and thus it can be detected as
temporal oscillations in the transmittance of the probe beam. Since the RBM is an
isotropic vibration of the nanotube lattice in the radial direction, i.e. the diameter pe-
riodically oscillates at frequency of ωRBM, this causes the band gap Eg to also oscillate
at ωRBM because Eg directly depends on the nanotube diameter (roughly Eg ∝ 1/dt).

Fig. 1.10: fig/fch1-line1.eps
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Figure 1.11 Schematic dimensionality dependence of coherent phonon intensity as function
of photon energy. Top row: absorption coefficient versus photon energy for 0, 1, 2, and
3-dimensional carbon structures. Middle row: negative of the derivative of the absorption
coefficient proportional to transient differential transmission. Bottom row: square of the
derivative of the absorption coefficient proportional to the coherent phonon intensity. The
absorption curves have been convoluted to take into account lifetime broadening of the states.

As a result, interband transition energies oscillate in time, leading to ultrafast modu-
lations of optical constants at ωRBM, which naturally explains the oscillations in probe
transmittance. Furthermore, these modulations imply that the absorption coefficient
α(E) at a fixed probe photon energy E is modulated at ωRBM. Correspondingly, the
photon energy dependence of the coherent phonon signal shows a derivative-like be-
havior. The excitonic absorption coefficient has a symmetric lineshape with a single
peak, the derivative will give the symmetric double-peak feature, in contrast to the
asymmetric shape expected from the 1D van Hove singularity.

More explicitly, the effect on the absorption α for small changes in the gap can be
modeled by

α(E − Eg) ≈ α(E − E0
g)−

∂α(E − E0
g)

∂E
.δEg + . . . , (1.4)

which gives

∆α ≈ −
∂α(E − E0

g)

∂E
.δEg (1.5)

Since the coherent phonon intensity is obtained by taking the Fourier transform of
the differential transmission, the coherent phonon intensity is thus proportional to the
square of the derivative of the absorption coefficient. In fact, depending on the dimen-
sionality of the materials, the absorption lineshapes would be different one another.

Fig. 1.11: fig/fch1-line2.eps
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In Fig. 1.11, the dimensionality dependence of coherent phonon intensity is shown
schematically. The top row shows the absorption coefficient as a function of photon en-
ergy. The curves are convoluted with a Lorentzian to take into account the linewidths
of the transitions. The middle row shows the negative of the derivative of the absorp-
tion coefficient, which is proportional to the transient differential transmission due to
coherent phonon induced band gap oscillations. The bottom row shows the square of
the derivative of the absorption coefficient, which is roughly proportional to the coher-
ent phonon intensity measured in the experiments. We note that the double-peaked
structure is obtained for the 0D and 1D systems, which are symmetric and asymmetric,
respectively. Based on this argument, in Chapter 5, we will discuss the lineshapes of
the coherent phonon excitation profile calculated by considering the excitonic effects.





Chapter 2

Basics of carbon nanotubes and
graphene

Basic physical properties of single wall carbon nanotubes (SWNTs), graphene, and
also graphene nanoribbons (GNRs), are reviewed in this chapter. The discussion in-
cludes a description of the geometrical structure, electronic properties and vibrational
properties properties of SWNTs and GNRs. An SWNT can be imagined as a single
layer graphene sheet rolled up into a cylinder, while a GNR can be imagined as a
strip of single layer graphene sheet with finite width, therefore their electronic and
vibrational structures are inferred based on those of graphene. The electronic and vi-
brational structures are derived within the tight-binding framework and force constant
model, respectively. In addition, excitonic properties of SWNTs are also discussed in
this chapter.

2.1 Geometrical structure

2.1.1 Graphene unit cell

Graphene is a single atomic layer of carbon atoms in a two-dimensional (2D) honey-
comb lattice. Graphene is a basic building block for all graphitic materials of other
dimensionalities. Several layers of graphene sheet stacked together will form three-
dimensional graphite, where the carbon atoms in each 2D layer make strong sp2 bonds
and the van der Waals forces describe a weak interlayer coupling. In 0D, graphene
can be wrapped up into fullerenes (carbon cluster made up by a closed surface like
a ball), and in 1D, as a main discussion in this chapter, it can be rolled up to form
the nanotubes or it can be cut in one direction to make a finite width graphene called
graphene nanoribbons.

Figure 2.1 gives the unit cell and Brillouin zone of graphene. The graphene sheet
is generated from the dotted rhombus unit cell shown by the lattice vectors a1 and

21
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Figure 2.1 (a) The unit cell and (b) Brillouin zone of graphene are shown, respectively, as
the dotted rhombus and the shaded hexagon. ai and bi, where i = 1, 2, are unit vectors and
reciprocal lattice vectors, respectively. The unit cell in real space contains two carbon atoms
A and B. The dots labeled Γ, K, K′, and M in the Brillouin zone indicate the high-symmetry
points.

a2, which are defined in (x, y) coordinate as

a1 = a

(√
3

2
,

1

2

)
, a2 = a

(√
3

2
,−1

2

)
, (2.1)

where a =
√

3aCC is the lattice constant for the graphene sheet and aCC ≈ 0.142 nm

is the nearest-neighbor interatomic distance. The unit cell consists of two distinct
carbon atoms from the A and B sublattices shown, respectively, by open and solid
dots in Fig. 2.1(a).

The reciprocal lattice vectors b1 and b2 are related to the real lattice vectors a1

and a2 according to the definition

ai · bj = 2πδij , (2.2)

where δij is the Kronecker delta, so that b1 and b2 are given by

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3)

The first Brillouin zone is shown as a shaded hexagon in Fig. 2.1(b), where Γ (center),
K , K′ (hexagonal corners), and M (center of edges) denote the high symmetry points.

2.1.2 Nanotube unit cell

Carbon nanotube forms a periodical structure or lattice, which are non-Bravais lattice.
Referring to the unrolled graphene sheet shown in Fig. 2.2, the unit cell of a SWNT is
limited by two vectors: the chiral vector Ch, and the translational vector T. The chiral

Fig. 2.1: fig/fch2-grunit.eps
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Figure 2.2 Geometry of a (4, 2) SWNT viewed as an unrolled graphene sheet with the
graphene unit vectors a1 and a2. The rectangle OPQ’Q is the 1D SWNT unit cell. Total
hexagons covered within this rectangle unit cell is N = 28. OP and OQ define the chiral
vector Ch and translation vector T, respectively, whereas the chiral angle θ is the angle
between a1 and Ch. From the figure, it is obvious Ch = (4, 2) and T = (4,−5). If the
site O is connected to P, and the site Q is connected to Q’, the cylindrical SWNT can be
constructed.

vector is defined as the way the graphene sheet is rolled up. It gives the circumference
of a SWNT. One-dimensional periodicity in the direction of the nanotube axis is then
determined by a vector perpendicular to the chiral vector, which is the translational
vector T.

The chiral vector Ch can be written in terms of the unit vectors of graphene a1

and a2,
Ch = na1 +ma2 ≡ (n,m), (2.4)

where (n,m) is a pair of integer indices with n ≥ m, n > 0, and m ≥ 0. Since Ch

specifies the circumference of the SWNT, it is straightforward to obtain the relations
for the circumferential length L and diameter dt:

L = |Ch| = a
√
n2 + nm+m2, (2.5)

dt =
L

π
=
a
√
n2 + nm+m2

π
. (2.6)

Fig. 2.2: fig/fch2-construct.eps
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The chiral angle θ is the angle between Ch and a1, with values of θ in the range
of 0 ≤ |θ| ≤ 30◦. Taking the inner product of Ch and a1, an expresion for cos θ can
be obtained, thus relating θ to the chiral index (n,m),

cos θ =
Ch · a1

|Ch||a1|
=

2n+m

2
√
n2 + nm+m2

. (2.7)

As can be seen in Fig. 2.2, the translation vector T is perpendicular to Ch and
thus become the tube axis, it can be expressed as

T = t1a1 + t2a2 ≡ (t1, t2), (2.8)

where t1 and t2 are obtained from the condition Ch ·T = 0,

t1
2m+ n

dR
; t2 = −2n+m

dR
. (2.9)

(2.10)

Here dR is the greatest common divisor (gcd) of (2m + n) and (2n + m) so that
gcd(t1, t2) = 1. The length of the translation vector, T , is then given by

T = |T| =
√

3L/dR. (2.11)

The unit cell of a SWNT is defined as the area covered by Ch and T. The area is
given by the magnitude of the vector product of Ch and T. The number of hexagons
per unit cell of the SWNT, Nhex, is obtained by dividing the area of the SWNT unit
cell with the area of the hexagonal unit cell in the graphene sheet:

Nhex =
|Ch ×T|
a1 × a2

=
2(n2 + nm+m2)

dR
. (2.12)

All the basic structural parameters of the SWNT are shown in Fig. 2.2. The
SWNT can then be classified according to its (n,m) or θ value (see Fig. 2.3). This
classification is based on the symmetry of the SWNT. There are three types of carbon
nanotubes: (a) zigzag, (b) chiral, and (c) armchair nanotubes, as shown in Fig. 2.3.
Chiral SWNTs exhibit a spiral symmetry whose mirror image cannot be superposed
onto the original one. Zigzag and armchair SWNTs have mirror images that are iden-
tically the same as the original ones when we put a nanotube axis in the mirror. The
names of of armchair and zigzag arise from the shape of the cross-sectional ring in the
circumferential direction of the SWNTs. We then have various SWNT geometries that
can change diameter, chirality, and also cap structures, giving rich physical properties
of carbon nanotubes.

While the 1D unit cell of a SWNT in real space is expressed by Ch and T, the
corresponding vectors in reciprocal space are the vectors K1 along the tube circum-
ference and K2 along the tube axis. Since nanotubes are 1D materials, only K2 is a
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Figure 2.3 Classification of carbon nanotubes: (a) zigzag, (b) chiral, (c) armchair SWNTs.
From left to right, the chiral index of each SWNT above is (5, 0), (4, 2), (3, 3), respectively. In
(a) and (c), thick solid lines are to emphasize “zigzag” and “armchair” structures, respectively.

reciprocal lattice vector. K1 gives discrete k values in the direction of Ch. Expressions
for K1 and K2 are obtained from their relations with Ch and T:

Ch ·K1 = 2π, T ·K1 = 0, (2.13)

Ch ·K2 = 0, T ·K2 = 2π. (2.14)

It follows,

K1 =
1

Nhex
(−t2b1 + t1b2),K2 =

1

Nhex
(mb1 − nb2), (2.15)

where b1 and b2 are the reciprocal lattice vectors of graphene. In Fig. 2.4, K1 and K2

are shown for the (4, 2) SWNT. The Nhex line segments with length of K2 construct
the 1D Brillouin zone of the SWNT, which we call as “cutting lines”.

The allowed wave vector k of a SWNT is

k = µK1 + k
K2

|K2|
(2.16)

where µ = 0, 1, . . . , Nhex − 1 is the “cutting line” index, and k is in the range of
−π/T < k < π/T . The length of K1 and K2 are given by:

|K1| =
2π

L
=

2

dt
, |K2| =

2π

T
. (2.17)

Fig. 2.3: fig/fch2-swnt.eps



26 Chapter 2. Basics of CNT and graphene
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K
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µ = 27

Figure 2.4 The reciprocal lattice vectors K1 and K2, and the Brillouin zone of a (4, 2)
SWNT represented by the set of N = 28 parallel cutting lines. The vectors K1 and K2 in
reciprocal space correspond to Ch and T in real space, respectively. The cutting lines are
labeled by the integer angular momentum index µ.

The unit cell of the SWNT contains Nhex hexagons, then the first Brillouin zone of
the SWNT consists of Nhex cutting lines. Therefore, Nhex parallel cutting lines are
related to the discrete value of the angular momentum µ, and the cutting line length
K2 determines the periodicity of the 1D momentum k.

2.1.3 Nanoribbon unit cell

A single layer graphene nanoribbon (GNR) can be imagined as a strip of single layer
graphene sheet with finite ultrathin width. Since we confine the graphene sheet in one
direction, GNRs can also be considered as 1D materials. Depending on the position
where we cut the graphene sheet, we may have two specific GNR structures: armchair
GNRs and zigzag GNRs, as shown in Fig. 2.5.

Armchair ribbons and zigzag ribbons are denoted by Nab aGNR and Nab zGNR,
respectively, where Nab is the number of AB carbon dimers in the translational unit
cell. In zigzag ribbons, the length L of the translational unit cell is a and the width
W of the ribbon is (Nab − 1)

√
3

2 a where a = 2.49 is the hexagonal lattice constant
in graphene. In armchair ribbons, the translational unit cell length is

√
3a and the

ribbon width is (Nab − 1) 1
2a. Note that in zigzag and armchair ribbons with the

same number of atoms per unit cell, the area of the unit cells are equal. The k-space
properties of GNRs can be then be derived similarly as those of SWNTs [36, 37], in
which we will also have 1D Brillouin zone in terms of the cutting lines µ depending
on the GNR structure.

Fig. 2.4: fig/fch2-bz.eps
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Figure 2.5 Lattice structures and translational unit cells for armchair (aGNR) and zigzag
(zGNR) graphene nanoribbons. The width of the nanoribbons is W .

2.2 Electronic properties

The electronic dispersion relations of SWNTs are derived from those of a graphene
sheet. The tight-binding model is reviewed here, starting from a simple tight-binding
(STB) model. In a later section, the extended tight-binding (ETB) model that gives
a good agreement with some optical spectroscopy measurements are described.

The electronic dispersion relations of a graphene sheet are obtained by solving the
single particle Schrödinger equation:

HΨb(k, r) = EΨb(k, r) , (2.18)

where H = T + V (r) is the single-particle Hamiltonian, T is the kinetic energy op-
erator, V (r) is the periodic potential, Ψb(k, r) is the one-electron wavefunction, b is
the band index, k is the electron wavevector, r is the spatial coordinate, and E is the
energy eigenvalue. The electron wavefunction Ψb(k, r, t) is approximated by a linear
combination of atomic orbitals (LCAO) in terms of Bloch functions:

Ψb(k, r, t) = exp
(
−iEb(k)t/~

)∑
so

Cbso(k)Φso(k, r) ,

Φso(k, r) =
1√
Nu

Nu∑
u

exp (ikRus)φo(r−Rus) ,

(2.19)

where Eb(k) is the one-electron energy, Cbso(k) is the Bloch amplitude, Φso(k, r) is
the Bloch wavefunction, φo(r) is the atomic orbital, Rus is the atomic coordinate, the

Fig. 2.5: fig/fch2-ribbonstruct.eps
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index u = 1, . . . , Nu is for all the Nu unit cells in a graphene sheet (Nu = Nhex for
a SWNT and Nu = Nab for a GNR), the index s = A,B labels the two inequivalent
atoms in the unit cell, and the index o = 1s, 2s, 2px, 2py, 2pz gives the atomic orbitals
of a carbon atom.

The Schrödinger equation for the Bloch amplitudes Cbso(k) can be written in the
matrix form: ∑

so

Hs′o′so(k)Cbso(k) =
∑
so

Eb(k)Ss′o′so(k)Cbso(k) , (2.20)

where the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices are given by:

Hs′o′so(k) =

U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)Hφo(r−Rus)dr ,

Ss′o′so(k) =

U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)φo(r−Rus)dr ,

(2.21)

and the index u′ labels the unit cell under consideration. The orthonormality condition
for the electron wavefunction of Eq. (2.19) becomes:∫

Ψb′ ∗(k, r, t)Ψb(k, r, t)dr =
∑
s′o′

∑
so

Cb
′ ∗
s′o′ (k)Ss′o′so(k)Cbso(k) = δb′b . (2.22)

To evaluate the integrals in Eq. (2.21), the periodic potential V (r) in the single par-
ticle Hamiltonian H of Eq. (2.18) is expressed by a sum of the spherically-symmetric
potentials U(r−Ru′′s′′) centered at the atomic sites Ru′′s′′ :

V (r) =
∑
u′′s′′

U(r−Ru′′s′′) . (2.23)

The Hamiltonian matrixHs′o′so(k) then contains the three-center integrals that involve
two orbitals φ∗o′(r−Ru′s′) and φo(r−Rus) at two different atomic sites Ru′s′ and
Rus, while the potential U(r−Ru′′s′′) originates from a third atomic site Ru′′s′′ .
On the other hand, the overlap matrix Ss′o′so(k) contains two-center integrals only.
Neglecting the three-center integrals in Hs′o′so(k), the remaining two-center integrals
in both Hs′o′so(k) and Ss′o′so(k) can be parameterized as functions of the interatomic
vector R = Rus −Ru′s′ and of the symmetry and relative orientation of the atomic
orbitals φ∗o′(r) and φo(r):

εo =

∫
φ∗o(r)Hφo(r)dr ,

to′o(R) =

∫
φ∗o′(r) (T + U (r) + U (r−R))φo(r−R)dr ,

so′o(R) =

∫
φ∗o′(r)φo(r−R)dr ,

(2.24)
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where εo is the atomic orbital energy, to′o(R) is the transfer integral, and so′o(R) is
the overlap integral. A numerical calculation of parameters εo, to′o(R), and so′o(R)

defines the non-orthogonal tight-binding model. Within the orthogonal tight-binding
model, so′o(R) is set to zero (unity) for R 6= 0 (R = 0).

2.2.1 Graphene electronic structure

In the STB model, we neglect the σ bonding of C-C atoms and the long-range atomic
interactions in the π bonding for R > aCC. The STB model thus has three parameters:
the atomic orbital energy ε2p, the transfer integral tππ(aCC), and the overlap integral
sππ(aCC). The transfer and overlap integrals will simply be referred to as t, and s,
respectively.

To construct the HamiltonianHs′o′so(k) and overlap Ss′o′so(k) matrices of Eq. (2.20),
consider the nearest-neighbor interactions (R = aCC) in the unit cell of a graphene
sheet. The unit cell contains two atoms, A and B, each of which has three nearest
neighbors of the opposite atom type (A and B). The absence of nearest-neighbor inter-
actions within the same A or B sublattice gives the diagonal Hamiltonian and overlap
matrix elements, HAπAπ = HBπBπ = ε2p and SAπAπ = SBπBπ = 1, independent of
the transfer t and overlap s integrals. For the HAπBπ and SAπBπ matrix elements,
the interatomic vectors R from atom A to its three nearest-neighbors in Eq. (2.20)
are given by (a1 + a2) /3, (a1 − 2a2) /3, and (a2 − 2a1) /3. Substituting these vectors
into Eq. (2.20), one can obtain HAπBπ = tf(k) and SAπBπ = sf(k), where f(k) is the
sum of the phase factors over the nearest neighbors given by

f(k) = exp

(
i
kxa√

3

)
+ exp

(
−i kxa

2
√

3
+ i

kya

2

)
+ exp

(
−i kxa

2
√

3
− ikya

2

)
. (2.25)

The HBπAπ and SBπAπ matrix elements are derived in a similar way. The interatomic
vectors R have the opposite signs, giving HBπAπ = tf∗(k) and SBπAπ = sf∗(k). The
Schrödinger equation in the matrix form, Eq. (2.20), can be written as(

ε2p tf(k)

tf∗(k) ε2p

)(
CbAπ(k)

CbBπ(k)

)
= Eb(k)

(
1 sf(k)

sf∗(k) 1

)(
CbAπ(k)

CbBπ(k)

)
.

(2.26)
Solving this secular equation yields the energy eigenvalues:

Ev(k) =
ε2p + tw(k)

1 + sw(k)
, Ec(k) =

ε2p − tw(k)

1− sw(k)
, (2.27)

where the band index b = v, c indicates the valence and conduction bands, t < 0, and
w(k) is the absolute value of the phase factor f(k), i.e., w(k) =

√
f∗(k)f(k):

w(k) =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.28)
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Figure 2.6 The π bands of graphene within the simple tight-binding method. In (a), the
energy dispersion is shown throughout the whole region of the Brillouin zone. (b) Near the
K point, the energy dispersion relation is approximately linear, showing two symmetric cone
shapes, the so-called Dirac cones. (c) Contour plot of the energy dispersion near the K point.
The tight-binding parameters used here are ε2p = 0 eV, t = −3.033 eV, and s = 0.129.

According to Eq. (2.27), the atomic orbital energy ε2p is an arbitrary reference point
in the orthogonal STB model (s = 0), while ε2p is a relevant parameter in the non-
orthogonal ETB model (s 6= 0).

Fitting the dispersion relations of the graphene sheet given by Eq. (2.27) to the
energy values obtained from an ab initio calculation gives the values of the transfer
integral t = −3.033 eV and overlap integral s = 0.129, and set the atomic orbital
energy equal to zero (origin of the energy scale), ε2p = 0 eV [1]. Fig. 2.6 (a) shows the
dispersion relations of the graphene sheet given by Eq. (2.27) with the above param-
eters throughout the entire area of the first Brillouin zone. The lower (valence) band
is completely filled with electrons in the ground state, while the upper (conduction)
band is completely empty of electrons in the ground state.

Unlike most semiconductors, the band structure of a graphene sheet shows linear
dispersion relations around the K and K′ points near the Fermi level, as can be seen in
Fig. 2.6(b). The electron wavevector around the K point in the first Brillouin zone can
be written in the form kx = ∆kx and ky = −4π/(3a) + ∆ky, where ∆kx and ∆ky are
small compared to 1/a. Substituting this wavevector into Eq. (2.28) and making the
expansion in a power series in ∆kxa and ∆kya up to the second order, one can obtain
w =

√
3

2 ∆ka, where ∆k =
√

∆k2
x + ∆k2

y is the distance from the electron wavevector
to the K point. Substituting w into Eq. (2.27) gives the electronic dispersion relations
in the valence and conduction bands:

Ev (∆k) = ε2p −
√

3

2
(ε2ps− t) a∆k , Ec (∆k) = ε2p +

√
3

2
(ε2ps− t) a∆k , (2.29)

which are linear in ∆k. The linear dispersion relations near the Fermi level suggest that
the non-relativistic Schrödinger equation used for conventional semiconductors with

Fig. 2.6: fig/fch2-piband.eps
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Figure 2.7 Examples of 1D energy dispersion relations of SWNTs: (a) armchair (6, 6), and
(b) zigzag (10, 0) SWNTs. No bandgaps can be seen in (a), thus the SWNT is metallic,
whereas the SWNT in (b) is semiconducting because there is an open gap.

parabolic energy bands is not sufficient to explain the electrons in a graphene sheet.
Instead, the π electrons in a graphene sheet mimic massless particles whose behavior
is described by the relativistic Dirac equation. Furthermore, the linear dispersion
relations increase the mobility of the π electrons in a graphene sheet compared to that
of conventional semiconductors. In contrast to the π electrons, the σ electrons fully
occupy the energy band, and therefore do not contribute to the transport properties.
Indeed, the σ energy bands lie several eV away from the Fermi level, as obtained by
solving Eq. (2.20) for the σ molecular orbitals. In Fig. 2.6(c), the contour plot of the
energy dispersion near the K point is shown. The energy surface changes from circle to
triangle with increasing distance from the K point, giving rise to the so-called trigonal
warping effect [26], which strongly affects the optical transitions in SWNTs.

2.2.2 Nanotube electronic structure

Now the electronic structure of a SWNT can be derived from the energy dispersion
calculation of graphene in Eq. (2.27). As we discussed in Sec. 2.1.2, the allowed wave
vectors k (the cutting lines) around the SWNT circumference become quantized. The
energy dispersion relations of the SWNT are then given by the corresponding energy
dispersion relations of graphene along the cutting lines. When the 1D cutting lines
µK1+kK2/|K2| of a SWNT in Eq. (2.16) are superimposed on the 2D electronic energy
dispersion surface of the graphene sheet in Eq. (2.27), N pairs of energy dispersion

Fig. 2.7: fig/fch2-dis.eps
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Figure 2.8 (a) Condition for metallic energy bands is related to the ratio of the length of
vector YK to that of K1. If the ratio is an integer, metallic energy bands are obtained [1].
(b) Three possible configurations of the cutting lines in the vicinity of the K point depending
on the value of mod(2n + m, 3). From left to right, the nanotube type is M- (metallic), S1-
(type-I semiconducting), and S2- (type-II semiconducting) SWNT, respectively. The solid
lines represent the cutting lines and the dashed lines indicate the KM directions, which are
the boundaries of the first Brillouin zone of the SWNT.

relations of the SWNT, EbSWNT(µ, k), are obtained:

EbSWNT(µ, k) = Eb2D

(
µK1 + k

K2

|K2|

)
,
(
µ = 0, 1, . . . , N − 1;− π

T
< k <

π

T

)
.

(2.30)
For a particular (n,m) SWNT, if a cutting line passes through K or K′ point

of the Brillouin zone of graphene, where the valence and conduction bands touch to
each other, the 1D energy bands of the SWNT have a zero energy gap, therefore,
they become metallic. However, if a cutting line does not pass through K or K′, the
(n,m) is semiconducting with a finite energy gap. Figure 2.7 gives two examples of
the SWNT dispersion relations.

As shown in Fig. 2.8(a), if we project the ΓK vector pointing toward the K point
onto the K1 direction perpendicular to the cutting lines, that can be denoted by
ΓY = ΓK ·K1/

√
K1 ·K1, we can find:

ΓK√
K1 ·K1

=
1
3 (2b1 + b2) · 1

N (t1b2 − t2b1)√
1
N (t1b2 − t2b1) · 1

N (t1b2 − t2b1)
(2.31)

=
2n+m

3
, (2.32)

If (2n+m)/3 is an integer, ΓK has an integer number of K1 components, so that
one of the cutting lines passes through the K point, hence giving a metallic SWNT.
If (2n + m)/3 is not an integer, i.e, the residual is 1 or 2, the K point lies at 1/3 or
2/3 of the spacing between two adjacent cutting lines near the K point, hence giving
a semiconducting SWNT, as shown in Fig. 2.8(b). These three types of SWNTs are
referred to as M-, S1-, and S2-SWNTs, respectively:

Fig. 2.8: fig/fch2-class.eps
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Figure 2.9 Nanotubes family classification on the unrolled graphene sheet for the nanotubes
of diameter less than 1 nm. The (n,m) indices written in the hexagons represent the chiral
vectors pointing to the centers of the hexagons. Here the chiral vector of a (4, 2) SWNT is
shown by an arrow. The dashed lines represent the families of constant 2n+m, n−m, and
2m + n for each family. The magenta, light yellow, and cyan hexagons correspond to the
chiral vectors of M-, S1-, and S2-SWNTs, respectively.

M : mod(2n+m, 3) = 0, (2.33)

S1 : mod(2n+m, 3) = 1, (2.34)

S2 : mod(2n+m, 3) = 2. (2.35)

The S1- and S2-SWNTs are often written as type-I and type-II semiconducting SWNTs.
There are also other metallicity notations frequently used in the nanotube research
community depending on the value of mod(n−m, 3) as follows:

mod 0 : mod(n−m, 3) = 0, (2.36)

mod 1 : mod(n−m, 3) = 1, (2.37)

mod 2 : mod(n−m, 3) = 2. (2.38)

With a simple algebra, it can be shown that mod 0, mod 1, and mod 2 SWNTs are the
same as M-, S2-, S1-SWNTs, respectively.

In Fig. 2.9, the chiral vectors for M-, S1-, and S2-SWNTs are shown. Within the
triangular graphene sheet, the diagonal lines of each hexagon are connected to the
diagonal lines of the adjacent hexagons, shown by the dashed lines in Fig. 2.9. These

Fig. 2.9: fig/fch2-famnum.eps
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Figure 2.10 Chiral angle (θ) versus diameter (dt) of all SWNTs in the range of 0.5 <
dt < 3 nm. Nanotubes of the same family number (2n + m) are connected by lines. Up to
dt ≈ 1.2 nm, the constant 2n+m nanotubes have similar diameters.

lines with constant values of (2n + m), (2m + n), and (n −m) are called the family
lines. Especially for the (2n + m) families, the SWNTs which belong to the same
(2n + m) have the closest diameters, compared to the (2m + n) or (n −m) families,
as obviously can be seen in Fig. 2.10.

2.2.3 Density of states and transition energies

The electronic density of states (DOS) or the number of available electronic states for
a given energy interval per carbon atom is especially very important for understanding
optical properties of materials. The DOS is known to depend on the dimension of the
materials. For parabolic energy bands found in most semiconductors, the DOS rises
as the square root of the energy above the energy bottom E0 in the 3D cases such as
diamond and graphite, g(E) ∝ (E − E0)1/2. For a 1D system such as SWNT, E0 is
equal to the subband edge energy Ebi , where the DOS magnitude becomes singular,
known as the van-Hove singularity (VHS).

The presence of VHSs in the DOS of SWNTs has a great impact on their optical
properties, a significant enhancement in the SWNT response is observed when the
excitation energy for the probe matches one of the VHSs in the DOS in the valence
and conduction bands of the SWNT. For example, optical absorption is strongly en-
hanced when the photon energy is in resonance with the allowed transition between
two VHSs in the valence and conduction bands. This enhancement is generally in-
terpreted in terms of the joint density of electronic states (JDOS) which takes into

Fig. 2.10: fig/fch2-2nmfam.eps
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Figure 2.11 (a) The dispersion relations and (b) density of electronic states DOS of the
(15, 0) SWNT. The arrows show the allowed optical transitions between the first and second
valence and conduction subbands. (c) The joint density of states (JDOS) of the (15, 0)
SWNT. The labels E11 (E22) correspond to the transition between Ev

1 and Ec
1 (Ev

2 and Ec
2)

shown in panel (b). Reproduced from Ref. [38].

account the dipole selection rules. The optical transitions should conserve both an-
gular and linear momenta in SWNTs, thus the transitions are vertical in k-space, as
shown in Fig. 2.11(a).

The optical response of SWNTs is dominated by the VHSs in the JDOS labeled by
Eii. The optical transition energies Eii for i = 1, 2, 3, . . . and for all the possible (n,m)

SWNTs are summarized in the so-called Kataura plot [39] as a function of the SWNT

diameter dt. In Fig. 2.12(a), the Kataura plot calculated within the STB model is
shown, in which the transition energies are interpreted as the energy gaps between
i-th VHSs in the conduction and valence bands. The same STB Kataura plot is
shown in Fig. 2.12 (b) as a function of the inverse SWNT diameter 1/dt, which is more
convenient for direct comparison with experiments, since 1/dt is proportional to ωRBM.
Furthermore, the 1/dt scale allows us to explore the small dt region (dt < 1.2 nm),
which has a lower density of (n,m) indices. As one can see from Fig. 2.12, the Eii
energies for M-, S1-, and S2-SWNTs show distinct behavior. Within the M-, S1-, and
S2-types, the Eii energies that belong to the families of constant 2n+m group together
in the Kataura plot.

Fig. 2.11: fig/fch2-dos.eps
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Figure 2.12 The optical transition energies Eii for i = 1, 2, 3, . . . and for all possible (n,m)
SWNTs in the range of 0.5 < dt < 2.0 nm calculated within the STB model as a function of
(a) SWNT diameter dt, and (b) inverse diameter 1/dt, known as the Kataura plot. Black,
red, and blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The constant 2n+m
families are connected by lines. Reproduced from Ref. [38].

2.2.4 Extended tight-binding model

Recent Eii measurements by photoluminiscence (PL) and resonance Raman spec-
troscopy (RRS) indicate that the STB calculation is not sufficient to interpret the
experimental results. Figures 2.13 and 2.14 give the same Eii energies for the same
SWNT sample, that is HiPco SWNTs suspended by SDS surfactant in aqueous so-
lution. The experimental Kataura plots in Figs. 2.13(b) and 2.14(b) differ from the
theoretical STB Kataura plot in Fig. 2.12 two aspects: in the large diameter limit and
in the small diameter limit. In the large dt limit the ratio of ES

22 to ES
11 reaches 1.8

in the experimental Kataura plots, while the same ratio goes to 2 in the theoretical
STB Kataura plot [40], which is called as the ratio problem. This problem can be
understood by means of the many-body interactions related to the excitons, that will
be discussed in Sec. 2.4. In the small dt limit, the families of constant 2n+m deviate
from the mean Eii energy bands in the experimental Kataura plots, while the family
spread in the theoretical Kataura plot remains relatively moderate [25].

Fig. 2.12: fig/fch2-stbkat.eps
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Figure 2.13 (a) 2D photoluminiscence (PL) map measured on wrapped HiPco SWNTs
suspended by SDS surfactant in aqueous solution [40]. (b) The Kataura plot extracted from
the PL map [25]. The numbers show the constant 2n+m families. Reproduced from Ref. [38].
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Figure 2.14 (a) The resonance Raman spectral density map in the frequency range of
the RBM measured on wrapped HiPco SWNTs suspended by SDS surfactant in aqueous
solution[41]. (b) The Kataura plot extracted from the map in (a). The numbers show the
constant 2n+m families. Reproduced from Ref. [38].

In search for the origin of the family spread, we reconsider the limitations of the
STB model discussed previously. Within the STB model, the long-range atomic inter-
actions and the effect of the curvature of the cylindrical surface of a SWNT are both
neglected. The long-range atomic interactions are known to change the electronic
band structure of the graphene sheet and SWNTs. On the other hand, in the presence

Fig. 2.13: fig/fch2-pl.eps
Fig. 2.14: fig/fch2-rrs.eps
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Figure 2.15 The ETB Kataura plot similar to the STB Kataura plot in Fig. 2.12 as a
function of (a) SWNT diameter dt, and (b) inverse diameter 1/dt. The ETB model takes into
account the long-range atomic interactions, the curvature effects of small diameter SWNTs,
and the optimized geometrical structures of the SWNTs. Black, red, and blue dots correspond
to M-, S1-, and S2 SWNTs, respectively. The constant 2n + m families are connected by
lines. Reproduced from Ref. [38].

of the curvature, the π orbitals are mixed with the σ orbitals. Furthermore, the σ-π
rehybridization suggests that the geometrical structure of a small diameter SWNT de-
viates from the rolled up graphene sheet. A geometrical structure optimization must
thus be performed to allow for atomic relaxation to equilibrium positions. This in
turn affects the Eii energies of the small diameter SWNTs. In the case of GNRs and
large diameter SWNTs, however, the σ molecular orbitals are irrelevant because the
surface is flat and thus the σ and π molecular orbitals are orthogonal to each other.

Based on the above consideration, the STB model is extended by including the
long-range atomic interactions and the σ molecular orbitals, and by optimizing the
geometrical structure. The resulting model is referred to as the extended tight-
binding model (ETB). Within the framework of the ETB model, we use the tight-
binding parametrization determined from density-functional theory (DFT) employing

Fig. 2.15: fig/fch2-etbkat.eps
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Figure 2.16 Electronic energy bands for 6-, 7- and 8-aGNR nanoribbons calculated in the
ETB model.

the local-density approximation (LDA) and using a local orbital basis set [42]. The
ETB model is calculated in detail by Samsonidze et. al [43]. We closely follow his
approach for the ETB electronic structure calculation.

Figure 2.15 show the calculated ETB Kataura plot as a function of tube diameter
and inverse diameter. The plot exhibits a similar family spread to the PL and RRS
experimental Kataura plots in Figs. 2.13(b) and 2.14(b). The family spread is con-
cluded to be related to the curvature effect of SWNTs. However, although the family
spread of the ETB model is in good agreement with the PL and RRS Kataura plots,
it still deviates 200 − 300 meV from the PL and RRS experiments. This deviations
originates from the excitonic many-body effects which will be discussed in Sec. 2.4

2.2.5 Nanoribbon electronic structure

The GNR electronic structure depends on the edge shape. In the case of armchair
GNRs (aGNRs), they can belong to one of three families depending on the mod number
mod(Nab, 3). Similar to the SWNTs with the use of an ETB calculation considering
the long-range interactions but neglecting the curvature effects, we can classify mod 0
and mod 1 aGNRs as semiconductors and mod 2 aGNRs as metals [37, 44].

Bandstructures for π electrons in three representative aGNRs calculated within
the ETB model are shown in Fig. 2.16. The 6-aGNR and 7-aGNR ribbons are semi-

Fig. 2.16: fig/fch2-agnrelstruct.eps
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Figure 2.17 Electronic energy bands a 7-zGNR nanoribbon calculated in the ETB model.
The lowest seven bands labeled v1 . . . v7 are the valence bands, while the highest seven bands
labeled c1 . . . c7 are the conduction bands.

conducting with finite band gaps, while the 8-aGNR ribbon is metallic. Armchair
semiconducting nanoribbons have direct gaps that arise from quantum confinement
and edge effects and all the electronic wavefunctions near the band edge are distributed
throughout the width of the ribbon.

In the case of zigzag GNRs, all of them are metallic and there is no classification
into qualitatively distinct types like there is in armchair nanoribbons. It should be
noted, however, that the localized electronic energy band, which are the so-called edge
states, exists for zGNR in which the c1 and v1 energy bands as shown in Fig. 2.17
are merged into degenerate energy bands at the zone boundary region. Since the
contribution of the edge states to coherent phonon amplitudes is not clear yet, we will
not discuss the coherent phonon properties in zGNRs and we will mainly consider the
aGNRs in Chapter 4

Fig. 2.17: fig/fch2-zgnrelstruct.eps
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Figure 2.18 (a) Graphene phonon energies, ~ω(q), along high symmetry lines in the hexag-
onal Brillouin zone. (b) Phonon density of states in units of phonon modes per hexagonal
unit cell per eV. The high symmetry lines are shown schematically in the inset where the
Brillouin zone has been rotated clockwise by 30◦. In (c) the mode displacement vectors for
the q = 0 in-plane LO and TO phonons are shown schematically.

2.3 Vibrational properties

Phonons in graphene, SWNTs and GNRs have been studied by a number of techniques
including elastic continuum models [45, 46], force constant models [1, 47, 48, 49, 50]
bond charge models[51], and ab initio methods [52, 53, 54, 55]. Here, we treat phonon
dispersion relations in planar graphene using a force constant model [47], which we
also refer to as the valence force field model (VFF). We include radial (r) bond-
stretching interactions as well as transverse in-plane (ti) and out-of-plane (to) bond
bending interactions. The force constants for these interactions are denoted φ(n)

r , φ(n)
ti ,

and φ(n)
to respectively where the integers n = 1 . . . 4 label the nearest neighbor atomic

shells surrounding each carbon atom.
We must include at least fourth neighbor interactions to describe the bond twisting

interaction involving a carbon-carbon sp2 bond and the four attached carbon-carbon
bonds with a total of six carbon atoms. The most widely separated of these six carbon
atoms are separated by the fourth neighbor distance. We use 12 force constant values
obtained from fits to experimental data [47] keeping up to fourth neighbor interactions.
In graphene, there are two atoms per hexagonal unit cell giving rise to six phonon
branches. The phonon energies ~ω(q) and corresponding mode displacement vectors
are obtained by diagonalizing a 6× 6 dynamical matrix [47].

The graphene phonon dispersion relations are shown in Fig. 2.18(a) where phonon
energy is plotted along high symmetry lines in the hexagonal Brillouin zone. There
are six phonon modes. The corresponding density of states for the phonon modes in

Fig. 2.18: fig/fch2-grphdisp.eps
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Figure 2.19 Graphene phonon energies, ~ω(q), along high symmetry lines in the hexagonal
Brillouin zone. Black dots are obtained using the 12 parameter valence force field model
(VFF) described in the text and the solid red curves are the best fit phonon energies for the
7 parameter modified valence force field model (MVFF). The MVFF fits are optimized for
low phonon energies.

units of modes per hexagonal unit cell per eV is shown in Fig. 2.18(b). Near the Γ

point (q = 0), there are three acoustic and three optical branches. The lowest acoustic
branch is an out-of-plane transverse mode (ZA) whose energy varies as q2. There are
two in-plane acoustic modes with energies varying linearly as |q|. The lower lying of
these two modes is a transverse acoustic mode (TA) and the higher lying mode is a
longitudinal acoustic mode (LA). The lowest lying optical branch is an out-of-plane
transverse mode (ZO) with a negative q2 energy dependence at the Γ point. The
remaining two optical branches are in-plane transverse optical (TO) and longitudinal
optical (LO) modes which are degenerate at the Γ point and whose energy dependence
is approximately constant for small values of q. For the Γ point LO mode the A and
B atoms vibrate parallel to the graphene x̂ axis (parallel to the bond connecting the
A and B atoms) 180 degrees out of phase with each other. For the Γ point TO mode
the atoms vibrate out of phase with each other parallel to the graphene ŷ axis. The
mode displacement vectors for the LO and TO modes are shown schematically in
Fig. 2.18(c).

The above valence force field model works well for graphene and planar carbon
structures such as GNRs. However, in SWNTs where the curvature effects are impor-

Fig. 2.19: fig/fch2-grphdisp2.eps
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Figure 2.20 Phonon dispersion relations for (a) the (11,0) zigzag SWNT and (b) the (8,6)
chiral SWNT calculated using the modified valence force field model. The acoustic modes
are thick blue lines and the radial breathing mode (RBM) is shown as a thick red line.

tant, special care must be taken to ensure that the force constant sum rule is obeyed
[56]. This simply means that the valence force field potential energy terms must be
invariant under rigid translations and rigid rotations of the nanotube about the nan-
otube axis. In Ref. [49], Mahan and Jeon pointed out that many calculations in the
literature use force field models that violate the force constant sum rule and fail to
reproduce long wavelength flexure modes predicted by elasticity theory. To remedy
this problem in our calculations, we treat lattice dynamics in carbon nanotubes us-
ing a modified valence force field model (MVFF) in which the force constant sum
rule is obeyed so that the force field potentials are invariant under rigid translations
and rotations. In our MVFF model, we include bond stretching, in-plane bond bend-
ing, out-of-plane bond bending, and bond twisting potentials. Our MVFF model for
SWNTs has seven force constants [11], four due to bond stretching interactions out
to fourth nearest neighbor shells and one each from the remaining three interactions.
We obtained force constants for the MVFF model by fitting our MVFF results for
graphene to the ordinary VFF results shown in Fig. 2.18.

Figure 2.19 shows the best fit MVFF results as red solid lines and the VFF model
results as black dots. In the fitting procedure, we gave added emphasis to the low

Fig. 2.20: fig/fch2-tbphdisp.eps
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frequency phonons. In what follows, we will use the VFF model in graphene and
GNRs and the MVFF model for SWNTs. The force constants in our phonon models
are, however, independent of the density of photoexcited carriers and cannot describe
phonon softening observed at high values of the laser fluence, which are not considered
in this work, because we will not discuss the high-frequency optical phonon modes.

Figure 2.20 shows the computed phonon dispersion relations for the zigzag (11,0)
and chiral (8,6) semiconducting SWNTs. Because of the SWNT screw symmetries,
the phonon dynamical matrix can be block diagonalized into 6×6 submatrices each of
which corresponds to a different value of the cutting line index µ = 0, . . . , Nhex−1. The
coherent phonon active phonon modes are q = 0 modes with nonzero frequency and
cutting line index µ = 0. The coherent phonon active mode with the lowest frequency
is the radial breathing mode (RBM) which corresponds to the lattice vibration along
the tube diameter direction. In Fig. 2.20 the µ = 0 acoustic phonon branches are
shown as blue lines while the µ = 0 branches containing the q = 0 RBM are shown as
thick red lines.

As for the GNR system, we show the phonon dispersion for a representative arm-
chair GNR in Fig. 2.21. A typical mod 1 semiconducting nanoribbon is the 7-aGNR. In
GNRs, the coherent phonon active mode with the lowest phonon energy is the radial-
breathing-like mode (RBLM) mode at q = 0. Figure 2.21 shows the 7-aGNR unit cell
with 14 carbon atoms, and superimposed on these atoms are vectors proportional to
the atomic displacements in the RBLM mode as determined in the valence force field
model. As can be seen in the figure, the RBLM mode represents a periodic expansion
and contraction of the ribbon width. The inset shows the phonon dispersion relations
for out-of-plane modes (red curves) and in-plane phonon modes (black curves). The
phonon branch containing the RBLM mode is shown as a thick black line and the
RBLM mode at q = 0 is indicated by a yellow dot. Additionally, the RBLM phonon
energy is found to be 51 meV.

2.4 Excitonic properties of SWNTs

Exciton effects in SWNTs are very important due to confinement of electrons and holes
in the 1D system. Though in the previous sections we have seen that the single particle
(electron) model within the tight-binding approximation can partially describe the
optical transition energies, the presence of excitons in the real case cannot be neglected,
as is indicated by the large exciton binding energy measured in the experiments [27,
28]. Moreover, the many-body corrections can only be understood by taking into
account the exciton effects. In this section, the methods for calculating the transition
energies in the exciton picture are reviewed and some relevant results will be discussed.
The electron-hole corrections are included via the Bethe-Salpeter equation and the

Fig. 2.21: fig/fch2-agnrphdisp.eps
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Figure 2.21 Phonon mode pattern for the RBLM mode (phonon energy 51 meV) in a 7-
aGNR mod 1 semiconducting nanoribbon. The coherent phonon amplitude is proportional
to the ribbon width and increasing amplitude corresponds to ribbon width expansion. The
phonon dispersion relation is shown on the right with the phonon branch containing the
RBLM mode at q = 0 shown as a thick black line. The red lines correspond to out-of-plane
modes and the black lines are in-plane modes.

calculation is again performed within the ETB approximation as the ETB model has
been proven to accurately predict the electronic properties of SWNTs. This framework
has been summarized into an exciton energy calculation package following the work
by Jiang et al. [34] and Sato et al. [57]. The computer program is now maintained in
our research group.

2.4.1 Bethe-Salpeter equation

Exciton is an electron-hole pair bound by a Coulomb interaction and thus localized
either in real space or k space. But in solids, all wave functions are delocalized as the
Bloch wave functions, which are specified by the electron wavevector (kc) or the hole
wavevector (kv). To create an exciton wave function from the electron and hole wave
functions, the electron and hole Bloch functions at many (kc) and (kv) wave vectors
have to be mixed. The mixing of different wavevectors by the Coulomb interaction is
obtained by the so-called Bethe-Salpeter equation [58, 59, 34]:∑
kc,kv

[(E(kc)− E(kv))δ(k
′
c,kc)δ(k

′
v,kv) +K(k′ck

′
v,kckv)]Ψ

n(kc,kv) = ΩnΨn(k′c,k
′
v),

(2.39)
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where E(kc) and E(kv) are the quasi-electron and quasi-hole energies, respectively.
The “quasiparticle” means that a Coulomb interaction is added to the single particle
energy and the particle has a finite life time in an excited state. Ωn and Ψn are the
n-th excited state exciton energy and corresponding exciton wavefunction.

The mixing term or kernel K(k′ck
′
v,kckv) is given by

K(k′ck
′
v,kckv) = 2δSK

x(k′ck
′
v,kckv)−Kd(k′ck

′
v,kckv), (2.40)

with δS = 0 for spin triplet states and δS = 1 for spin singlet states. The direct
interaction kernel Kd for the screened Coulomb potential w is given by the integral

Kd(k′ck
′
v,kckv) = W (k′ckc,k

′
vkv)

=

∫
dr′drψ∗k′c(r

′)ψkc(r
′)w(r′, r)ψk′v (r)ψ∗kv (r), (2.41)

and the exchange interaction kernel Kx for the bare Coulomb potential v is

Kx(k′ck
′
v,kckv) =

∫
dr′drψ∗k′c(r

′)ψk′v (r′)v(r′, r)ψkc(r)ψ∗kv (r), (2.42)

where ψ is the single particle wave function.
The quasi-particle energies are calculated from the single particle energy εsp(k) by

including the self-energy corrections Σ(k):

E(kc) = εsp(kc) + Σ(kc), (2.43)

E(kv) = εsp(kv) + Σ(kv), (2.44)

where Σ(k) is expressed as

Σ(kc) = −
∑
q

W [kc(k + q)v, (k + q)vkc], (2.45)

Σ(kv) = −
∑
q

W [kv(k + q)v, (k + q)vkv]. (2.46)

In order to obtain the kernel and self energy, the single particle Bloch wave function
ψk(r) here is approximated by an ETB wave function. The dielectric screening effect is
considered within a random phase approximation (RPA), in which the static screened
Coulomb interaction is given by

W =
V

κε(q)
, (2.47)

with the dielectric function ε(q) = 1 + v(q)Π(q) that describes effects of the po-
larization of the π bands. The effect of electrons in core states, σ bonds, and the
surrounding materials are all represented by a static dielectric constant κ. By calcu-
lating the polarization function Π(q) and the Fourier transformation of the unscreened



2.4. Excitonic properties of SWNTs 47

E A1,2

Figure 2.22 Symmetry of an exciton. If both the electron and hole are from the K (or
K′) region (right side of the above figure), the corresponding exciton is an A1,2 symmetry
exciton. If an electron is from the K region and a hole is from the K′ region (left side of the
above figure), the corresponding exciton is an E symmetry. One more case is not shown here,
the E∗ exciton, which is just an opposite situation of the E exciton.

Coulomb potential v(q), the exciton energy calculation can be performed. For 1D ma-
terials, the Ohno potential is commonly used for the unscreened Coulomb potential
v(q) for π orbitals [29]. After obtaining the excitation energy Ωn, the exciton bind-
ing binding energy Ebd can be calculated by substracting the quasi particle energy
EQP = Ec(kc)− Ev(kv) with Ω1,

Ebd = EQP + Ω1. (2.48)

Here Ω1, which is the first (lowest) exciton state, is interpreted as the transition energy
Eii, where an electron and a hole lie on the same i-th cutting line with respect to the K

point of the 2D Brillouin zone of graphene. The difference between Eii and the single
particle band gap gives the many-body corrections Emb which is also the difference
between the self energy and binding energy,

Emb = Σ− Ebd. (2.49)

2.4.2 Exciton symmetry

To discuss the exciton symmetry, wave vectors K̄ for center-of-mass motion and k for
relative motion are introduced,

K̄ = (kc − kv)/2, k = kc + kv. (2.50)

The exciton state can then be denoted as |k, K̄〉 and the Bethe-Salpeter equation is
rewritten in terms of K̄ and k. Because the Coulomb interaction is related to the

Fig. 2.22: fig/fch2-wfzone.eps
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Figure 2.23 Wave vectors of a (6, 1) SWNT nanotube around the K point. The cutting
lines must cross the MlMr line in order to have an Eii within the 3M region. The index µ is
counted from the Γ point.

relative coordinate of an electron and a hole, the excitons in SWNTs can be classified
according to the 2K̄ value in the regions shown in Fig. 2.22.

There are three inequivalent regions in the 2D Brillouin zone of graphene, i.e. two
triangle regions around K, K′, and a hexagonal region around the Γ point. For SWNTs,
the optical transitions are related to the electron and hole on the cutting lines in the
K or K′ regions. If both the electron and hole are from the K (or K′) region, the
corresponding exciton is an A1,2 symmetry exciton. The center-of-mass momentum
2K̄ lies in the Γ region and k will be around K (or K′) region. If an electron is from the
K region and a hole is from the K′ region, the corresponding exciton is an E symmetry.
The momentum 2K̄ lies in the K region. If an electron is from the K′ region and a
hole is from the K region, their 2K̄ lies in the K′ region, and this exciton is an E∗

symmetry exciton.
The E and E∗ excitons, which have a large angular momentum for the center-of-

mass momentum, are dark excitons because the photon wave vector is nearly zero.
For A excitons, the electron-hole pair |kc,kv〉 = |k, K̄〉 with the electron and hole
from the K′ region and | −kc,−kv〉 = −|k, K̄〉 with the electron and hole from the K′

region have the same value for K̄. Here |k, K̄〉 is antisymmetric, whereas −|k, K̄〉 is
symmetric, under the C2 rotation. The corresponding excitons are labeled A2 and A1

excitons, respectively. The optical dipole moment is defined as

M∝ P̂ · 〈Ψ|∇|Ψ0〉, (2.51)

with 〈Ψ| and |Ψ0〉 denoting the excited and ground states, respectively, and P̂ is the
light polarization vector. The ground state |Ψ0〉 has an s symmetry and operator ∇
is antisymmetric under the C2 rotation. In order to get a nonzeroM, |Ψ〉 thus should

Fig. 2.23: fig/fch2-mmm.eps



2.4. Excitonic properties of SWNTs 49

0.5 1 1.5

Inverse Diameter [nm
-1

]

0

1

2

3

4

T
ra

n
si

ti
o
n
 E

n
er

g
y
 [

eV
]

18
21

24

27
30

33 19
22

25
28

31
34 17

20
23

262932

A

Z

Z

E
11

E
22

E
11

E
33

E
44

E
22

E
55

E
66

E
33

M

S

S

M

S

S

M

S

S

Figure 2.24 The bright exciton energy Kataura plot as a function of inverse diameter 1/dt
for κ = 2.22. The exciton energies Eii shown here are up to ES

66 and EM
33. Black, red, and

blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The eight diamond symbols
are experimental data by Michel et al. (Ref. [61]). The 2n + m family patterns are clearly
seen for smaller diameter SWNTs. The arrows with A (Z) symbols correspond to the near
armchair (zigzag) SWNTs.

be antisymmetric, too. Therefore, A1 excitons are dark excitons, and only A2 excitons
are bright excitons. Hereafter, only the case of bright excitons is considered because
the optical transitions in coherent phonon generation are related to the optical dipole
transitions of the bright exciton.

For the bright excitons, the cutting lines kii near the K point is important to
determine exciton energies Eii. A triangular region which connects three M points,
i.e.,Ml,Mr, andMm around the K is defined as the 3M triangle as shown in Fig. 2.23.
Only in this region the energy dispersion of the conduction (valence) band for a SWNT

has a minimum (maximum). The remaining region of the Brillouin zone is a hexagonal
region which connects six M points around the Γ point. In the hexagonal region, the
conduction (valence) bands have a maximum (minimum). This gives a singular joint
of density of states but a minimum electron-photon matrix element at the singular
point [60]. Thus a cutting line will not contribute to the optical absorption at Eii if
the cutting line lies outside of the 3M triangle. As for example, a (6, 1) SWNT shown
in Fig. 2.23 does not have E33 optical absorption because the corresponding cutting
line cannot lie within the 3M triangle. Therefore, E33 is skipped, only E11, E22, and
E44 are observed in experiments, though all Eii values can be calculated by theory.

Figure 2.24 shows the calculated results for the lowest bright exciton states but
different cutting lines kii, which then give the exciton energies Eii. The results for

Fig. 2.24: fig/fch2-exkata.eps
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Figure 2.25 (a) Exciton wave functions in 1D k space for a (20, 0) semiconducting SWNT.
The states shown here are for E22 and E33. The wave function half-width lk increases with
Eii. (b) lk for many SWNTs as a function of 1/dt. The cutting line spacing 2/dt is shown by
the solid line for comparison. The dashed lines indicate the corresponding Eii states. The
spacing between E33 and E44 is not distinguished clearly.

higher exciton states on a given cutting line is beyond the scope of the present discus-
sion. The Kataura plot in figure 2.24 is given as a function of inverse tube diameter
in the range of 0.3 < dt < 3.0 nm. The Eii calculation is performed by taking a single
constant κ = 2.22 which is fitted from the experimental Eii data of the RRS or PL
measurements for SWNT bundle samples. Like the single particle ETB model, the
exciton ETB Kataura plot also shows the 2n+m family patterns, but unlike the single
particle picture this excitonic plot can be adjusted by changing κ.

The eight diamond symbols are experimental results for suspended SWNTs given
by Michel et al. [61] in which they succeeded with an assignment of (n,m) for SWNTs

with diameters of up to 3 nm. Although their results are for isolated suspended
SWNTs, and the calculation is for bundles, the calculated results for their assigned
(n,m) values reproduce well all eight points within the environmental effect shifts up
to 80 meV [62].

2.4.3 Exciton size

The localized exciton wavefunction is constructed by mixing many k states in which
the mixing coefficients are determined by the Bethe-Salpeter equation. In Fig. 2.25(a),
the wave function for a (20, 0) SWNT is shown. The exciton wave function half-width
lk indicates the exciton size in reciprocal space. Since the Fourier transformation of
this wave function will also give a similar localized function, the width in real space
gives the exact exciton size or radius, that is the effective distance between an electron
and a hole in the bound electron-hole pair. The exciton size in real space is thus
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inversely proportional to lk.
To study the wave function size dependence on chirality, the width lk for the E11 up

to E44 states are calculated for all SWNTs with diameters dt in the same range as in
the exciton energy calculation, 0.3 < dt < 3.0 nm, shown in Fig. 2.25. For comparison,
the cutting line spacing 2/dt is also shown in the figure by the solid line. It is clear
that lk is always smaller than the cutting line spacing 2/dt. Because lk measures the
extended length of a wave function in k space, this result indicates that one cutting
line is sufficient to describe Eii states. Fig. 2.25 also implies that the inverse of lk,
which is the exciton size in real space, spans around 0.5 − 2.0 nm. Later in Chapter
5 we will particularly consider a (11, 0) tube which has exciton size in real space of
about 0.9 nm.

Fig. 2.25: fig/fch2-lk.eps





Chapter 3

Theory of coherent phonon generation
process

In this chapter, we provide the theory of coherent phonon generation process in gen-
eral semiconductor nanostructures [10]. We then derive the equation of motion for
coherent phonons in single-wall carbon nanotubes (SWNTs) [11, 12, 14] and graphene
nanoribbons (GNRs) [13]. It is found that the coherent optical phonon amplitudes
satisfy a driven harmonic oscillator equation and that the carriers photoexcited by an
ultrafast pump acted as a driving source for coherent optical phonon oscillations via
the deformation potential coupling between electrons (or holes) and phonons. The cal-
culation methods for electron-photon and electron-phonon interactions, which govern
the driving force of coherent phonons, are also presented in this chapter. We particu-
larly utilize the tight-binding approximation and effective-mass theory for describing
the electronic states appearing in the interaction processes.

3.1 Phenomenological model of coherent phonons

To explain oscillations observed in the differential transmission and reflectivity data
of the pump-probe experiments, early researchers attributed these phenomena to the
coherent phonon oscillations which phenomenologically follow a driven harmonic os-
cillator [15]. The evolution of a coherent phonon amplitude Q in the presence of a
driving force exerted by ultrafast laser pulse is governed by the differential equation
which follow a phenomenological driven oscillator model,

∂2Q(t)

∂t2
+ 2γD

∂Q(t)

∂t
+ ω2

0Q(t) =
F (t)

Ms
, (3.1)

where ω0 is the frequency of the phonon mode, γD is the damping parameter, Ms is
the mass of the system, and F is the driving force. This force may depend on carrier
density, temperature, and other parameters of the system. The damping parameter

53
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γD is the inverse of the dephasing time of the coherent phonon mode [16]. The de-
phasing time comes from a combination of phase-destroying processes and population
decreasing processes, such as anharmonicity and electron-phonon interaction lifetime.

Phenomenological model in Eq. (3.1) can be solved analytically by using Fourier
transform or Green’s function method with the initial condition that both Q(t) and
∂Q/∂t are zero before the force F (t) is applied. The solution is given by [5]

Q(t) =

∞∫
−∞

F (t− τ)

Ms

e−γDτ sin(
√
ω2

0 − γ2
Dτ)√

ω2
0 − γ2

D

dτ (3.2)

In this solution, the form of the driving force plays an important role in determining
the oscillator properties. Let us consider two limiting cases of the forcing functions.
The first kind is impulsive force, which has the following form:

F (t) = Iδ(t), (3.3)

where δ(t) is a Dirac delta function in time and thus I =
∫
F (t)dt is the total impulse

delivered to the oscillator. The second kind is displacive force,

F (t) = Dθ(t), (3.4)

where θ(t) is the Heaviside step function and D is the force magnitude.
The generation of the coherent phonons depends on the rapid photoexcitation of

electrons and holes by a pump laser pulse. If the pump pulse is not resonant with the
electronic levels, quantum mechanics still allows for the creation of electron and holes
for a short period of time consistent with the time-energy uncertainty principle. These
so called “virtual” carriers adiabatically follow the pump pulse envelope and disappear
after the pump pulse is gone. For a short pulse, this is approximately a Dirac delta
function and corresponds to impulsive excitation. If the pump laser energy is resonant
with the energy levels of the system, then “real” carriers (electrons and holes) are
generated during the pump pulse. In this case, the carrier density is proportional to
the integral of the pump pulse envelope which is approximately given by a Heaviside
step function for a rapid pump pulse. We can then integrate Eq. (3.2) to find the
solution for each case (impulsive or displacive model).

By inserting Eq. (3.3) to Eq. (3.2), we obtain the solution for an impulsive force
at t ≥ 0,

Q(t) =
I

Ms
√
ω2

0 − γ2
D

e−γDt sin(t
√
ω2

0 − γ2
D). (3.5)

An typical oscillation due to an impulsive force is shown in Fig. 3.1(a). This is similar
to ringing a bell, where the driving force is applied for only a short time. The solution
shows that an impulsive force starts oscillations about the current equilibrium position,
which will damp out exponentially. An impulsive force results if the femtosecond pump
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Figure 3.1 Schematic solution to the harmonic oscillator model for (a) impulsive force and
(b) displacive force. Here γD = 0.1ω0 is used.

pulse is not resonant with the conduction and valence band states as is the case in
below bandgap excitation. Because of the uncertainty principle, virtual carriers are
created and the density of these carriers will adiabatically follow the pulse envelope.

On the other hand, by inserting Eq. (3.4) to Eq. (3.2), we obtain the solution for
a displacive force,

Q(t) =
D

mω2
0

[
1− e−γDt

(
cos(t

√
ω2

0 − γ2
D) +

γD√
ω2

0 − γ2
D

sin(t
√
ω2

0 − γ2
D).

)]
(3.6)

In Fig. 3.1(b), we show an illustrative oscillation due to a displacive force. The sit-
uation is analogous to putting weights on a spring suspended from the ceiling. The
weights cause the spring to stretch to a new equilibrium position and if the weights
were applied fast enough, the spring will oscillate around the new equilibrium position.
Displacive forces typically arise when the femtosecond pump pulse has resonant tran-
sitions creating real carriers in the semiconductor as is the case for excitation above
the bandgap. However, due to the broad spectral width for ultrafast pump excita-
tion, there are Fourier component for excitation both above and below the bandgap
and both real and virtual carriers will in general be created leading to impulsive and
displacive contributions to the coherent phonon generation process.

3.2 Microscopic theory of coherent phonons

The phenomenological oscillator model basically gives the essential physics of coherent
phonons in semiconductors. However it left open the question of exact definition of
the coherent phonon amplitudes. It was found that the key to understanding the
microscopic origin of the driven oscillator model for coherent phonon generation is
actually to realize that the coherent phonon amplitude is proportional to the following
expectation value [10],

Qq(t) ≡ 〈bq + b†−q〉, (3.7)

Fig. 3.1: fig/fch3-impdisp.eps



56 Chapter 3. Theory of coherent phonon generation

where 〈bq〉 and 〈b†−q〉 are the expectation values of the phonon creation and annihila-
tion operators for phonon wavevector q and −q, respectively. It is also known that the
lattice displacement operator u(r) can be expressed in terms of the phonon creation
and annihilation operators,

u(r) =
∑
q

√
~

2Msωq

(
bq + b†−q

)
(3.8)

where Ms is the mass of the system. Therefore the coherent phonon amplitude is
proportional to the Fourier components of the displacement.

We should note that the expectation values 3.7 will vanish in a phonon oscillator
eigenstate and there are also fluctuations defined by 〈u2〉 = 〈bb†+b†b〉. These phonons
are incoherent phonons in the mode. However, the expectation values do not vanish
for the coherent states given by a coherent superposition of more than one phonon
eigenstate. The canonical coherent states are defined for each complex number z in
terms of eigenstate of harmonic oscillator,

Ψcoh = |z〉 = e(zb†−z∗b)|0〉 =
∑
n

zn√
n!
e−z

2

|n〉, (3.9)

hence we coined the term “coherent phonons”. These states are essentially the same
as those used in quantum optics to describe the quasi-classical photon states of the
electromagnetic field. The coherent phonon states are eigenfunctions of the phonon
annihilation operator bq for phonons with wavevector q, i.e. bq|z〉 = z|z〉, and repre-
sent minimum-uncertainty Gaussian wavepackets that oscillate back and forth in the
parabolic potential without broadening and thus when the amplitude z is large they
behave like a macroscopic harmonic oscillator.

To obtain the equations of motion for 〈b†q〉 and 〈bq〉, we can use the Heisenberg
equations for the expectation values of operators,

dO
dt

=
i

h
[H,O], (3.10)

where O is any quantum operator. In a simplified system consisting of two electronic
bands (conduction and valence bands) interacting with certain phonon modes, the
Hamiltonian can be expressed by

H =
∑
n,k

εnkc
†
nkcnk +

∑
q

~ωqb
†
qbq +

∑
n,k,q

Mn
k,q

(
bq + b†−q

)
c†nk+qcnk, (3.11)

where the first term is the electron Hamiltonian, the second term is the phonon
Hamiltonian, and the third term is the electron-phonon interaction Hamiltonian with
Mn

k,q as the electron phonon matrix element at the electronic subband n for electron
wavevector k and phonon wavevector q. Inserting this Hamiltonian to the Heisenberg
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equation and using the definition of coherent phonon amplitude in Eq. (3.7), we can
obtain the dynamical equation of motion for the coherent phonon amplitude,

∂2Qq(t)

∂t2
+ ω2

qQq(t) = Sq(t), (3.12)

where

Sq = −2ωq

~
∑
n,k

Mn
k,−qn

n
k,k−q (3.13)

is the driving force of the coherent oscillation (see Appendix A for a detailed derivation
of Eqs. (3.12) and (3.13)). Here nnk,k−q = 〈c†nkcnk−q〉 is the Fourier transform of
the electronic density matrix. The electronic density matrix is nonzero only after
excitation with an ultrafast laser pulse. The rapid creation of electrons/holes by the
femtosecond pump pulse changes the forcing function and triggers the coherent phonon
oscillations.

Equation (3.12) is very similar to the phenomenological model in Eq. (3.1) except
that it is written in momentum space. In fact, because of the Fourier transform re-
lation between the coherent phonon amplitude and the lattice displacement, we have
actually obtained Eq. (3.1) from the microscopic model in Eq. (3.12). However there is
no damping term because the anharmonic terms are neglected in the lattice potential.
Since the wavelength of the pump laser is large compared with the spacing between
atoms in the nanostructure, usually the electrons and holes are created in a macro-
scopicaly uniform state, which excites only the q = 0 phonon modes. Coherent phonon
studies in carbon nanotubes and graphene nanostructures have also focused primar-
ily on the q = 0 phonon modes, which include the radial breathing modes (RBMs)
in carbon nanotubes and the radial-breathing-like modes in (RBLMs) in graphene
nanoribbons. In addition, by considering excitonic effects in carbon nanotubes, we
may also expect to excite q 6= 0 modes which will be discussed in later chapter of this
thesis.

3.3 Equations of motion for coherent phonons in nanotubes
and nanoribbons

For a single wall carbon nanotube (SWNT) or graphene nanoribbon (GNR), since we
have several subbands for electronic states and phonon energy dispersion, the notation
of coherent phonon amplitude is slightly more cumbersome. Both electronic structure
and phonon dispersion now have several branches because of zone folding, each of
which is denoted by a cutting line label µ and ν, respectively (see the discussion on
the cutting line concept in Chapter 2). The equations of motion for coherent phonon
modes are obtained using a microscopic description of the electron-phonon interaction
as described in the previous section. For each phonon mode in the nanotube and
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nanoribbon, the coherent phonon amplitude is given as

Qmνq(t) ≡ 〈bmνq + b†mν,−q〉, (3.14)

where the subscript m labels the six phonon modes in the graphene phonon dispersion
and q is the 1D phonon wave vector of the SWNT or GNR. The full expression for the
equation of motion is

∂2Qmνq(t)

∂t2
+ ω2

mν(q)Qmνq(t) = −2ωmν(q)

~
∑
nn′µk

Mnn′,µ
m,ν (k,−q)〈c†n′,µ+ν,k−q(t)cnµk(t)〉.

(3.15)
To simplify Eq. (3.15), we assume that the optical pulse and the distribution of

photoexcited carriers are spatially uniform over the nanotube. The electronic density
matrix is thus diagonal and can be written as [11]

〈c†n′,µ+ν,k−q(t)cnµk(t)〉 = δn′,nδν,0δq,0fnµ(k, t), (3.16)

where fnµ(k, t) is the photoexcited carrier distribution in the subband nµ with wavevec-
tor k at time t. We also consider that the only coherent phonon modes that are excited
are the ν = 0 and q = 0 modes, whose amplitudes satisfy a driven oscillator equation,

∂2Qm(t)

∂t2
+ ω2

mQm(t) = Sm(t), (3.17)

where Qm(t) ≡ Qm00(t) and ωm ≡ ωm0(q). The driven oscillator equation is solved
subject to the initial conditions Qm(0) = 0 and Q̇m(0) = 0. Therefore, taking the
initial conditions into account, the driving function Sm(t) is given by

Sm(t) = −2ωm
~
∑
nµk

Mnµ
m (k) [fnµ(k, t)− fnµ(k, 0)] , (3.18)

where fnµ(k, t) is the time-dependent carrier distribution function, fnµ(k, t) is the
initial equilibrium electron distribution function, andMnµ

m (k) ≡Mnµ
m,ν=0(k, q = 0).

The coherent phonon driving function Sm(t) depends on the electron-phonon ma-
trix elements and photoexcited electron distribution functions. In principle, we could
solve for the time-dependent distribution functions fully by solving the Boltzmann
equation formalism taking photogeneration and relaxation effects into account [11],

∂fnµ(k, t)

∂t
=

[
∂fnµ(k, t)

∂t

]
gen

+

[
∂fnµ(k, t)

∂t

]
sc

+

[
∂fnµ(k, t)

∂t

]
cc

(3.19)

where fnµ(k, t) is the time-dependent distribution function for electrons (or holes) in
subband (n, µ) with wave vector k. The first term on the right-hand side represents
the time rate of change of the distribution functions due to transient photogeneration
of electron-hole pairs by the pump, while the second term represents the time rate
of distribution change due to scattering or relaxation process by optical phonons.
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The final term describes the time rate of change of the distribution functions due to
carrier-carrier scattering.

To simplify the calculations, we introduce a useful approximation as follows. After
photoexcitation, the electron-hole pairs slowly scatter and recombine. Jiang et al.
found that the relaxation times in graphite-related system are on the order of a few
picoseconds, (∼ 5 − 10 ps) [63], which is much slower than either the ultrafast laser
pulse or a typical coherent phonon oscillation period in SWNTs and GNRs considered
in this study. The driving function Sm(t) in the present case thus rises sharply in a
steplike fashion and then slowly vanishes as the distribution functions fnµ(k, t) return
to fnµ(k, 0). We may then safely neglect slow carrier relaxation effects and retain only
the photogeneration term in the Boltzmann equation. Even if the relaxation effects are
considered, these can be taken into account by simply including a phenomenological
decay constant corresponding to the finite lifetime of photoexcited carriers.

By considering only the photogeneration term in the Boltzmann equation, the net
photogenerated conduction-band electron distribution function fcµ(k, t)−fcµ(k, 0) for
any optical transition from the valence band to the conduction band (v→ c) is equal
to the net photogenerated hole distribution function fvµ(k, t)−fvµ(k, 0) for each value
of wavevector k. In this case we obtain a simplified expression for the driving function
in terms of the conduction band distribution functions,

Sm(t) = −2ωm
~
∑
µk

Mµ
m(k) [fcµ(k, t)− fcµ(k, 0)] , (3.20)

where
Mµ

m(k) ≡Mcµ
m (k)−Mvµ

m (k) (3.21)

is the net electron-phonon matrix element corresponding to the creation of photoex-
cited electrons and holes at the same time.

3.4 Optical transitions and absorption

In order to obtain the time-dependent carrier distribution, we can compute the pho-
togeneration rate within the dipole approximation using Fermi’s golden rule [64], and
thus involving the optical (electron-photon) matrix element Dµnn′(k) for a transition
between n and n′ within a cutting line µ. We only focus our attention to light polarized
parallel to the tube or ribbon axis (let us say z axis) because the optical absorption due
to the parallel polarization is about 5 times greater than that due to the perpendicular
polarization [65].

In the case of parallel polarization, optical transitions can only occur between states
with the same angular-momentum quantum number µ. For the photogeneration rate
we find
∂fnµ(k)

∂t
= Af u(t)

∑
n′

|Dµnn′(k)|2 [fnµ(k, t)− fn′µ(k, t)] δ (∆Eµnn′(k)− ~ω) , (3.22)
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where ∆Eµnn′(k) = |Enµ(k)−En′µ(k)| is the k-dependent transition energies and u(t)

is the time-dependent energy density of the pump pulse. The prefactor Af is defined
by

Af =
8π2e2

~n2
gE

2
L

(
~2

m0

)
, (3.23)

where e is the electron charge, m0 is the free electron mass, ng is the index of refraction
in the surrounding medium, and EL is the pump laser energy. The pump energy density
u(t) in Eq. (3.22) is related to the pump fluence,

F =

∫
u(t)(c/ng)dt. (3.24)

It can be assumed that the pump beam consists of a train of Npulse identical Gaussian
pulses each with an intensity full width at half maximum (FWHM) of τp, which we
define as the pump duration. The Gaussian pulses are equally spaced in time with
the time interval between pulses being Tpulse. The peak intensity of the first pulse is
taken to occur at t = 0. To account for spectral broadening, we also replace the delta
function in Eq. (3.22) by a Lorentzian lineshape with a FWHM of Γp.

The optical matrix element for vertical transitions between an initial state |nk〉
and a final state |n′k〉 within a cutting line µ is defined as

Dµnn’ =
~√
2m0

P̂ · 〈n′k|∇|nk〉, (3.25)

where P̂ is the unit electric polarization vector of light. The state |nk〉 corresponds to
the wavefunction Ψnk that can be obtained within the extended tight-binding (ETB)
framework as discussed in Chapter 2. In coherent phonon spectroscopy, a probe pulse
is used to measure the time-varying absorption coefficient of the carbon nanotube.
The time-dependent absorption coefficient is given by [66]

α(EL, t) = Aα
∑
nn′µ

∫
dk
π
|Mnn′µ

op (k)|2 [fnµ(k, t)− fn′µ(k, t)] δ (∆Eµnn′(k)− ~ω)

(3.26)
where the prefactor Aα is defined by

Aα =
AfELng
cAs

. (3.27)

In Eq. (3.27), Af is the same prefactor as that for the photogeneration rate in Eq. (3.22),
As is the cross-section area of the material (e.g. π(dt/2)2 for a SWNT), and c is the
speed of light in vacuum.

It is important to note that the distribution function fnµ(k) and the band structure
Enµ(k) are time dependent. The time dependence of fnµ(k) comes from the photogen-
eration of carriers described by the equation of motion for the photogeneration rate,
while the time dependence of Enµ(k) comes from variations in the carbon-carbon
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bond lengths due to the macroscopic coherent phonon induced atomic displacements
in Eq. (3.8). This time-dependent deformation of the nanotube or nanoribbon bond
lengths alters the tight-binding Hamiltonian and overlap matrix elements in the ETB
model. To first order in the lattice displacements, the energies Enµ(k) vary with time,
however, the tight-binding wave functions and optical matrix elements Mnn′µ

op (k) do
not. In coherent phonon spectroscopy, excitation of coherent phonons by the pump
modulates the optical properties of the materials giving rise to a transient differential
transmission signal. In our model, we take the theoretical coherent phonon signal to
be proportional to the power spectrum of the transient differential transmission after
background subtraction. We can compute the power spectrum or Fourier transform
intensity using some available numerical packages [67].

3.5 Electron-phonon interaction

As can be seen in Eq. (3.20), the electron-phonon interaction determines driving force
for the coherent phonon oscillation. The deformation potential electron-phonon inter-
action between carriers photoexcited by ultrafast laser pulses and the phonon modes
is thus responsible for the generation of coherent phonons. The electron-phonon in-
teraction is expressed by a modification to the tight binding parameters by the lattice
vibrations in SWNTs and GNRs. In modeling the electron-phonon interaction, we use
two different models within the ETB approximation [68] and effective mass theory [69].
The former one is useful to obtain the microscopic driving force term in Eq. (3.20)
numerically, while the latter (which is simpler and will be discussed intensively in this
work for the SWNT and GNR systems) is used to analytically analyze the dependen-
cies of coherent phonon amplitudes on the excitation energy and on the geometrical
structure of SWNTs and GNRs. The results and discussion on coherent phonon am-
plitudes in SWNTs and GNRs, especially regarding the radial breathing mode (RBM)
and radial-breathing-like mode (RBLM) that become the main topics of this thesis,
will be covered in Chapter 4.

3.5.1 ETB electron-phonon interaction

To obtain the electron-phonon matrix elements within the ETB approximation, we
rewrite the ETB electronic wavefunction as follows [68]:

Ψn,k(r) =
1√
Nu

∑
s,o

Cs,o(n,k)
∑
Rt

eik·Rtφt,o(r −Rt), (3.28)

where n denotes the band index, Nu is the number of hexagons in the unit cell, s = A

and B is an index denoting each of the distinct carbon atoms of graphene, and Rt

denotes the equilibrium atom positions relative to the origin. Here φt,o denotes the
atomic wave functions for the orbitals o = 2s, 2px, 2py, and 2pz at Rt, respectively.
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A lattice vibration with the amplitude of a phonon mode U(Rt) will induce a
potential variation δV given by

δV =
∑
Rt

v[r −Rt −U(Rt)]− v(r −Rt)

≈ −
∑
Rt

∇v(r −Rt) ·U(Rt),
(3.29)

where v is the Kohn-Sham potential of a neutral pseudo-atom [42]. The electron-
phonon matrix element for a certain phonon mode is defined by [68]

Mn′,k′

n,k = 〈Ψn′,k′(r)|δV |Ψn,k(r)〉

= − 1

Nu

∑
s′,o′

∑
s,o

C∗s′,o′(n
′,k′)Cs,o(n,k)

×
∑
u′,u

ei(−k
′·Ru′,s′+k·Ru,s)δm(t′, o′, t, o),

(3.30)

where δm(t′, o′, t, o) is the atomic deformation potential. To calculate the electron-
phonon matrix element of Eq. 3.30 for each phonon mode, the amplitude of the atomic
vibration U(Rt) for the phonon mode (m, ν, q) is defined by

U(Rt) = Amν(q)
√
n̄mν(q)êmν(Rt)e

±iωmν(q)t, (3.31)

where ± sign is for phonon creation (+) and annihilation (−), respectively, and Amν ,
n̄mν , êmν , and ω are the phonon amplitude, number, eigenvector, and frequency,
respectively. At equilibrium, the phonon number n̄ in Eq. (3.31) is determined by the
Bose-Einstein distribution function nmν(q) for phonons with a frequency ωmν(q),

nmν(q) =
1

e~ωmνq/kBT − 1
, (3.32)

where T = 300 K is the lattice temperature at room temperature and kB is the
Boltzmann constant. For phonon creation, the phonon number n̄ = n + 1 while for
phonon annihilation, n̄ = n. The amplitude of the zero-point phonon vibration is

Amν(q) =

√
~

2MSωmν(q)
, (3.33)

and the phonon eigenvector êmν(Rt) is obtained from solving the dynamical matrix
in the phonon dispersion calculation.

The atomic deformation potential δm can be separated into off-site and on-site
deformation potentials,

δm = δmα + δmλ, (3.34)
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Figure 3.2 (Left) αp and (Right) λp as a function of inter-atomic distance. The vertical line
corresponds to 1.42Å which is the C-C distance in graphite [68].

with the off-site and on-site deformation potentials δmα and δmλ given by

δmα =

∫
φs′,o′(r −Rt′) {∇v(r −Rt′) ·U(Rt′)

+∇v(r −Rt) ·U(Rt)}φs,o(r −Rt)dr,

δmλ = δRt,Rt′

∫
φs′,o′(r −Rt′)

×

 ∑
Rt′′ 6=Rt′

∇v(r −Rt′′) ·U(Rt′′)

φs′,o(r −Rt′)dr.

(3.35)

The off-site and on-site atomic deformation potentials are, respectively, the corrections
to off-diagonal and diagonal Hamiltonian matrix elements and both terms are on the
same order of magnitude [70].

When using the Slater-Koster scheme to construct tight-binding Hamiltonian ma-
trix elements between two carbon atoms [42], the carbon 2p orbitals are chosen to be
along or perpendicular to the bond connecting the two atoms. The four fundamental
hopping and overlap integrals are (ss), (sσ), (σσ), and (ππ). We follow the same pro-
cedure as was used to construct the deformation potential matrix elements 〈φ|∇v|φ〉.
We introduce the matrix elements,

αp(τ) =

∫
φµ(r)∇v(r)φν(r − τ )dr = αp(τ)Î(αp),

λp(τ) =

∫
φµ(r)∇v(r − τ )φν(r)dr = λp(τ)Î(λp),

(3.36)

where Î(αp) and Î(λp) are unit vectors describing the direction of the off-site and on-
site deformation potential vectors αp and λp, respectively, and p = µν. The 2p orbital
φµ (φν) is along or perpendicular to the bond connecting the two carbon atoms and

Fig. 3.2: fig/fch3-matel.eps
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τ is the distance between the two atoms. From αp, we can also obtain another matrix
element,

βp(τ) =

∫
φµ(r)∇v(r − τ )φν(r − τ )dr

=

∫
φν(r)∇v(r)φµ(r + τ )dr = βp(τ)Î(βp).

(3.37)

However, the integral in Eq. (3.37) can be expressed by α terms. In Fig. 3.2, the
calculated values of αp and λp are plotted as a function of inter-atomic distance be-
tween two carbon atoms [68]. At r = 1.42Å, the bond length between a carbon atom
and one of its nearest neighbors, we have αππ ≈ 3.2eV/Å and |λππ| ≈ 7.8eV/Å, and
|απσ| ≈ 24.9eV/Å.

3.5.2 Effective mass theory

We can also calculate the electron-phonon matrix elements by using effective mass
theory. Indeed, considering the effective mass theory allows us to analyze the trend
of coherent phonon amplitudes of SWNTs and GNRs more clearly. Here we derive
a specific Hamiltonian needed to calculate the electron-phonon matrix elements in
SWNTs and GNRs [69, 13]. The results will be shown later in Chapter 4

The electron-phonon Hamiltonian in effective mass theory for graphene-related
systems basically can be decomposed into the on-site and off-site Hamiltonians,

Hep = Hon +Hoff. (3.38)

The details of the on-site and off-site interactions are given in Appendix B, following
Sasaki’s work on the deformation-induced gauge field in graphene [71]. We will directly
use the results in formulating the on-site and off-site Hamiltonians. The on-site and
off-site interactions are induced by a lattice deformation which gives rise to a change
in the transfer integral and a change in the potential between A and B atoms in the
graphene unit cell. In order to derive Hep within effective mass theory for SWNTs
and GNRs, we adopt a coordinate system shown in Fig. 3.3

The on-site Hamiltonian can be expressed in terms of the divergence of uA and uB,
which represent the displacement vector of A-atom and B-atom in the graphene unit
cell, respectively. This Hamiltonian is written as [71]

Hon = gon

(
∇ · uB(r) 0

0 ∇ · uA(r)

)
. (3.39)

For the discussion of the RBM and RBLM electron-phonon interactions in SWNTs
and GNRs, we rewrite (3.39) as follows:

Hon = gon

[
σ0∇ ·

(
uA(r) + uB(r)

2

)
+ σz∇ ·

(
uA(r)− uB(r)

2

)]
, (3.40)
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Figure 3.3 Upper panel shows displacements of B-atoms at ri + Ra (a = 1, 2, 3), that is
uB(ri + Ra), which give rise to a deformation potential at A-atom of ri. Lower panel shows
local modulations of the hopping integral defined by δγa

0 (r) (a = 1, 2, 3). In this coordinate
system we have the nearest-neighbor vectors R1 = (0, aCC), R2 = (−

√
3/2,−1/2)aCC, R3 =

(
√

3/2,−1/2)aCC, where aCC = a/
√

3. Here ` = 3aCC/2 is used in Eq. (3.47).

where gon denotes the gradient of the atomic potential at r (here we use the constant
gon = 17.0 eV as obtained from a first-principle calculation [42]), σ0 is the identity
matrix, and σz is the z-component of the vector of Pauli matrices. Although RBM
and RBLM are optic phonon modes, but on the planar graphene they are actually
formed from the out-of-plane acoustic and in-plane acoustic phonon modes of graphene,
respectively. In these cases, we have uA(r) = uB(r) = u(r). Therefore, Eq (3.40) can
be simplified to be

Hon = gonσ0∇ · u(r). (3.41)

Let ∇ · u(r) = uph, we can write Eq. (3.41) as

Hon = uph

(
gon 0

0 gon

)
. (3.42)

In Eq. (3.42), uph is a dimensionless parameter determined by the type of vibrations.
For example, in the case of RBM oscillation in a zigzag nanotube, uph is found to be

Fig. 3.3: fig/fch3-graphenedef.eps
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2sr/dt, where sr =
√
~/2MsωRBM is the phonon amplitude for the RBM [12, 69] and

Ms is total mass of carbon atoms in the unit cell.
Next, to derive the off-site interaction Hamiltonian, we start with the fact that the

lattice deformation modifies the nearest-neighbor hopping integral locally as −γ0 →
−γ0 + δγa0 (ri) (a = 1, 2, 3). The corresponding perturbation of the lattice deformation
is given by

Hoff ≡
∑
i∈A

∑
a=1,2,3

δγa0 (ri)
[
(cBi+a)†cAi + (cAi )†cBi+a

]
, (3.43)

where cAi is the annihilation operator for a π electron on an A-atom at position ri,
and (cBi+a)† is the creation operator for a π electron on a B-atom at position ri+a

(= ri + Ra). This perturbation gives rise to scattering within a region near the K
point of graphene whose interaction is given by a deformation-induced gauge field
A(r) = (Ax(r), Ay(r)) as

Hoff = vFσ ·A(r), (3.44)

where vF = 3γ0aCC/2~ (∼ 106 m/s) is the Fermi velocity and σ is the Pauli matrix.
The deformation-induced gauge field A(r) for the off-site interaction is defined from
δγa0 (r) (a = 1, 2, 3) as (see also Appendix B)

vFAx(r) = δγ1
0(r)− 1

2

[
δγ2

0(r) + δγ3
0(r)

]
, (3.45)

vFAy(r) =

√
3

2

[
δγ2

0(r)− δγ3
0(r)

]
. (3.46)

The perturbation to the nearest-neighbor hopping integral for the RBM and RBLM
electron-phonon interactions is given by

δγa0 (r) =
goff
`aCC

Ra · {u(r + Ra)− u(r)}, (3.47)

where goff is the off-site coupling constant (goff = 6.4 eV) and ` = 3aCC/2 (see the
lower panel of Fig. 3.3). Here the displacement vector of a carbon atom at r in general
is expressed by u(r) = [ux(r), uy(r)]. Using a Taylor expansion, we approximate
equation (3.47) as

δγa0 (r) =
goff
`aCC

Ra · {(Ra · ∇)u(r)} . (3.48)

Using R1, R2, and R3 in Fig. 3.3, we obtain the deformation-induced gauge field
of equations (3.45) and (3.46) as follows:

vFAx(r) = −goff
2

[
∂ux(r)

∂x
+
∂uy(r)

∂y

]
, (3.49)

vFAy(r) =
goff
2

[
∂ux(r)

∂y
+
∂uy(r)

∂x

]
. (3.50)
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It can be derived that vFAy = 0 for both RBM and RBLM cases [13, 69]. Therefore,
the off-site Hamiltonian can be written as

Hoff = σxvFAx = uph

 0 −goff
2

−goff
2

0

 . (3.51)

Finally, we can get the electron-phonon Hamiltonian of Eq. (3.38),

Hep = Hon +Hoff = uph

 gon −goff
2

−goff
2

gon

 . (3.52)

To obtain the electron-phonon matrix elements based on effective mass theory, we use
the following two wavefunctions,

Ψc =
eik·r√

2S

(
e−iΘ(k)/2

e+iΘ(k)/2

)
,Ψv =

eik·r√
2S

(
e−iΘ(k)/2

−e+iΘ(k)/2

)
, (3.53)

for conduction and valence states, respectively, where S is the surface area of graphene
and Θ(k) is an angle of k = (kx,ky) measured from the kx-axis. Depending on the
geometry of the materials, we may also redefine Θ(k) with respect to another reference,
which we will do for the case of SWNT and GNR systems. We will further clarify the
behavior of electron phonon matrix elements for SWNT and GNRs within effective
mass theory in Chapter 4 when discussing the excitation- and structural-dependencies
of the coherent phonon amplitudes.





Chapter 4

Coherent phonon amplitudes in
SWNTs and GNRs

Using the concepts we have developed in Chapter 3, we are now able to investigate
coherent phonon properties in a variety of graphene systems. In this chapter, we show
and discuss simulation results based on extended-tight binding (ETB) method for the
ultrafast dynamics of laser-induced coherent phonons in single wall carbon nanotubes
(SWNTs) and graphene nanoribbons (GNRs). In particular, we examine the coherent
radial breathing mode (RBM) amplitudes of SWNTs and the coherent radial breathing
like mode (RBLM) amplitudes of GNRs as a function of excitation energy and chirality.
The coherent phonon amplitudes give direct information on initial oscillation phase
so that we can directly know whether the diameter (width) of a given SWNT (GNR)
in the RBM (RBLM) will initially increase or decrease at a certain excitation energy.
We find that the coherent phonon amplitudes are very sensitive to the changes in
excitation energy and are strongly structure dependent. An effective-mass theory for
the electron-phonon interaction gives a physical explanation for these phenomena.

4.1 Coherent RBM phonons in SWNTs

As discussed earlier in Chapter 3, the coherent RBM phonon amplitude Q with fre-
quency ω satisfies a driven oscillator equation (3.17), which we now rewrite using
simpler notations (see Ref. [12]),

∂2Q(t)

∂t2
+ ω2Q(t) = S(t), (4.1)

subject to the initial conditions Q(0) = 0 and Q̇(0) = 0. Here S(t) is the driving
function which depends on the photoexcited carrier distribution function and is given

69
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by

S(t) = −2ω

~
∑
µk

Mep
µ (k)δfµ(k, t), (4.2)

whereMep
µ (k) is the k-dependent RBM electron-phonon matrix element for the µ-th

cutting line (1D Brillouin zone of a SWNT) and δfµ is the net photogenerated elec-
tron distribution function with a pump pulse pumping at the Eii transition energy
as obtained by solving a Boltzmann equation for the photogeneration process. The
photogeneration rate in the Boltzmann equation depends on the excitation laser en-
ergy [11]; it also contains the electron-photon matrix element Dop for the case of light
polarized along the tube axis, so that we have the proportionality

δfµ ∝ |Dop
µ |. (4.3)

For the calculation of electron-phonon and electron-photon interactions, we incorpo-
rate SWNT electronic energies and wave functions obtained from the ETBmethod [43],
and the phonon dispersions from the force constant model [47].

In a typical simulation, the necessary inputs are the excitation energy, Elaser, and
the chiral index, (n,m). We will mainly use the (11, 0) and (13, 0) semiconducting
zigzag nanotubes as examples for discussing the excitation and chirality dependence
of the RBM coherent phonon amplitudes. Though the main examples studied in this
work are semiconducting SWNTs, the theory is also valid for metallic SWNTs. It
will be shown later that the chirality dependence of the coherent phonon amplitude
between different nanotube types has the same origin. For a given excitation energy,
we solve Eq. (5.3) for a specific SWNT to obtain the coherent RBM phonon amplitude
oscillating at the RBM frequency. We use the same common input parameters for the
pump-probe setup as those used in Ref. [11], i.e. we excite the RBM phonons with
a single 50 fs laser pulse, where the pump fluence is taken to be 10−5 J/cm2, and
the FWHM spectral linewidth is assumed to be 0.15 eV. Note that here the pump
and probe energies are considered to be the same. Therefore, this setup should not
be confused with an experimental setup discussed in Chapter 1 (Fig. 1.6), in which
the probe energy is varied for a constant pump energy and leads to another type of
coherent phonon phase shift related to the phase change near the resonance.

In this part we also do not consider excitonic effects because we will not discuss
the peak positions or line shapes of the coherent phonon spectra. For such discussions,
the excitonic effects cannot be neglected since the Eii energies are shifted from those
calculated within a single particle picture [72, 62], and these will be the main subject
in Chapter 5. In the present chapter, we only explain macroscopic SWNT lattice
response which is homogeneous along the tube axis. Therefore, considering only the
electron-phonon interaction is sufficient.
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Figure 4.1 The coherent RBM phonon amplitude Qm for an (11, 0) zigzag tube as a function
of laser excitation energy Elaser. For clarity, Qm is plotted in units of 0.0259 . A positive
(negative) sign of the vibration amplitude denotes a vibration whose initial phase corresponds
to an expanding (shrinking) diameter. The absorption coefficient versus Elaser is shown for
comparison with the Qm behavior.

4.1.1 Excitation energy dependence

Let us firstly discuss excitation energy dependence of the coherent RBM phonon am-
plitudes. In Fig. 4.1, we plot the coherent RBM phonon amplitude Qm in an (11, 0)

nanotube at an early time, along with the absorption coefficient as a function of Elaser.
Here Qm can be imagined by roughly defining Q(t) = Qm cosωt, where the origin of
time is now indicated by the first maximum (minimum) of Q(t) found after t = 0 for
a positive (negative) coherent phonon vibration. Therefore, in this definition, Qm > 0

and Qm < 0 correspond to the tube diameter expansion and contraction, respectively.
From Fig. 4.1, we see that the pump light is strongly absorbed at the Eii energies.

The resulting increase in the number of photoexcited carriers increases the coherent
phonon driving function S(t) in Eq. (4.2) and thus enhances the coherent phonon
oscillation amplitude near the Eii transitions. Note that at E11 the amplitude has a
negative sign, indicating that the tube diameter initially shrinks and oscillates about
a smaller diameter, while at E22 and higher energies (e.g., E33 or E44) the tube
diameter initially expands and oscillates about a larger diameter. According to a
common concept based on the Franck-Condon principle, solid lattices usually tend to
expand in the presence of ultrafast carrier photoexcitation since the electronic excited
states are anti-bonding states. When an electron is excited, it will try to find a new
equilibrium position at the minimum of the excited anti-bonding state energy. This
minimum energy is located at a larger coordinate than that of the ground state, and

Fig. 4.1: fig/fch4-cpamp1100.eps
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thus the lattice expands. However, this is not always the case for RBM coherent
phonons in the SWNT system, where the tube diameter can either expand or contract
depending on the excitation energy.

In order to understand this phenomenon, we consider the magnitude and phase of
the oscillation amplitude Q(t) driven by S(t) in Eq. (4.2). First, since δf ∝ |Dop| as
in Eq. (4.3), the magnitude of oscillations should be proportional to the product of
the electron-phonon and electron-photon matrix elements:

|Q| ∝ |Mep||Dop|. (4.4)

Second, according to Eq. (4.2) and noting that δfµ(k) is positive for most cases of
interest (i.e. no gain in the system), the initial phase of Q(t) is only determined by
the sign of Mep

µ (k) summed over all cutting lines µ and all k points. The unique
values of |Mep| and |Dop| for a fixed selection of energy and (n,m) then determines
the excitation energy and chirality dependence of the coherent phonon amplitudes.

4.1.2 Chirality dependence

Let us now discuss the type dependence or chirality dependence of coherent RBM
phonon amplitudes by comparing two semiconducting zigzag nanotubes of different
families and types. In Fig. 4.2, we plot the electron-phonon matrix elements for RBM
coherent phonons in the (11, 0) (type-I) and (13, 0) (type-II) nanotubes as a function
of 1D wavevector k. The k dependence of Mep

µ (k) for the RBM phonon is shown
for the first two cutting lines, for E11 and E22. As can be seen in the figure, both
positive and negative values of Mep

µ (k) are possible. Also, according to Eq. (4.2), if
we pump near the Eii band edge, the electron distributions would be localized near
k = 0 in the 1D Brillouin zone of the zigzag nanotubes, for which the kii points for
the Eii energies lie at k = 0. Therefore, the positive (negative) values of S(t) at the
E22 (E11) transition energy are determined by the negative (positive) value ofMep

µ (k)

near k = 0.
For the two nanotubes, the signs of the electron-phonon matrix elements differ at

E11 and E22. The reason is that for type-I and type-II nanotubes the E11 and E22

cutting line positions with respect to the K-point in the 2D graphene Brillouin zone
are opposite to each other [73]. Depending on the cutting line positions relative to the
K-point, the correspondingMep

µ (k) for a given cutting line is negative in the region to
the right of the K-point and positive in the region to the left [74]. This will be proved
in the next section using an effective-mass theory. From this argument, we predict
that the type-I (type-II) zigzag nanotubes would start their coherent RBM phonon
oscillations by initially decreasing (increasing) the tube diameter at E11, while at E22

the behavior is just the opposite, as shown in Fig. 4.2.
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Figure 4.2 RBM electron-phonon matrix elements of (a) (11, 0) and (b) (13, 0) zigzag
nanotubes within the ETB approximation.

4.1.3 Analysis by the effective mass theory

Since the electron-phonon matrix element determines the initial lattice response of the
SWNTs, we further decompose Mep into its electron and hole components for each
SWNT in order to understand which component gives a significant contribution to the
ETB matrix elementMep. This electron-phonon matrix element for the photo-excited
electron is basically a sum of conduction band (c) and valence band (v) electron-phonon
matrix elements, which represent the electron and hole contributions, respectively [74],

Mep(k) =Mep(kc)−Mep(kv)

= 〈c|Hep|c〉 − 〈v|Hep|v〉, (4.5)

where Hep is the SWNT electron-phonon interaction Hamiltonian.
In Fig. 4.3, we plot the electron and hole components of Mep in the ETB model

as a function of the 1D wavevector k. If we compare the contributions from each
component, we see that in the (11, 0) tube the electron (hole) component gives a
larger contribution to Mep at E11 (E22). On the other hand, in the (13, 0) tube,
the hole (electron) component gives a larger contribution to Mep at E11 (E22). We
can analyze these results within an effective-mass theory. Using the effective-mass
theory, we can obtain a simple analytical expression explaining the sign of the SWNT
electron-phonon matrix elements, which can then be compared with the ETB results.

In a nearest-neighbor effective-mass approximation, the RBM Hep for an (n,m)

SWNT with a chiral angle θ and diameter dt can be written as [69],

Hep =
2sr
dt

(
gon − goff2 ei3θ

− goff2 e−i3θ gon

)
, (4.6)

Fig. 4.2: fig/fch4-elphETB.eps
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Figure 4.3 Electron and hole components of the ETBMep shown by solid and dashed lines,
respectively, for (a) (11, 0) and (b) (13, 0) zigzag nanotubes, as a function of k. The matrix
elements for E11 and E22 are shown in black and red, respectively.

where gon (goff) is the on-site (off-site) coupling constant. Here sr =
√
~/2MωRBM

is the phonon amplitude for the RBM, where ωRBM is the phonon frequency and M is
the total mass of the carbon atoms within the unit cell. To obtainMep in Eq. (4.5),
we adopt the following two wavefunctions,

Ψc =
eik·r√

2S

(
e−iΘ(k)/2

e+iΘ(k)/2

)
,Ψv =

eik·r√
2S

(
e−iΘ(k)/2

−e+iΘ(k)/2

)
, (4.7)

for conduction and valence states, respectively, which are suitable near the graphene
K-point [69]. In Eq. (4.7), S is the surface area of graphene and Θ(k) is an angle at
the K-point measured from a line perpendicular to the cutting lines (see Fig. 4.4).

By inserting the wavefunctions in Eq. (4.7) into Eq. (4.5), we obtain

+〈c|Hep|c〉 =
sr
dt

(−goff cos(Θ(k) + 3θ) + 2gon) , (4.8a)

−〈v|Hep|v〉 =
sr
dt

(−goff cos(Θ(k) + 3θ)− 2gon) , (4.8b)

and thus
Mep =

sr
dt

(−2goff cos(Θ(k) + 3θ)) . (4.9)

From Eqs. (4.8a) and (4.8b), it is clear that the electron and hole contributions to
Mep are simply distinguished by the off-site and on-site interactions. These equations
are thus qualitatively consistent with the results in Fig. 4.3. According to the density-
functional calculation by Porezag et al. [42], we adopt the off-site coupling constant
goff = 6.4 eV and the on-site coupling constant gon = 17.0 eV, which are calculated for
the first nearest-neighbor carbon-carbon distance [69]. However, gon has no effect on
the electron-phonon matrix element since it vanishes in Eq. (4.9). The more accurate
treatment for the effective-mass theory should consider the asymmetry between the

Fig. 4.3: fig/fch4-elphsep.eps
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(a) (11,0) (b) (13,0)

Figure 4.4 Cutting lines for (a) (11,0) and (b) (13,0) zigzag nanotubes near the graphene
K-point. Solid lines denote the E11 and E22 cutting lines, while the dotted lines correspond to
higher cutting lines. The angle Θ(k) is measured counterclockwise from a line perpendicular
to the cutting lines, where the positive direction of the line is to the right of the K-point.
Here Θ(k) is shown for a k point on the E22 cutting line for both SWNTs. The difference
between the type-I and type-II families can be understood from the position of the E11 or
E22 cutting lines relative to the K-point [73].

valence bands and the conduction bands [75]. Within the present model, we do
not consider such an asymmetry since the chirality dependence of the electron-phonon
matrix element can readily be described by the cos(Θ(k)) term, which will give a
positive or negative sign in front of goff.

In Fig. 4.5, we then plot the matrix elements of Eq. (4.9) for the (11, 0) and (13, 0)

nanotubes, where the on-site term (gon) disappears and only the off-site term (goff)
contributes to Mep. It can be seen that the effective-mass theory (see Figs. 4.5(a)
and (b)) nicely reproduces the ETB calculation results near kii = 0 (see Figs. 4.2(a)
and (b)). However, the first nearest-neighbor effective-mass model cannot reproduce
the ETB matrix element results at k far from kii = 0. We can see this since at E11

and E22 Mep are almost symmetric around Mep = 0 in Figs. 4.5(a) and (b) but
the Mep are not symmetric in Figs. 4.2(a) and (b). In Fig. 4.5(c), we show Mep

for the (11, 0) tube within the ETB model considering interactions up to the fourth
nearest-neighbors. Based on this figure, we consider that the exact Mep analytical
expression at k far from the kii should take into account the longer-range electron-
phonon interactions. Nevertheless, the first nearest-neighbor effective-mass theory
has already given physical insight into the k-dependent Mep, and considering the
approximation up to the fourth nearest-neigbors is sufficient to converge the Mep

values.
For the zigzag nanotubes, Eq. (4.9) also explains the dependence of Mep on the

cutting line (or k) position. Let us take the examples in Fig. 4.4, in which we show
the cutting lines for the (11, 0) and (13, 0) nanotubes. The E22 cutting line for the
(11, 0) ((13, 0)) tube is to the right (left) of the K-point, giving a positive (negative)

Fig. 4.4: fig/fch4-cntcutline.eps
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Figure 4.5 RBM electron-phonon matrix elements of (a) (11, 0) and (b) (13, 0) nanotubes
calculated within the effective-mass theory using goff = 6.4 eV. In panels (a) and (b), the
matrix elements near k = 0 are comparable with the results in Fig. 4.2. Panel (c) shows
the matrix elements of an (11, 0) nanotube calculated within the ETB model for interactions
up to the fourth nearest-neighbors. The results including fourth nearest neighbors exactly
reproduce the results in Fig. 4.2(a).

cos(Θ(k)) and thus a negative (positive) Mep for the E22 transition. According to
Eq. (4.2), the negative (positive) Mep corresponds to the initial increase (decrease)
of the tube diameter. In such a way, the chirality dependence of the coherent phonon
amplitude is simply determined by the electron-phonon interaction.

However, we should note that the simple rule does not work well for E33 and E44,
as can be seen in Fig. 4.1. For instance, the coherent phonon amplitude at E33 has the
same sign as that at E22 although their cutting line positions are opposite to each other
with respect to the K-point. The reason for the breakdown of this simple rule is that
the cutting lines for E33 and E44 are far from the K-point so that the wavefunctions
of Eq. (4.7) are no longer good approximations. In this case, the ETB wavefunctions
are necessary for obtaining the coherent phonon amplitudes.

4.1.4 Map of the coherent phonon amplitudes

To consider the more general family behavior of the RBM coherent phonon amplitudes,
we recalculate Qm using the ETB method for 33 different SWNT chiralities with
diameters of 0.7 − 1.1 nm and for photoexcitations at Eii in the range 1.5 − 3.0 eV.
The results are shown in Fig. 4.6. Note that in addition to the semiconducting SWNTs,
we also give some results for metallic SWNTs. It is known that the density of states for
Eii in metallic SWNTs are split into the lower EL

ii and higher EH
ii branches, except for

the armchair SWNTs [26]. Here we consider Qm in metallic SWNTs only at EL
11. The

cutting line for EL
11 is located to the right of the K-point. We can see in Fig. 4.6 that all

the metallic SWNTs start vibrations by increasing their diameter at EL
11. The reason

is the same as in type-II nanotubes, where the cutting lines for the E11 transitions are
located to the right of the K-point, giving a negative Mep (hence a positive Qm) as

Fig. 4.5: fig/fch4-elpheff.eps
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Figure 4.6 The lattice response of SWNTs with diameters in the range 0.7 − 1.1 nm is
mapped onto the unrolled graphene lattice specifiying the tube chiralities (n,m). In this
map Qm is expressed in terms of

√
~/2MωRBM. Red and blue colored hexagons denote the

SWNTs whose vibrations start by increasing or decreasing their diameter, respectively. The
laser excitation energies are selected within the range 1.5− 3.0 eV. For each (n,m) tube, the
corresponding Eii (in eV) found within this energy region is listed on each hexagon with the
label Eii. The calculated results for the (7, 4) and (6, 6) nanotubes are not shown in this
figure because their EL

11 > 3.0 eV and the (6, 6) tube gives a negligibly small Qm.

explained within the effective-mass theory. On the other hand, at EH
11, the nanotubes

should start their coherent vibrations by decreasing their diameters. In the case of
armchair nanotubes, for which EL

11 = EH
11, we expect that no vibration should occur

because the two contributions from EL
11 and EH

11 should cancel each other.
For semiconducting nanotubes, we see that most of the type-I (type-II) nanotubes

start vibrating at E11 by decreasing (increasing) their diameters and at higher energies
by increasing (decreasing) their diameters. In a few cases, e.g., (7, 6), (9, 5), and (10, 5)

nanotubes, the deviation from this rule might come from the 3θ term in Eq. (4.9),
especially for the near-armchair nanotubes where θ approaches π/6. We consider that
in the case of armchair nanotubes, such like the (6, 6) nanotube, which is metallic, the
coherent phonon amplitude becomes small because of the trigonal warping effect [26].

4.2 Coherent RBLM phonons in GNRs

In this section, we extend the microscopic theory for generating and detecting coherent
phonons in SWNTs to the case of coherent phonons in GNRs, although there are

Fig. 4.6: fig/fch4-cpmaps.eps
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Figure 4.7 Cutting lines for (a) mod 0 aGNR and (b) mod 1 aGNRs near the Dirac K
point. To make clear the definition of Θ(k), in this figure Θ(k) is shown for an arbitrary k at
E11. In fact, in the case of mod 0 and mod 1 aGNRs the E11 transitions occur at Θ(k) = 0
and Θ(k) = π, respectively. The difference between the mod 0 and mod 1 aGNRs can be
understood from the position of the E11 or E22 cutting lines relative to the K point.

no measurements of coherent phonons to date in GNRs. Therefore, our discussion
here gives some predictions of CP behavior in GNRs. As discussed in Chapter 2, we
basically can consider armchair and zigzag ribbons denoted Nab aGNR and Nab zGNR,
respectively, where Nab is the number of AB carbon dimers in the unit cell. However,
the presence of localized edge state in the zGNR is quite complicated to be taken into
account. Therefore we restrict our discussion here only for coherent phonon amplitudes
in aGNRs.

In GNRs there are Nab coherent phonon active modes that vibrate in the plane
of the nanoribbon. In all cases, the coherent phonon active mode with the lowest
frequency is RBLM mode in which the nanoribbon width periodically expands and
contracts. For coherent RBLM phonons the ribbon width W (t) is directly propor-
tional to the coherent phonon amplitude Q(t) [13]. The RBLM phonon energies are
sensitive to the ribbon width W and scale roughly as the inverse of the ribbon width
in accordance with a simple zone folding expression E = 0.4/W eV with W in units
of .

Armchair nanoribbons belong to one of three families depending on the mod num-
ber mod(Nab, 3). Based on a simple band structure calculation, we classify mod 0
and mod 1 aGNRs as semiconductors and mod 2 aGNRs as metals [37, 44]. Since
coherent phonon spectroscopy gives direct phase information on the coherent phonon
amplitude, it is useful to examine the driving function kernel S(k) as a function of
excitation energy and nanoribbon species. For this purpose, let us write the RBLM
electron-phonon interaction for an aGNR as

Hep = uarm

 gon −goff
2

−goff
2

gon

 , (4.10)

Fig. 4.7: fig/fch4-gnrcl.eps
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Table 4.1: Initial lattice behavior due to coherent phonon oscillations at E11 and E22 in
aGNRs.

family E11 E22

mod 0 expand contract
mod 1 contract expand
mod 2 expand or contract expand or contract

where gon (goff) is the on-site (off-site) coupling constant in eV, while uarm is a ribbon
width- or Nab-dependent phonon amplitude. To obtain the electron-phonon matrix
element Mep, we use the same wavefunctions as in (4.7). The wavefunctions are
suitable near the graphene Dirac K point and thus they can explain well the aGNR
lattice response especially at relatively low energy E11 and E22 optical transitions. We
then obtain a formula for aGNRMep similar to that for the nanotube case,

Mep = −uarm (2goff cos Θ(k)) . (4.11)

Here Θ(k) is now defined by the angle that k points in the two dimensional Brillouin
zone measured from the line in k space perpendicular to the discrete one dimensional
Brillouin zone (cutting lines) which goes over the K point (hexagonal corner, see
Fig. 4.7). Therefore, the driving function kernel can be written as [13]

S(k) =
2ωRBLM

~
uarm

[
2goff cos(Θ(k))

]
, (4.12)

where ωRBLM is the RBLM frequency at q = 0. From this equation, we can analyze the
Nab and Eii dependence of the aGNR initial lattice response. First of all, we should
note that goff and uarm are always positive, while cos Θ(k) can either be positive or
nepgative depending on the value of k at which the Eii transition occurs.

Using this argument, we can classify the aGNR lattice response based on the aGNR
types. For example, let us consider semiconducting mod 0 aGNR and mod 1 aGNRs.
The cutting line position for their E11 and E22 optical transitions are just opposite to
each other. For a mod 0 aGNR, we see that cos Θ(k) becomes positive (negative) at
E11 (E22), and thus the aGNR starts the coherent phonon oscillations by expanding
(shrinking) its width. This can be seen in the illustration of Θ(k) in Fig. 4.7. The
opposite behavior is true for mod 1 aGNRs.

We should note that the prediction of expansion or contraction of the ribbon width
is quite ambiguous for mod 2 metallic aGNRs since in metallic aGNRs two cutting
lines are equidistant from the K point and are the lower and higher branches of an Eii
transition. Both branches contribute to Eii and we sum up the matrix elements from
each contribution to obtain Mep. For example, if the 1D k-points for the lower and
higher branches of Eii are the same, the matrix elements cancel because cos Θ(k) +

cos(π −Θ(k)) = 0. In this case, the coherent phonon amplitude will be small for the
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mod 2 metallic aGNRs as compared to the mod 0 or mod 1 semiconducting aGNRs.
In reality, we have slightly different k-points for the two Eii branches due to trigonal
warping effects [26]. When trigonal warping effects are included, the resulting nonzero
value ofMep allows us to determine if the ribbon width initially expands or contracts.
We finally summarize the lattice behavior at E11 and E22 transitions for all families
of aGNRs in Table 4.1.



Chapter 5

Excitonic effects on coherent phonon
dynamics

In this chapter, we discuss how excitons can affect the generation of coherent radial
breathing modes (RBMs) in the ultrafast spectroscopy single wall carbon nanotubes
(SWNTs). Photoexcited excitons can localize spatially and give rise to an almost
periodic driving force in real space which involves many phonon wavevectors of the
exciton-phonon interaction. The equation of motion for the coherent phonons is mod-
eled phenomenologically by the Klein-Gordon equation, which we solve for the os-
cillation amplitudes as a function of space and time. By averaging the calculated
amplitudes per nanotube length, we obtain time-dependent coherent phonon ampli-
tudes that resemble homogeneous oscillations observed in some pump-probe experi-
ments. We interpret this result to mean that the experiments are only able to see
a spatial average of coherent phonon oscillations over the wavelength of light in car-
bon nanotubes and the microscopic details are averaged out. This interpretation is
also clarified by calculating the time-dependent absorption spectra resulting from the
macroscopic atomic displacements induced by the coherent phonon oscillations. The
calculated coherent phonon spectra including excitonic effects show the experimen-
tally observed symmetric peaks at the nanotube transition energies in contrast to the
asymmetric peaks obtained when excitonic effects were not included.

5.1 Introduction

Excitons should have at least four important effects on the generation and detection of
coherent phonons in SWNTs: (1) the optical transitions will shift to lower energy owing
to the Coloumb interaction between the photoexcited electron-hole pair, [29] (2) the
strength of the optical transitions will be enhanced since the excitonic wavefunctions
have larger optical matrix elements resulting from the localized exciton wavefunc-

81
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tions, [35] (3) the phonon interaction matrix elements may also change because the
electron-phonon and hole-phonon matrix elements now become exciton-phonon matrix
elements, [35] and (4) in SWNTs, the excitons can become localized along the tube
with a typical size of about 1 nm. [76] This will change which phonon modes can couple
to the photogenerated excitons. Excitons are known to have localized wavefunctions in
both real and reciprocal space, [34] and this should modify the electron-phonon picture
of the coherent phonon generation. Due to the localized exciton wavefunctions, the
driving force of a coherent phonon is expected to be a Gaussian-like driving force in
real space for each localized exciton, whose width is about 1 nm, instead of a constant
force considered in the previous works. [11, 12] The localized force can be obtained
only if we consider the coupling of excitons and phonons.

The interaction between excitons and coherent phonons will involve many phonon
wavevectors for making localized vibrations and many electron (and hole) wavevectors
for describing these excitons. By applying strong pump light to the SWNTs, many
excitons are generated and the average distances between two nearest excitons are es-
timated to be about 20 nm. [77, 78] This indicates that the driving force for coherent
phonon generation can be approximated by many Gaussian forcing functions, each
of which originates from an exciton and are separated by the distance between two
excitons. Using such a driving force model also implies that the coherent phonon am-
plitudes are inhomogeneous along the nanotube axis. However, since the wavelength of
light (∼ 500 nm) is much larger than the spatial modification of the RBM amplitudes,
the laser light can only probe the average of the coherent vibrations.

To simulate the exciton effects using coherent phonon spectroscopy, we model the
coherent RBM phonon amplitude Q(z, t) as a function of space and time using the
Klein-Gordon equation that will be shown to explain the dispersive wave properties.
The driving forces are localized almost periodically, therefore the calculated coherent
phonon amplitudes of the RBM are no longer constant along the tube axis. How-
ever, by taking an average over the tube length for the calculated coherent phonon
amplitudes, we find that the average amplitude fits the oscillations as a function of
time observed in the experiments. In order to compare our theory directly with ex-
periments, in which the change of transmittance (∆T/T ) or reflectivity (∆R/R) is
measured, we calculate the time-dependent absorption spectra for macroscopic atomic
displacements induced by the coherent phonon oscillations Q(z, t). The symmetric
line shape found in the calculated spectra is also consistent with the experimental
observations.

5.2 Coherent phonon model with exciton effects

In the conventional model for the coherent phonon generation mechanism in semicon-
ductor systems, phonon modes that are typically excited are the ones with phonon
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wavevector q = 0. The coherent phonon amplitudes Qc(t) satisfy a driven oscillator
equation, [10, 79]

∂2Qc(t)

∂t2
+ ω2

0Qc(t) = Sc(t), (5.1)

where ω0 is the phonon frequency at q = 0 and Sc(t) is a driving force that depends
on the physical properties of a specific material. In the case of a SWNT, without
considering the excitonic effects, Sc(t) was given by [11, 12]

Sc(t) = −2 ω0

~
∑
µk

Mep
µ (k)δfµ(k, t), (5.2)

where Mep
µ (k) is the electron-phonon matrix element for the µ-th cutting line (one-

dimensional Brillouin zone of a SWNT) as a function of the one-dimensional electron
wavevector k and is calculated for each phonon mode at q = 0. The distribution
function δfµ of photo-excited carriers generated by a laser pulse pumping at the Eii
transition energy is obtained by solving a Boltzmann equation for the photogeneration
process. [11]

We can see in Eqs. (5.1) and (5.2) that Qc(t) and Sc(t) have a time dependence
only and no spatial dependence when we consider electron-photon (or hole-photon)
and electron-phonon (or hole-phonon) interactions, i.e. we ignored the excitonic inter-
action between the photoexcited electrons and holes. We now extend this model by
considering that the exciton effects (exciton-photon and exciton-phonon interactions)
give a spatial dependence to the coherent phonon amplitude and to the driving force,
which we denote as Q(z, t) and S(z, t), respectively. Here z is the position along the
nanotube axis. To describe the coherent phonon amplitude Q(z, t), we propose using
of the Klein-Gordon equation,

∂2Q(z, t)

∂t2
− c2 ∂

2Q(z, t)

∂z2
= S(z, t)− κQ(z, t) (5.3)

where c and κ are the propagation speed and dispersion parameter depending on the
SWNT structure, respectively. The Klein-Gordon equation is solved subject to the
two initial conditions Q(z, 0) = 0 and Q̇(z, 0) = 0. The exciton-induced driving force
S(z, t) is now given by

S(z, t) = −2

~
∑
µ,k,q

ωqMµ
ex-ph(k, q)δfµ(k, t)eiqz, (5.4)

where Mµ
ex-ph(k, q) is the exciton-phonon matrix element on the µ-th cutting line

as a function of the exciton wavevector k and phonon wavevector q. By using the
driving force expression of Eq. (5.4), the amplitude Q(z, t) is dimensionless because
the dimension of S(z, t) is the inverse of time square (instead of length per inverse
of time square). Here the actual coherent phonon amplitudes with units of length
can be obtained by multiplying Q(z, t) with the zero-point phonon amplitude Q0 =√
~/2Mcω0, where Mc is the total mass of carbon atoms in the nanotube unit cell.
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Figure 5.1 RBM phonon dispersion of a (11,0) nanotube. Theoretical data are represented
by cross symbols, which are calculated using a force constant model as in Refs. [11] and [47].
The solid line shows the fitted RBM dispersion using the Klein-Gordon dispersion relation
in Eq. (5.8). The phonon energy, ~ω is plotted as a function of q in the units of π/T . Here
T = 0.431 nm is the unit cell length of the (11, 0) tube.

The reason why we adopt the Klein-Gordon equation to explain the exciton-induced
coherent phonon generation in SWNTs is based on a phenomenological consideration.
We generally expect that the coherent RBM phonons are propagating dispersively
along the nanotube axis. Integrating Q(z, t) and S(z, t) over z should give Qc(t) and
Sc(t) in Eq. (5.1) which describes the homogeneous vibration observed in experiments.
Parameters c and κ in the Klein-Gordon equation can then be obtained from the RBM
phonon dispersion, which gives positive c and κ values. To obtain this relationship, we
consider the Klein-Gordon equation (5.3) with S(z, t) = 0 and take a Fourier transform
defined by

Q̃(q, ω) =

∞∫
−∞

∞∫
−∞

Q(z, t)ei(qz−ωt)dzdt, (5.5)

to obtain
−ω2Q̃+ c2q2Q̃ = −κQ̃. (5.6)

From Eq. (5.6) we have a dispersion relation for the Klein-Gordon equation,

−ω2 + c2q2 = −κ. (5.7)

The physical solution of Eq (5.7) for ω > 0 is

ω(q) =
√
c2q2 + κ. (5.8)

Fig. 5.1: fig/fch5-RBMdisp.eps
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Figure 5.2 Schematic illustration of the Gaussian impulsive force S(z, t) created by excitons
which align along the nanotube axis with an average separation of d. The force S(z, t) is
symmetric in the circumferential direction.

We can then fit the wave dispersion to the RBM phonon dispersion which is already
available by force constant or first-principle models. [47, 80, 53] We are particularly
interested in the region of q � π/T (T is the unit cell length of a SWNT [81]) because
this is the typical size over which an exciton in reciprocal space interacts with a
phonon. [34, 35] Fitting the RBM phonon dispersion to Eq. (5.8) thus gives the values
of both c and κ to be used in the Klein-Gordon equation. As for the phonon dispersion
shown in Fig. 5.1, which is calculated for a (11, 0) tube, we obtain c = 2.545 nm/ps
and κ = 3147.22 ps−2. Hereafter, unless otherwise mentioned, we will consider the
(11, 0) tube as a representative example for the simulation.

We can further simplify Eq. (5.4) by considering that a periodic Gaussian force
appears approximately every 15−30 nm along the tube axis according to the calculation
of the photoexcited carrier density. For example, by solving for the photo-excited
distribution δf using the method described in Ref. [11], we estimate an exciton density
for a (11, 0) tube at an excitonic transition energy E22 = 1.78 eV which is about
5.6× 10−2 nm−1. This exciton density corresponds to the average separation between
two excitons of about 18 nm. A Gaussian force centered at the exciton position zi is
then approximated by

Si(z, t) = Age
−(z−zi)2/2σ2

zθ(t), (5.9)

where θ(t) is the Heaviside step function, Ag is the force magnitude obtained from the
product of the exciton-phonon interaction and related factors in Eq. (5.4) [excitonic
matrix elements are discussed in Appendix C], and σz is the width of the exciton-
phonon matrix element for a given (n,m) SWNT.

A typical value of σz is related to the exciton size in real space (∼ 1 nm). The
exciton wavefunctions, exciton energies, exciton-photon and exciton-phonon matrix
elements are all calculated by solving the Bethe-Salpeter equation within the extended
tight-binding method as developed by Jiang et al. [34, 35] The force magnitude thus
obtained is on the order of 103 ps−2. For the lowest E22 exciton state of the (11, 0)

tube, we obtain σz = 0.9 nm and Ag = 4.82 × 103 ps−2. The total driving force used

Fig. 5.2: fig/fch5-excitonforce.eps
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Figure 5.3 Time evolution of coherent phonon amplitudes in a (11, 0) nanotube for (a)
perfectly uniform spacing between excitons with an average separation d = 18 nm and for
(b) a slightly random distribution where the center force is shifted by 9 nm. Solid lines show
snapshots of Q(z, t) as a function of z (position along the tube axis) for several different
t values with a time sequence τj = jτ/4, where τ = 0.112 ps is the fundamental period.
Q(z, t) is plotted in terms of the zero-point phonon amplitude for the (11, 0) tube, Q0 =
2.59× 10−3 nm. Dotted lines show the force S(z, t) for comparison.

in solving Eq. (5.3) is a summation of Gaussian forces in terms of Eq. (5.9),

S(z, t) =

N∑
i=1

Si(z, t), (5.10)

where N is the number of excitons (and thus the number of Gaussian forces) in a
SWNT. In Fig. 5.2, we show a schematic diagram of a typical model for our simulation.
The driving force S(z, t) has an axial symmetry and is aligned along the nanotube axis
with a separation of d. To avoid any motions of the center of mass, the general force
S(r, t) should also satisfy a sum rule,

∞∫
−∞

S(r, t)dr = 0, (5.11)

which is automatically satisfied for S(z, t) in Eq. (5.10) because of the axial symmetry
of the model, as can also be understood from Fig. 5.2. In the present calculation,
we fix d = 18 nm, and there are N = 9 narrow Gaussian forces arranged periodically

Fig. 5.3: fig/fch5-Qzt.eps
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Figure 5.4 (a) Average of coherent phonon amplitudes per length, A(t), plotted as a function
of time for a (11, 0) nanotube (τ = 0.112 ps) and shown in units of Q0 = 2.59 × 10−3 nm.
The dotted line represents the average amplitude for the force distribution shown in either
Fig. 5.3(a) or 5.3(b). The solid line represents the average amplitude if a decay constant
0.2ps−1 is taken into account. (b) An example of the transmission oscillation data available
for a (13, 3) tube measured in a pump-probe experiment with τ = 0.162 ps (reproduced from
Ref. [8]). The average coherent phonon amplitude shown in (a) resembles the oscillating
feature of the experimental transmission shown in (b).

(thus L = 144 nm). The RBM phonon energy near q = 0 is 37.1 meV, corresponding
to a frequency ω = 297 cm−1 and a vibration period τ = 0.112 ps.

5.3 Time evolution of coherent phonons

In Fig. 5.3, we plot the coherent RBM phonon amplitudes Q(z, t) for a (11, 0) nan-
otube pumped at its E22 transition energy, in which a snapshot is taken for t = 0

to τ4, where τj = jτ/4. Two different cases are shown in Figs. 5.3(a) and (b), in
which the separation between excitons might be perfectly uniform or slightly random,
respectively. The calculation is done numerically by solving for Q(z, t) from Eq. (5.3)
with periodic boundary conditions at ±L/2. We can observe some periodic peaks
corresponding to each localized force and these peaks also do not move as a function
of time. One might then ask whether or not such exciton effects correctly describe
the coherent phonon oscillations in SWNTs. This can be answered by considering the
average of the inhomogeneous Q(z, t) per nanotube length.

Fig. 5.4: fig/fch5-Aintegrated.eps
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To clarify that our model can describe homogeneous coherent RBM phonon os-
cillations observed in experiments, [7, 8] we define an average of Q(z, t) as follows

A(t) =
1

L

∫
L

Q(z, t)dz. (5.12)

In Fig. 5.4(a), we plot A(t) for the (11, 0) tube considered above. We also include
a decay constant of 0.2 ps−1 to resemble the experimental results. Interestingly, now
the coherent phonon amplitudes, which have been averaged before, could fit the ex-
perimental shape of the homogeneous transmission oscillation in Figs. 5.4(b). We then
interpret that such an experiment cannot observe the nanoscopic vibration of the ex-
citon effects on the coherent phonon amplitudes, but it can only observe the averaged
amplitudes. Moreover, the definition (5.12) is important mathematically to describe
the homogeneous coherent phonon amplitudes in experiments if we are able to recover
Eq. (5.1) from the Klein-Gordon equation (5.3). Indeed, by integrating both left and
right sides of Eq. (5.3),∫

L

Qttdz −
∫
L

c2Qzzdz = −
∫
L

κQdz +

∫
L

Sdz,

and using
∫
L
Qttdz = Att,

∫
L
κQdz = κA,

∫
L
Qzzdz = 0, we can obtain

Att + κA(t) = S(z), (5.13)

which is nothing but the driven oscillator model in Eq. (5.1).

5.4 Propagation of coherent phonons

It is important to note that we have assumed certain distributions of excitons as a
function of z. As shown in Figs. 5.3(a) and (b), we only present the two simplest
cases of the exciton distributions that we can imagine. However, excitons in nature
might not be uniformly spaced and any exciton distributions with random spacing can
be possible. Nevertheless, we expect that our result for the average amplitude A(t)

in Fig. 5.4 is approximately constant regardless of the exciton spacing, as far as the
average exciton density remains the same. This can be rationalized by considering a
trial solution of the Klein-Gordon equation,

Q(z, t) = e−λzei(qz−ωt), (5.14)

which comprises a travelling wave and a decay term with parameter λ to be determined.
By substituting Eq. (5.14) into Eq. (5.3) and setting S(z, t) = 0, we obtain

λ = iq ±
√
κ

c2
− q2, (5.15)
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Figure 5.5 (a) Driving forces with two different parameters σz(= 0.9 nm) > σzc and
σz(= 0.03 nm) < σzc, which give (b) only localized and (c) localized and propagating wave
components, respectively. For the (11, 0) tube in this simulation, we have σzc = 0.045 nm.
The propagating wave components in (c) travel with a speed of 1.68 nm/ ps, as indicated by
the slope of the dashed line.

where we have assumed ω = qc and the sign ± is determined for the ±z region.
Depending on whether the value of

√
κ/c2 − q2 is real or pure imaginary, respectively,

we can get a spatially localized or propagating solution of Q(z, t). In the presence of a
force, we can solve Eq. (5.3) using the Green’s function method for a single Gaussian
force S(z, t) = Age−z

2/2σ2
zθ(t). The solution for Q(z, t) in the region −L/2 < z < L/2

with a boundary condition, Q(−L/2, t) = Q(L/2, t), is given by

Q(z, t) =
2σzAg

√
2π

L

∞∑
n=0

[
e−q

2
nσ

2
z/2

c2q2
n + κ

(
cos(qnz)× (1− cos(t

√
c2q2

n + κ))

)]
, (5.16)

where qn = nπ/L. This solution consists of a wavepacket of standing waves weighted
by a Gaussian distribution and a denominator which comes from the phonon dispersion
relation of Eq. (5.8). The Gaussian distribution originates from the Fourier transform
of the Gaussian force in real space. In this case, the selection of q is determined by
the Fourier transform of the driving force S(z, t). For a Gaussian force in our model,
the q value can be selected for the region 0 < q < 1/σz. If the maximum q = 1/σz is
smaller than qc =

√
κ/c, then Q(z, t) is localized. If 1/σz is larger than qc, then Q(z, t)

is divided into two contributions: 0 < q < qc and qc ≤ q < 1/σz, in which the former q
value gives the localized wave and the latter part gives the propagating wave. We can
then define a critical parameter σzc = 1/qc to explain the localization or propagation
of the coherent phonons obtained from the Klein-Gordon equation. It can be further
seen that the qc value is nothing but the critical point the flat dispersion to the linear
dispersion in the RBM phonon dispersion relation as shown in Fig. 5.1.

For the (11,0) tube, we have a critical parameter σzc = (2.545/
√

3147.22) nm =

0.045 nm. Since in our simulation we already used σz = 0.9 nm which is much larger
than σzc, it is then expected that the coherent phonon is sufficiently localized. To

Fig. 5.5: fig/fch5-gaussdis.eps
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emphasize this fact, we show two different cases of Klein-Gordon waves in Fig. 5.5 for
σz = 0.9 nm and σz = 0.03 nm. Figure 5.5(a) shows the two forces with different σz
values, while Figs. 5.5(b) and (c) shows the corresponding coherent phonon amplitudes
that are generated. It can be seen that we obtain localized (propagating) waves by
using σz > σzc (σz < σzc). Intuitively, we can understand from Fig. 5.5(c) that a faster
appearance of an amplitude propagating along the z direction can be obtained when
σz becomes much smaller than σzc although some parts of Q(z, t) remain localized
(contribution from 0 < q < qc). The propagating wave components in Fig. 5.5(c)
travel with a velocity

√
κ/q, where q in this case is related to σz directly by q = 1/σz,

thus giving a speed of
√

3147.22 ps−2 × 0.03 nm = 1.68 nm/ ps.
In contrast, in the case of σz much larger than σzc [e.g. Fig. 5.5(b)], we cannot see

any amplitudes along the z direction except in a limited region where the force exists,
i.e. the propagating wave components cannot be observed. Indeed, the actual RBM
dispersion is a bit flatter than the approximation from the Klein-Gordon wave disper-
sion (see Fig. 5.1). This means that the modes are localized even more. Therefore,
in our case of σz = 0.9 nm, each excitonic force will not interfere with neighboring
force sites separated by distance d, which indicates that the average amplitude A(t) in
Fig. 5.4 is not affected by a random separation between every excitonic force. In gen-
eral, we may say that the localized vibration is a characteristic of the optical phonon
propagation driven by a localized force because the wavepacket is dominated by q ≈ 0

phonons but the contribution of the group velocity comes from q ≥ qc. This optical
phonon feature differs from that of acoustic phonon whose solution is expressed in
terms of traveling waves. [82]

5.5 Coherent phonon spectra

We then calculate the optical absorption spectra as a function of time using the cal-
culated Q(z, t). It is expected that the inhomogeneous coherent phonon oscillations
induce a macroscopic atomic displacement which modifies the transfer integral and
thus modulates the energy gap. We calculate the absorption coefficient α(EL, t), where
EL is the laser excitation energy, by evaluating it in the dipole approximation using
Fermi’s golden rule. The absorption coefficient at a photon energy EL obtained by
including exciton effects is given by [66, 83]

α(EL, t) =
8e2

ELRm0c0

∑
µk

|Mµ
ex-op|2δfµ(k, t) δ (Eii(t)− EL) , (5.17)

whereMµ
ex-op is the exciton-photon matrix element within the dipole approximation

corresponding to the transition between the initial and final state on the µ-th cutting
line, R is the tube radius, m0 is the electron mass, and c0 is the speed of light. The
exciton energy Eii is now time-dependent because of the change in transfer integral
due to coherent RBM phonon vibrations A(t).



5.5. Coherent phonon spectra 91

0.5 1 1.5 2 2.5

 Excitation Energy (eV)

F
T

 i
n

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

E
22 = 

1.78 eV

E
11

 = 0.81 eV

Figure 5.6 Fourier transform intensity of the time-dependent absorption coefficient for
the coherent RBM phonon of a (11,0) nanotube as a function of excitation energies. The
solid line represents the coherent phonon spectra which include excitonic effects, showing a
symmetric double-peaked line shape at each transition energy Eii. The dashed line represents
the coherent phonon spectra without excitonic effects, in which asymmetric line shapes were
obtained previously [11].

Since the bandgap is inversely proportional to the diameter oscillation (or to the
coherent RBM amplitudes), the time-dependent absorption α(EL, t) has the same
oscillating feature as the average amplitude A(t). However, exciton effects acting on
the absorption spectrum will modify the shape of the absorption spectra compared
to that obtained without inclusion of the exciton effects. We should then calculate
the time-dependent absorption for a broad range of excitation energies, for example,
within the range of 0.5 to 2.5 eV. By performing a Fourier transformation numerically
over this energy range, we can obtain the RBM coherent phonon spectra as shown
in Fig. 5.6, which include E11 and E22 for the (11, 0) tube that we consider. The
coherent phonon spectra calculated by including the excitonic effects given in Fig. 5.6
show double-peaked structures as a function of the excitation energies, either with or
without including the excitonic effects, as indicated by the solid and dashed lines in
Fig. 5.6, respectively.

The reason for the presence of the double-peak features (either symmetric or asym-
metric) in the excitation-dependent coherent phonon intensity can be explained as
follows. The generation of coherent RBM phonons modifies the electronic structure
of SWNTs and thus it can be detected as temporal oscillations in the transmittance
of the probe beam. Since the RBM is an isotropic vibration of the nanotube lattice
in the radial direction, i.e. the diameter periodically oscillates at the RBM frequency,
this makes the band gap Eg also oscillate at the same frequency. As a result, interband

Fig. 5.6: fig/fch5-cpspectra.eps
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transition energies oscillate in time, leading to ultrafast modulations of the absorption
coefficients at the RBM frequency, which is also equivalent to the oscillations in the
probe transmittance, and thus correspondingly, the excitation energy dependence of
the coherent phonon intensity shows a derivative-like behavior. More explicitly, the
effect on the absorption α for small changes in the gap can be modeled by

α(EL − Eg) ≈ α(EL − E0
g)−

∂α(EL − E0
g)

∂EL
δEg + . . . , (5.18)

which gives

∆α ≈ −
∂α(EL − E0

g)

∂EL
δEg, (5.19)

where Eg is assumed to be time-dependent, and δEg here corresponds to a small
change in the bandgap. Since the coherent phonon intensity is obtained by taking
the Fourier transform (power spectrum) of the differential transmission, the coherent
phonon intensity is thus proportional to the square of the derivative of the absorption
coefficient.

The excitonic absorption coefficient basically has a symmetric lineshape with a sin-
gle peak. [30] Therefore, the derivative of the excitonic absorption coefficient will give
a symmetric double-peak feature, in contrast to the asymmetric lineshape expected
from the 1D van Hove singularity (joint density of states). Here the use of the Klein-
Gordon equation which gives nonhomogeneous macroscopic atomic displacements is
then also justified by obtaining the symmetric line shape for the coherent phonon
spectra. On the other hand, in the free carrier model without the excitonic effects,
we see an asymmetric double-peaked structure at each transition with the stronger
peak at lower energy and the weaker peak at higher energy, which originate from the
derivative of the asymmetric lineshape of the absorption coefficient. Moreover it has
also been noted in some earlier works that the transition energy was shifted upward
by several hundred meV. [5, 30]

As a final remark, we would like to mention that considering the localized excitons
in this work might be just one possibility that gives the symmetric peak of the absorp-
tion spectrum because the origin of the symmetric absorption lineshape is basically
from the presence of discrete energy levels of excitons in carbon nanotubes. In this
sense, if there are other configurations of excitons in carbon nanotubes, which are not
localized, such cases might also give rise to the symmetric absorption lineshape. This
can be an open issue for future studies. However, we expect that as an initial condition
of the system after the excitation by the pump pulse, the excitons should be localized
with a certain average separation.



Chapter 6

Conclusions

In this thesis, we have discussed theoretical calculation for the coherent phonon prop-
erties in single wall carbon nanotubes (SWNTs) and graphene nanoribbons (GNRs).
Calculations have been performed particularly for the radial breathing modes (RBMs)
of SWNTs and radial breathing like modes (RBLMs) of GNRs. In order to understand
the coherent phonon properties, we need a detailed knowledge of the electronic struc-
ture, optical matrix elements, phonon modes and electron-phonon matrix elements.
In this study, we have developed a microscopic theory for coherent phonon generation
which uses an extended tight-binding model and effective mass theory. Our finding
can then be divided into two parts as follows.

Excitation and structural dependence of coherent phonon
amplitudes in SWNTs and GNRs

We found that the coherent RBM (of SWNTs) and RBLM (of GNRs) phonon ampli-
tudes strongly depend on tube chirality and ribbon type. In addition, we find the phase
of the amplitude (i.e. whether the tube diameter or ribbon width initially expand or
contract) can vary depending on the tube chirality or ribbon type. Comparison of
our ETB results with a simplified effective mass theory provides an explanation of the
initial contraction or expansion of the materials.

Using effective mass theory for the electron-phonon interactions, we can analyt-
ically analyze how the tube diameter and the ribbon width changes in response to
femtosecond laser excitation. We found that the initial phase of the coherent phonon
oscillation depends on the relative position of the E11 and E22 cutting lines with
respect to the K point, which originate from the k-dependent electron-phonon interac-
tion. The theoretical prediction will need further confirmation from experimentalists
in the near future. We suggest the use of resonant ultrafast pump-probe spectroscopy
with pulse-shaping technique to clarify our finding in this work for SWNTs and GNRs.
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Excitonic effects on coherent phonon amplitudes in SWNTs

SWNTs have a special feature in which excitons can exist even at room tempera-
ture. We have shown that excitonic effects modify the coherent phonon amplitudes in
SWNTs as described by the Klein-Gordon equation. The localized exciton wavefunc-
tions result in an almost periodic and localized driving force in space, and thus also
give localized coherent phonon amplitudes. Although the exciton effects make the am-
plitudes inhomogeneous, these amplitudes might be difficult to observe in experiments
since the long wavelength of the probe pulse averages over the sample. However, when
we define a spatial average of the localized coherent phonon amplitudes, the average
amplitudes can be fitted to the experimental results.

Moreover, we are able to simulate the experimental observation of a symmetric
double-peak feature of coherent phonon intensity as a function of excitation energy,
which is an obvious signature of the excitonic effects in SWNTs. Therefore, we may say
that the pump-probe experiments on coherent phonons in SWNTs can only observe
the average of the coherent phonon amplitudes induced by the exciton effects. As a
side note, we also predict that the coherent RBM phonons in SWNTs do not propagate
within the timescale of photoexcited carrier relaxation.

***

Finally, as the experimental ability to make better samples (i.e. graphene nanorib-
bons and carbon nanotubes of a fixed chirality) improves, we would expect more
experiments to confirm our recent theoretical prediction suggested in this thesis. Fur-
thermore, we also expect that one would be able to generate coherent phonons in that
are not RBM or RBLM, but instead correspond to q 6= 0 acoustic modes. The study of
coherent phonons in carbon based nanostructures is only in its infancy and the future
promises to be rewarding.



Appendix A

Derivation of coherent phonon
equations of motion

Here we give a detailed derivation for coherent phonon equations of motion (3.12)
and (3.13). We start with the Hamiltonian defined by

H = He +Hph +Hep, (A.1)

where

He =
∑
n,k

εnkc
†
nkcnk, (A.2a)

Hp =
∑
q

~ωqb
†
qbq, (A.2b)

Hep =
∑
n,k,q

Mn
k,q

(
bq + b†−q

)
c†nk+qcnk, (A.2c)

are the electron Hamiltonian, the phonon Hamiltonian, and the electron-phonon in-
teraction Hamiltonian, respectively. Here the indices n, k, and q respectively denote
the electronic energy state, electron wavevector, and phonon wavector.

To obtain the equations of motion for coherent phonons, we use the Heisenberg
equation,

dO
dt

=
i

h
[H,O]. (A.3)

In this case, the operator O is to be substituted by the phonon annihilation operator
bq and creation operator b†q because we define the coherent phonon amplitude Q(t) as

Q(t) ≡ 〈bq + b†−q〉. (A.4)

Since [He, bq] = [He, b
†
q] = 0, for the generation of coherent phonons we can simply

insert the phonon Hamiltonian Hp and Hep as the total Hamiltonian H = Hp + Hep

into the Heisenberg equation of motion.
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Annihilation operator equation

The dynamical equation for the annihilation operator is

∂bq(t)

∂t
=
i

~
[Hp +Hep, bq(t)]. (A.5)

Let us work with each term one by one:

• Hp term

[Hp, bq] =
∑
q′

~ωq′ [b
†
q′bq′ , bq]

= ~ωq[b†q, bq]bq

∴ [Hp, bq] = −~ωqbq (A.6)

• Hep term

[Hep, bq] =
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnk[b†−q′ , bq]

=
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnkδq′,−q

∴ [Hep, bq] = −
∑
n,k,q

Mn
k,−qc

†
nk−qcnk (A.7)

Inserting Eqs. (A.6) and (A.7) to (A.5), we obtain

∂bq(t)

∂t
= −iωqbq(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t) (A.8)

Creation operator equation

Similar to the equation of motion for the annihilation operator, we can obtain the
equation of motion for the creation operator,

∂b†q(t)

∂t
=
i

~
[Hp +Hep, b

†
q(t)]. (A.9)

Work out each term one by one:

• Hp term

[Hp, b
†
q] =

∑
q′

~ωq′ [b
†
q′bq′ , b

†
q]

= ~ωq[bq, b
†
q]b†q

∴ [Hp, bq] = ~ωqb
†
q (A.10)
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• Hep term

[Hep, b
†
q] =

∑
n,k,q′

Mn
k,q′c

†
nk+q′cnk[bq′ , b

†
q]

=
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnkδq′,q

∴ [Hep, b
†
q] =

∑
n,k

Mn
k,qc

†
nk+qcnk (A.11)

Inserting Eqs. (A.10) and (A.11) to (A.9), we obtain

∂b†q(t)

∂t
= iωqb

†
q(t) +

i

~
∑
n,k

Mn
k,qc

†
nk+q(t)cnk(t). (A.12)

Coherent phonon amplitude

Now, the coherent phonon amplitude is defined by

Q(t) ≡ 〈bq + b†−q〉. (A.13)

We can take the first derivative of the coherent phonon amplitude,

∂Q(t)

∂t
=

〈
∂bq
∂t

+
∂b†−q
∂t

〉
, (A.14)

and use the results of the annihilation and creation operator equations in (A.8) and (A.12).
We obtain

∂Q(t)

∂t
=
〈
− iωqbq(t)−

�������������
i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

+ iωqb
†
−q(t) +

�������������
i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

〉
∴
∂Q(t)

∂t
= −iωq〈bq − b†−q〉 (A.15)

Taking the second derivative of Eq. (A.15), we now have

∂2Q(t)

∂t2
= −iωq

〈
∂bq
∂t
−
∂b†−q
∂t

〉
, (A.16)

and again we use the results of the annihilation and creation operator dynamical
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equations,

∂2Q(t)

∂t2
= −iωq

〈
− iωqbq(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

− iωqb
†
−q(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

〉

= −iωq

−iωq〈bq(t) + b†−q(t)〉 − 2
i

~
∑
n,k

Mn
k,−q〈c

†
nk−q(t)cnk(t)〉


= −ω2

qQ(t)− 2ωq
~
∑
n,k

Mn
k,−q〈c

†
nk−q(t)cnk(t)〉.

By defining nnk,k−q = 〈c†nk−q(t)cnk(t)〉, we finally obtain

∂2Qq(t)

∂t2
+ ω2

qQq(t) = −2ωq

~
∑
n,k

Mn
k,−qn

n
k,k−q, (A.17)

which is nothing but Eq. (3.12).



Appendix B

Deformation-induced gauge field in
graphene

Here we review how to obtain the off-site Hamiltonian and on-site Hamiltonian given
in Eqs. (3.50) and (3.39), respectively, within the effective mass theory, as discussed
by Sasaki and Saito [71]. The dynamics of the conducting electrons in graphene
materials are different from those of ideal flat graphene, because in the former case,
there are shape fluctuations, such as effects of cylindrical shape and phonon vibration,
that result in the modification of the overlap matrix elements of nearest-neighbor
π-orbitals and of the on-site potential energy. We refer to the modification of the
nearest-neighbor hopping integral as the off-site interaction and a shift of the on-site
potential energy as the on-site interaction.

Off-site interaction

First we consider the perturbation from the off-site interaction in which only off-
diagonal matrix element has a non-zero value. A lattice deformation induces a local
modification of the nearest-neighbor hopping integral as −γ0 → −γ0 + δγa0 (ri) (a =

1, 2, 3). The perturbation H1 is defined as

H1 ≡
∑
i∈A

∑
a=1,2,3

δγa0 (ri)
(
(cBi+a)†cAi + (cAi )†cBi+a

)
. (B.1)

We also define the Bloch wavefunction with wavevector k,

|Ψk
s 〉 =

1√
Nu

∑
i∈s

eik·ri(csi )
†|0〉 (s = A,B), (B.2)

where the sum on i is taken over the crystal, Nu is the number of the hexagonal unit
cells, and |0〉 denotes the state of carbon atoms without π-electrons. We use the same
geometrical configuration of graphene as shown in Fig. 3.3.
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The off-site matrix element of H1 with respect to the Bloch wave functions in
Eq. (B.2) with k and k + δk is given by

〈Ψk+δk
A |H1|Ψk

B〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa0 (ri)fa(k)e−iδk·ri ,

〈Ψk+δk
B |H1|Ψk

A〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa0 (ri)fa(k)∗e−iδk·(ri+Ra).

(B.3)

Here we consider that when δk is small enough compared with the reciprocal lattice
vector, a wavevector k near the K (or K’) point is scattered to the k′ = k+ δk within
the region near the K (or K’) point. If k is measured from kF, we obtain

〈ΨkF+k+δk
A |H1|ΨkF+k

B 〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa(ri)fa(kF)e−iδk·ri +O(δkδγa),

〈ΨkF+k+δk
B |H1|ΨkF+k

A 〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa(ri)fa(kF)∗e−iδk·ri +O(δkδγa),

(B.4)

The correction indicated by O(δkδγa) in Eq. (B.4) is negligible when |δk| � |kF|.
Substituting f1(kF) = 1, f2(kF) = e−i

2π
3 and f3(kF) = e+i 2π3 into Eq. (B.4), we can

obtain

〈ΨkF+k+δk
A |H1|ΨkF+k

B 〉 =
vF
Nu

∑
i∈A

{
Aq
x(ri)− iAq

y(ri)
}
e−iδk·ri ,

〈ΨkF+k+δk
B |H1|ΨkF+k

A 〉 =
vF
Nu

∑
i∈A

{
Aq
x(ri) + iAq

y(ri)
}
e−iδk·ri ,

(B.5)

where Aq(r) = (Aq
x(r), Aq

y(r)) is defined by δγa0 (r) (a = 1, 2, 3) as

vFA
q
x(r) = δγ1

0(r)− 1

2

(
δγ2

0(r) + δγ3
0(r)

)
,

vFA
q
y(r) =

√
3

2

(
δγ2

0(r)− δγ3
0(r)

)
.

(B.6)

Since the diagonal term vanishes, i.e. 〈Ψk
s |H1|Ψk′

s 〉 = 0 (s = A,B), Eq. (B.5) shows
that H1 is expressed by vFσ ·Aq(r) in the effective-mass Hamiltonian. Therefore, the
total Hamiltonian of a deformed graphene near the K point is expressed by

HK
0 +HK

1 = vFσ · (p̂+Aq(r)). (B.7)

We can see from Eq. (B.7) that the off-site interaction can be included in the effective-
mass equations as a gauge field, Aq(r). We call Aq(r) as the deformation-induced
gauge field and distinguish it from the electromagnetic gauge field A(r) [71].

On-site interaction

Now we consider the on-site interaction by a defect of the crystal. A lattice deformation
gives rise not only to a change in the transfer integral between A and B atoms but
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also a change in the potential at the A (B) atom φA (φB) which we call the off-site
and on-site deformation potential, respectively. We denote the on-site deformation
potential by a 2× 2 matrix as

Hon =

(
φA(ri) 0

0 φB(ri +R1)

)
. (B.8)

Using the coordinate system introduced in Fig. 3.3, we denote the displacement vector
of A-atom at ri is uA(ri) and that of B-atom at rj is uB(rj). The deformation
potential of A-atom at ri, φA(ri), is induced by the relative displacements of three
nearest neighbor B-atoms from the A-atom (uB(ri +Ra)− uA(ri)) as

φA(ri) =
gon
`acc

∑
a=1,2,3

Ra · (uB(ri +Ra)− uA(ri)) , (B.9)

where gon denotes gradient of the atomic potential at ri, and ` denotes 3acc/2. Here
we assume that |uB(ri + Ra) − uA(ri)| � acc and that φA(ri) depends linearly on
the relative displacement vector.

By expanding uB(ri+R2) as uB(ri+R2) = uB(ri+R1)+((R2−R1) ·∇)uB(ri+

R1) + · · · and uB(ri +R3) as uB(ri +R3) = uB(ri +R1) + ((R3 −R1) · ∇)uB(ri +

R1) + · · · , we see that Eq. (B.9) can be approximated by

φA(ri) = gon∇ · uB(ri +R1) + · · · , (B.10)

where we have used
∑
a=1,2,3Ra = 0. It is noted that a general expression for the

deformation potential, Eq. (B.10), is valid in the case that uB(r) is a smooth function
of r. When this is not the case, we have to use Eq. (B.9). In the continuous limit,
we may use r to represent the positions of both A and B atoms in the unit cell, then
we have φA(r) = gon∇ · uB(r) + · · · . Similarly, the deformation potential of B-site of
ri +R1 is given by

φB(ri +R1) =
gon
`acc

∑
a=1,2,3

−Ra · (uA(ri +R1 −Ra)− uB(ri +R1)) . (B.11)

By using uA(ri + R1 − R2) = uA(ri) + ((R1 − R2) · ∇)uA(ri) + · · · and uA(ri +

R1 − R3) = uA(ri) + ((R1 − R3) · ∇)uA(ri) + · · · , we see that Eq. (B.11) can be
approximated by

φB(ri +R1) = gon∇ · uA(ri) + · · · . (B.12)

Thus, for the intravalley scattering, we may rewrite Eq. (B.8) using Eqs. (B.10) and
(B.12) as

Hon = gon

(
∇ · uB(r) 0

0 ∇ · uA(r)

)
+ · · · . (B.13)
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According to the result of density-functional theory by Porezag et al., [42] we use the
parameter for gon (=17eV). For the discussion of el-ph interaction of acoustic

s(r) ≡ uA(r) + uB(r)

2
, (B.14)

and optical

u(r) ≡ uB(r)− uA(r), (B.15)

phonon modes, we can rewrite Eq. (B.13) using the Pauli matrices as

Hon =
gon
2
σ0∇ · (uA(r) + uB(r)) +

gon
2
σz∇ · (uB(r)− uA(r)). (B.16)



Appendix C

Exciton-photon and exciton-phonon
matrix elements

Here we describe how to obtain the exciton-photon and exciton-phonon matrix el-
ements, which are used in Chapter 5. To calculate the exciton-photon and exciton-
phonon matrix elements, we need information of the exciton energies and exciton wave-
functions. The exciton energy and exciton wave function coefficients are calculated by
solving the Bethe-Salpeter equation as described in Sec. 2.4. All these calculations are
performed within the extended tight-binding (ETB) approximation [84].

Exciton-photon matrix elements

The exciton-photon matrix elements between an excited state |Ψn
0 〉 and the ground

state |0〉 in the dipole approximation are expressed as [35]

Mex-op = 〈Ψn
0 |Hel-op|0〉, (C.1)

where Hel-op is the electron-photon Hamiltonian. Due to the selection rule for the
wave vector in the parallel polarization, we can write Hel-op as

Hel-op =
∑
k

Dkc
†
kcckv(a+ a†), (C.2)

where Dk is the electron-photon interaction within the dipole approximation for a
vertical transition between the initial and final states k, c†kc (ckv) is the electron
creation (annihilation) operator in the conduction (valence) band, and a† (a) is the
photon creation (annihilation) operator. The exciton wave function |Ψn

q〉 with a center-
of-mass momentum Q is expressed as

|Ψn
Q〉 =

∑
k

Znkc,(k−K)vc
†
kcc(k−K)v|0〉, (C.3)
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where Znkc,(k−K)v is the eigen vector of the n-th (n = 1, 2, . . . ) state of the Bethe-
Salpeter equation. In Eq. (C.3), instead of summation over all cutting lines µ (one-
dimensional Brillouin zone of carbon nanotubes), we use a single cutting line for
any optical transition under consideration [34], and thus the index µ is removed in
Eq. (C.3). The exciton-photon matrix elements for the transition between the excited
states |Ψn

0 〉 and the ground states |0〉 are then given by

Mex-op =
∑
k

DkZ
n∗
kc,kv. (C.4)

Exciton-phonon matrix elements

The exciton-phonon matrix elements Mex-ph between the initial state |Ψn1

Q1
〉 and a

final state |Ψn2

Q2
〉 are expressed by

Mex-ph = 〈Ψn2

Q2
|Hel-ph|Ψn1

Q1
〉, (C.5)

where Hel-ph is the Hamiltonian for the electron-phonon coupling for the ν-th phonon
mode and a phonon wave vector q = Q1 −Q2 obtained from the momentum conser-
vation. Note that here we slightly modify the notation of the electron-phonon matrix
element compared to that used in Sec. 3.5.1. By taking into account the contribution
from the electron and hole scattering processes simultaneously in the electron-phonon
Hamiltonian, we have

Hel-ph =
∑
kqν

[
Mν

k,k+q(c)c†(k+q)cckc −M
ν
k,k+q(v)c†(k+q)vckv

]
(bqν + b†qν), (C.6)

whereM(c) [M(v)] is the electron-phonon matrix element for the conduction (valence)
band and the operator b†qν (bqν) corresponds to the phonon creation (annihilation) at
the ν-th phonon mode q. Using that Hamiltonian, we then obtain

Mex-ph =〈Ψn2

Q2
|Hel-ph|Ψn1

Q1
〉

=
∑
k

[
Mν

k,k+q(c)Zn2∗
(k+q)c,(k−Q1)vZ

n1

kc,(k−Q1)v

−Mν
k,k+q(v)Zn2∗

(k+Q2)c,kvZ
n1

(k+K2)c,(k+q)v

]
. (C.7)

For a first-order resonance process, we have Q1 = Q2 = k. We also just consider ν = 0

for the coherent phonon generation. Therefore, the exciton-phonon matrix element in
Eq. (C.7) is simplified as

Mex-ph =
∑
k

[Mk(c)−Mk(v)]|Zk|2. (C.8)

If we compare the exciton-phonon matrix element in Eq. (C.8) with the electron-
phonon matrix element in Eq. (3.21), which is used as the driving force term for the
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coherent phonon generation, we can see the difference is only that the exciton-phonon
matrix element has a weighting factor in terms of the wavefunction coefficient Zk.
The summation of electron-phonon matrix elements with exciton wavefunctions makes
the driving force localized with a Gaussian shape following the shape of the exciton
wavefunctions. This assumption is considered in Chapter 5 when we simplify the
driving force model considering the excitonic effects as a Gaussian function multiplied
with the step function with a certain force amplitude that can be obtained numerically.





Appendix D

Solution to the Klein-Gordon
Equation

Here we give a solution to the Klein-Gordon equation in Eq. (5.3) by using the Green’s
function method. We start with the nonhomogeneous Klein-Gordon equation,

∂2Q(z, t)

∂t2
− c2 ∂

2Q(z, t)

∂z2
= S(z, t)− κQ(z, t), (D.1)

where we have the driving force in terms of a Gaussian,

S(z, t) = Age−z
2/2σ2

zθ(t). (D.2)

The solution for Q(z, t) in the region −L/2 < z < L/2 with a boundary condition,
Q(−L/2, t) = Q(L/2, t) = 0, can be expressed in terms of Green’s function G(z, z′, t),

Q(z, t) =

∫ t

0

∫ ∞
−∞

S(z′, t′)G(z, z′, t− t′)dz′dt′, (D.3)

G(z, z′, t) =
2

L

∞∑
n=0

cos(qnz) cos(qnz
′)

sin(t
√
c2q2

n + κ)√
c2q2

n + κ
, (D.4)

where qn = nπ/L. Inserting Eq. (D.2) to Q(z, t) above and defining ωn =
√
c2q2

n + κ,
we obtain

Q(z, t) =
2Ag
L

∫ t

0

∫ ∞
−∞

e−z
′2/2σ2

z

∞∑
n=0

cos(qnz) cos(qnz
′)

sin(ωn(t− t′))
ωn

dz′dt′

=
2Ag
L

∞∑
n=0

cos(qnz)

ωn

∫ t

0

∫ ∞
−∞

e−z
′2/2σ2

z
(eiqnz

′
+ e−iqnz

′
)

2
sin(ωn(t− t′)dz′dt′.

(D.5)
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We can do the two integrations in Eq. (D.5) separately, and thus

Q(z, t) =
Ag
L

∞∑
n=0

cos(qnz)

ωn

∫ t

0

sin(ωn(t− t′)dt′
∫ ∞
−∞

(eiqnz
′
+ e−iqnz

′
)dz′

=
Ag
L

∞∑
n=0

cos(qnz)

ωn

(
1

ωn
[1− cos(ωnt]

)(
2σz
√

2π e−q
2
nσ

2
z/2
)

=
2σzAg

√
2π

L

∞∑
n=0

[
e−q

2
nσ

2
z/2

c2q2
n + κ

(
cos(qnz)× (1− cos(t

√
c2q2

n + κ))

)]
, (D.6)

as we have already seen in Eq. (5.16).



Appendix E

Calculation programs

There are several programs used to perform the coherent phonon calculation. All the
necessary programs can be found under the following directory in FLEX workstation:

~nugraha/for/00phd/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detailed
explanations about how to use the programs are given in the 00README file in each
subdirectory of ROOT.

Coherent phonon amplitude and spectra

Without excitonic effects

Directory: ROOT/coherent/

Main Program: coherent.f

Using coherent.f, we can calculate the coherent phonon amplitudes and spectra of
carbon nanotubes with typical calculation inputs such as (n,m) and pump-probe en-
ergy. The calculation is performed within the extended-tight binding method, without
including the excitonic effects (Chapter 4).

With excitonic effects

Directory: ROOT/cpexc/

Main Program: cpexc.f

Same as above, this program calculates the coherent phonon amplitudes and spectra
with typical calculation inputs such as (n,m) and pump-probe energy. The calculation
is performed by including the excitonic effects (Chapter 5).
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Armchair nanoribbon

Directory: ROOT/gnrcp/

Main Program: aGNR.f

We could obtain similar results of coherent phonon amplitudes and coherent phonon
spectra for armchair graphene nanoribbons. Typical calculation inputs now are the
number of A-B atom pairs along the ribbon width and the pump-probe energy. The
calculation is performed within the extended-tight binding method.

Effective mass theory

Directory: ROOT/elphanalytic/

Main Programs: coupling.f90, fit.f90

These programs give the electron-phonon matrix elements within the effective mass
theory and also some plotting utilities for the analytical formula given in Chapter 4.

Green’s function solver

Directory: ROOT/fgreen/

Main Program: green.f90

This program calculates coherent phonon amplitudes using Green’s function technique.
The output of amplitude calculation is also used in the cpexc.f program.

Mathematica notebooks

Directory: ROOT/math/

Main Programs: coherentphonon.nb, gaussexciton.nb

We also use Mathematica software to simulate the coherent phonon amplitudes in
carbon nanotubes, especially when including the exciton effects. These programs give
animations of coherent phonon amplitudes as a function of time and space. The
programs also give the average spatial amplitudes defined in Chapter 5. The output
is then used to calculate the coherent phonon spectra in cpexc.f program.
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