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Chapter 1

Introduction

1.1 Purpose of the study

In the last decade, graphene and graphene-based atomic layer materials have provided us

with intensive nanoscale research in terms of their novel electronic structures and advanced

applications [1, 2, 3, 4, 5]. In order to understand various phenomena in these materials, it

is necessary for us to study their electronic structure and vibrational properties of graphene

based-materials. With this regard, angle-resolved photoemission spectroscopy (ARPES) is a

useful method to explore electronic properties of solids. In ARPES, if the energy of photo-

excited electrons surpasses the work function of the sample, the photoelectrons are ejected

from the surface of a material. The kinetic energy and momentum of the photoelectron

are observed by an analyzer from which we can directly get information on the electron in

solids [6]. In this thesis, we will study the direct and indirect ARPES spectra near the K and

Γ points, respectively, of Brillouin zone of graphene and graphite, by means of the different

photon energies and light polarizations and discuss how significantly different physics from

these regions are. Therefor, The purpose of this thesis, is to answer follows questions in

details:

Direct transition:

1) What is the photon energy dependence of ARPES spectra in graphene?

2) What is the polarization dependence of ARPES spectra in graphene?

Indirect transition:
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1) How the phonon dispersion relations of the graphene and graphite can be observed by

the observation of the indirect transition ARPES spectra?

2) Which phonon mode can be observed by the ARPES?

3) What is the photon dependence of the indirect transition ?

4) What is the polarization dependence of indirect transition ?

The rest of this thesis is going to answer mentioned questions step-by-step. The study of

ARPES spectra near the K point and closed to the Fermi level enable us to determine the

optical properties of the the π and π∗ bands. The dependence of the ARPES intensity on

the energy and polarization of an incident light play important roles to resolve the ARPES

intensity because the ARPES intensity critically changes by modifying them [7, 8, 9, 10].

Changing the photon energy is assisted to determine features of the unoccupied states in

graphene and graphite. The polarization of the incident light help us to analyze the symmetry

selection rule for the direct and indirect transitions. Therefore, by symmetry analysis, we

understand the allowed and forbidden transitions. Furthermore, the investigation of ARPES

intensity from different wave vectors, particularly, around the Γ point, near to the Fermi

level, in graphene and graphite, is also important because the electronic and vibrational

properties in graphene and graphite can be obtained through the indirect transitions. For

example, it is known that the ARPES spectra around the Γ point and near the Fermi level do

not exist for the direct transition; however, there is a possibility an electrons is scattered from

near the K point into near the Γ point through the indirect transition, included electron-

phonon coupling and electron-photon interaction. Thus, the measurement of the energy and

momentum of the scattered electron near the Γ point and near the Fermi level also provide

valuable information about the electron-phonon coupling [11, 12].

In this thesis, to understand and to predict theoretically the electronic and vibrational

properties of graphene and graphite by the means of ARPES technique near the K and Γ

points and close to the Fermi level, we use group theory as well as computational calculation,

based on first principles calculations, to explore the photon and polarization dependence of

the direct and indirect transition ARPES spectra.
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1.2 Organization of the thesis

The present thesis is organized as follows: In the remaining part of Chapter 1, the background

for understanding the ARPES is described. In Chapter 2, the fundamentals of graphene an

graphite are reviewed, particularly, regarding the geometrical structure, electronic proper-

ties, and vibrational properties. The electronic structure and vibrational properties are

computed by Quantum Espresso package. In Chapter 3, we show the formulation of the di-

rect transition, includes the electron-photon interaction and the indirect transition, includes

the electron-photon interaction and the electron-phonon coupling, in ARPES. Besides, in

this Chapter, we proceed the previous formulation of the electron-phonon coupling based on

plane wave expansion to obtain a new (original) analytic formulation. The main (original)

results of this thesis are presented in Chapter 4, 5 and 6. In Chapter 4, we will discuss

about the symmetry transition rules for the direct and indirect transition in graphene and

graphite[13]. In Chapter 5, we show photon energy dependence of the ARPES intensity in

graphene[13]. In Chapter 6, we show how phonon-assisted indirect transition in ARPES for

graphene and graphite. Finally, in Chapter 7, a summery of this thesis is given.

1.3 General backgrounds

Hereafter, in this chapter, we briefly discuss some general concepts that is important to

understand ARPES as well as introduce some recent experimental results related to this

thesis.

1.3.1 Basics of Photoemission

Electrons and photons are the most easily available particles with which to prob matters.

Hence, many spectroscopes technique engage the use of these two types of particles [15]. In a

typical spectroscopic experiment an electron or a photon in a more or less well-defined state

(energy, direction of propagation, polarization) impinges on a sample. As a result the impact,

electrons and/or photons escape from the sample; and, then, the escaping particles are

analyzed with a spectrometer. In photoemission spectroscopy (PES), photons are incoming
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Figure 1-1: In photoemission process, photons are incoming and electrons outgoing. The
kinetic energy of photoelectrons are measured.

and electrons, the outgoing particles to be analyzed (see Fig. 1-1). In the most cases in

solid, the photoemission process can be roughly modeled by the ”three-step model”. The

three step-model is schematically shown in Fig. 1-2. In this model, it is assumed that the

photoemission process can be divided into three steps:

1) The excitation of an electron by an incident photon (creation of a photoelectron),

2) Travel of the photoelectron to the sample surface,

3) Emission of the photoelectron into the vacuum by overcoming the surface potential.

Then, the photoemission intensity as a function of the photoelectron kinetic energy in

vacuum Ek and the excitation photon energy ℏω is proportional to the product of the prob-

abilities corresponding to each step [16]. The probabilities of the three-step model are rep-

resented by

P (Ek, ℏω)T (Ek, ℏω)D(Ek), (1.1)

The information on the electronic states of solids is included in the first term. In step (1),

the electron is initially excited from an occupied state by the absorption of a photon into an

unoccupied state. The photoexcitation probability is explained by the Fermi golden rule[17]
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Figure 1-2: (a) Schematic representation of a photoemission process in the three-steps
model.(b) Step (1) is the excitation of an electron by an incident photon; step (2) is travel
of the photoelectron to the sample surface; step (3) is emission of the photoelectron into the
vacuum by overcoming the surface potential [14].

Step (2) can be described in term of represents the probability of the photoelectron

motion to the surface without serious inelastic scattering. This process can be expressed by

using the absorption coefficient α(ℏω) for the incident photon and the photoelectron inelastic

mean free path λmp(Ek). 1/α(ℏω) is of the order of 100–1000 Å or more for ℏω in the range

of 6–10000 eV which is much longer than λmp(Ek) ≤ 100 Å for the most element solids as

shown in Fig.1-3 [19, 18]. The T (Ek, ℏω) is given as

T (Ek, ℏω) =
α(ℏω)λmp(Ek)

1 + α(ℏω)λmp(Ek)
≃ α(ℏω)λmp(Ek). (1.2)

The λmp takes a minimum of 3–5 Å at Ek of 15 − 200 eV in many cases. This minimum

length corresponds roughly to lattice constants of various solids. Therefore, the valence-

band photoemission spectra with of 15-200 eV by using a He discharge lamp or synchrotron

light source mainly reflect the surface electronic states of solid. Step (3), escaping from the

bulk, is the final step of the photoemission process. This process can be calculate when the

photoelectrons can be treated as nearly free electrons with a potential of depth Ev−E0 ≡ V0

(this is called the inner potential), where Ev denotes the vacuum level and E0 stands for the

bottom energy in a nearly free electron band. This approximation is appropriate since the

photoelectron energy is much higher than that for bound electrons in solids. In the nearly

free electron model, the kinetic energy of photoelectron inside the solid is Ek+V0 whereas it
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Figure 1-3: (a) Kinetic energy dependence of the photoelectron inelastic mean free path λmp

as a function of electron energy [18]. for (a) several solids (b) 41 elements solids.

becomes Ek suddenly at the boundary. Since the ”force” is applied to the photoelectron only

perpendicular to the surface, the photoelectron momentum parallel to the sample surface is

conserved on the emission into vacuum, which is one of the fundamental principle for ARPES.

To satisfy the condition that the perpendicular momentum component of the photoelectron

emitted into the vacuum to be possible, D(Ek) is calculated [16] as

D(Ek) =
1

2

(
1−

√
V0

Ek + V0

)
. (1.3)

This function depends gently on Ek, and can be regarded as a constant when the recorded

kinetic energy range is narrow enough compared with Ek. Therefore, it is hereafter assumed

that the Ek dependence on the terms T (Ek, ℏω) and Dk(Ek) is negligible within the discussed

kinetic energy rage of one spectrum.

Then, electrons that overcome a solid potential, or work function, ϕ can escape from

surface. The work function is define the difference between the material’s Fermi level, and

the energy level of the vacuum. Fig. 1-4 shows schematically how the energy-level diagram

and the energy distribution of photoemitted electrons related to each other. The solid sample

has core levels and a valence band. In the the present case of a metal, the Fermi energy
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Figure 1-4: The electron energy distribution, N(E), are produced for valence band or core
levels by the incoming photons and measured as a function of kinetic energy Ekin is expressed
in terms of the binding energy Eb, work function ϕ and photon energy ℏω. The natural
abscissa for the photoelectrons is the kinetic energy with its zero at the vacuum level of the
sample (Ek = ℏω − |Eb| − ϕ) [14].

Ef is at the top of the valence band and has a separation ϕ from the vacuum level Ev [14].

Thus, the kinetic energy of the photoelectron in vacuum can be written as

Ek = ℏω − |Eb| − ϕ, (1.4)

where, Eb, is the so-called binding energy if electrons, which in solids is generally referred

to the Fermi level and in free atoms or molecules to the vacuum level. The work function

ϕ has a substantial effect on the energy of observed electrons; but, it is common to omit it

when reporting photoemission result.

1.3.2 Angle Resolved photoemission Spectroscopy

Angle resolved photoemission spectroscopy is a kind of photoemission spectroscopy. The PES

measures only the energy of electrons. ARPES measures not only the energy of electrons,

but also their momentum. In this way, ARPES is a direct method to observe the band

structure of solids experimentally. Figure 1-5 shows ARPES intensity as function of the
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Figure 1-5: The ARPES intensity shows the electron dispersion of graphene along high
symmetry point of graphene for ℏω = 100 eV [3].

binding energy along the high symmetry point of graphene for the ℏω = 100 eV. The π and

σ bands of graphene can be seen from this measurement.

The key to understand ARPES is how the momentum of the electron in the vacuum is

related to the momentum in the solid. In ARPES, the photoelectron momentum parallel

to the sample surface is conserved on the emission into vacuum. As shown in Fig. 1-6, the

photoelectron momentum kf is the sum of the momentum of electron in the initial state ki

and the incident photon q, in the reduce zone scheme [14], as

kf∥ = ki∥ + q∥, (1.5)

here, the photon momentum normal to the sample surface is defined as −q⊥. We can write

the momentum in terms of kf and the kinetic of the energy, Ek, in vacuum

Ek =
ℏ2k2

f

2me

, (1.6)

where me is the electron mass. Hence, the parallel wave vector of the photoelectron can be
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Figure 1-6: Schematic representation of the momentum conservation at each step in the
photoemission process in solids. In the figure, photon momentum normal to sample surface
is defined as −q⊥ [16].

written as

kf∥ ≃ 0.5Å
−1

sin θ
√
EV

k (eV ),

∆kf∥ ≃ 0.5Å
−1

cos θ
√
EV

k (eV )∆θ.
(1.7)

The momentum resolution is obtained as

∆kf∥ =

√
2meEk

2ℏ
· ∆Ek

Ek

sin θ +

√
2meEk

ℏ
cos θ ·∆θ. (1.8)

where ∆Ek denotes the energy resolution and ∆θ stands for the acceptance angle of photo-

electrons. In Eq. (1.8), the first term on the right side is negligibly smaller than the second

term in general. Recently, typical ∆θ is 2◦ = 0.035 radiant or larger. If one assumes that

the angular acceptance of the electron analyzer is ∆θ = 2◦ and that the detected electrons

are photoexcited at the Fermi energy, one has:

∆kf∥ = 0.17Å
−1
. (1.9)

If the kf∥ is compared with the Brillouin zone dimension of graphite 2π/a ≃ 2.55Å
−1
, where
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Figure 1-7: Electrons are kicked out from sample with various momentum. Only electrons
exciting sample parallel to the slit (purple) will be measured. To observe a different kx, the
brown line, the sample and its corresponding emission cone are rotated until it aligns with
slit [21].

a = 2.46Å
−1

is graphite lattice parameter, we can find out that the photon wave vector can

be neglected. Hence, From Eq. 1.5 and Eq. 1.13

ki∥ =

√
2mEV

k

ℏ
sin θ − q∥. (1.10)

Although the momentum is not conserved along the surface normal direction, Ki⊥, it can

be obtained when photoelectrons can be treated as nearly free electrons in the solid by using

the inner potential V0 and Eq. 1.5 as

ki⊥ =

√
2mEV

k cos2 θ + V0
ℏ

+ q⊥. (1.11)

The momentum resolution along the normal direction ∆kf⊥ is not determined from Eq. 1.11

but depends on the λmp [20, 16] as

∆kf⊥ ∼ 1

λmp

. (1.12)
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(a) (b) (c) (d)

Figure 1-8: (a) The photoemission intensity map of graphene is shown [3]. (b) The schematic
raw data that construct the map of graphene band structure. (c) Energy density curve near
the Γ point along M–Γ. (d) the momentum density from this data can be extracted.

Moreover, The two parallel components of the wave vector, shown in Fig. 1-7, can be

also expressed as:

kfx =

√
2meEV

k

ℏ
sin θ cosϕ,

kfy =

√
2meEV

k

ℏ
sin θ sinϕ,

(1.13)

θ and ϕ are the angle describing the trajectory of the electron .

To understand how the ARPES measurement maps the electron dispersion of solid, we

discuss each step of the measurement separately. Figure 1-8(a) shows the ARPES intensity

as a function of the binding energy in graphene along high symmetry point. The electrons

escaped from the sample it is detected in an analyzer through a slit parallel to ϕ = 0.

This measurement limits the observation of the electrons with ky = 0 [21]. However, there

are possibilities that electrons with various θ, the kx spectrum, enter the analyzer. Thus,

collecting ARPES spectra from different wave vectors map the ARPES spectra which are

aligns to the analyzer. For example, data collected from ARPES measurement at a given

ky maybe seen as ”slices”. The raw data for a slice is shown schematically in Fig. 1-8(b)

schematically. For a constant energy and momentum, it is referred to as energy dispersion

curves (EDC) Fig. 1-8(c) or momentum dispersion curves (MDC) Fig. 1-8(d). Peaks either

of these curves correspond to high photoelectron density, indicating the center of electron

band. By combining a series of slices, it is possible to construct a matrix of intensity data

spanning the entire Brillouin zone, which varies as a function of momentum kx and ky, and
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Figure 1-9: (a) Geometry of the photoemission process [13]. The incident photon with energy
ℏω are shown by an arrow going to the graphene plane. We can define a mirror plane which
contains the directions of the incident light (z′ axis), the electrons ejected from the surface,
and an axis (z-axis) normal to the graphene surface. The angle between incident light, the
ejected electron, and the z-axis is denoted by ψ, θ. (b) Viewing the set-up from the z′ axis,
the light polarization angle, ϕ, is in the x′y′-plane and measured with respect to the y′ axis.
Here, ϕ = 0◦ and ϕ = 90◦ correspond to the p- and s-polarization, respectively.

binding energy Eb [21]. One common way to represent this data is as a band map. Here, an

EDC or combination of several EDC is taken for each ky. By plotting these in series, it is

possible to observe the peak shift in each on. Connecting these peak points , we are able to

track the bands across key cut such as Γ−K or Γ−M in the Brillouin zone.

1.4 Photon and polarization dependence of the ARPES

in graphene

The electron energy band structure of graphene can be observed by applying different light

polarizations. When the incident light polarization is parallel or perpendicular to a plane

that includes the incident light and ejected photoexcited electron, they are named as p-

polarized or s-polarized light, respectively [22] (see Fig. 1-9 (a)). Some previous studies

showed that, in the ARPES spectra of graphene, π and π∗ bands near Dirac point along the

Γ–K direction are brightened by the p- and s-polarized light, respectively [7, 8, 9, 10](see

Fig. 1-10 (a)). On the other hand, for the direction along K–M , the π and π∗ bands, are
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Figure 1-10: Band structure measured along Γ–K for an epitaxial graphene monolayer on
SiC(0001) for two different photon energies ((a), (b): ℏω = 35 eV; (c), (d): ℏω = 35 eV
) for (a) p-polarized light (b) s-polarized light. The gray scale is linear with black (white)
corresponding to high (low) photoemission intensities [10].

brightened by the s- and p-polarized light, respectively, (see Fig. 1-10 (b)). The energy band

brightened by the p-polarized light is referred to as the p-branch, while that brightened by

the s-polarized light is called the s-branch. Such polarization dependence is known as the

electronic chirality or chiral phenomenon of graphene in ARPES spectra. Fig. 1-11 shows the

corresponding Fermi surface around the K point for ℏω = 35 eV and ℏω = 52 eV with both

p- and s- polarized light. For p-polarized radiation Fig. 1-11 (a), there is no photoemission

intensity as spot 1. This situation changes drastically when using s-polarized light Fig. 1-11

(b)[10].

Some researchers in the previous studies explained the chiral phenomenon in graphene

by considering the interference of electron wave functions for A and B atoms in the initial

states [7, 8, 9]. They calculated the electron-photon matrix elements in the presence of p- or

s-polarized light for the ARPES intensity and they considered the wave functions of the final

states as a single plane wave which has even symmetry with respect to the plane of incident
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Figure 1-11: Fermi surface of expitaxial graphene on SiC(0001) measured with p-polarized
light ((a)-(c)) and s-polarized light ((b),(d)) for different photon energies ((a),(b): ℏω =
35 eV and (c),(d): ℏω = 52 eV) [10].

light and ejected electron. Since the dependence of the electron-photon matrix elements

on the final state wave functions was not considered to explain the chiral phenomenon,

they refer to the phenomenon only as the initial state effects on the electron-photon matrix

elements. However, Gruneis et al. showed much earlier that, in the calculation of π − π∗

optical transition, the direction of the electron-photon dipole vectors critically depend on

the final states [23]. In particular, the direction of the dipole vectors will change for different

final states which are independent of light polarization. Thus, studying the final state effects

on the electron-photon matrix elements is essential for ARPES spectra.

To consider the final state effects experimentally, we can apply a variation in the photon

energy. Gierz et al. showed that, by applying different photon energies in ARPES measure-

ment of graphene, the s-polarized light with energy of around 52 eV can illuminate both

bands in the direction of Γ–K and K–M due to the change of the final states [25, 10]; their

experimental measurement is shown in Fig. 1-5 (c) and (d). Therefore, the whole Fermi

surface is illuminate by the s-polarized light (see Fig. 1.6 (d)).
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Figure 1-12: Measured (a) and calculated (b) Fermi surface for right circular polarization
light (b) left circular polarization light for different photon energies [24]. There is a discrep-
ancy between experimental measurement and calculation for ℏω = 45 eV

Furthermore, they used circularly polarized light to observe polarization dependence of

ARPES spectra for different photon energy [24]. Their experimental results show that the

ARPES intensity for left and right circular polarization becomes almost the same near 46 eV

photon energy. However, their theoretical approach did not reproduce the experimental

results [24].

Motivated by the above mentioned issues, in this thesis, as the first investigation sub-

ject, we combine experimental and theoretical approaches to clarify the photon energy and

polarization dependence of ARPES spectra in graphene.
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Figure 1-13: (a) ARPES data taken along K–M direction (solid line in the inset). (b)
Dispersion (black curve) extracted by fitting the raw data. The dashed line is the fit using
two straight line with different slopes. Within 20 meV below Ef , the dispersion is effect by
the resolution, and therefore, they fit the dispersion only in the range between −250 and
20 meV. The gray dotted line is a guide for the deviation of the low-energy dispersion from
the extrapolation of high-energy dispersion[26].

1.5 An investigation of electron-phonon coupling via

phonon dispersion

ARPES is one of the well-established methods to probe the electron-phonon coupling (EPC)

in solids [6]. The renormalization of the electronic energy and state due to the EPC have been

vastly explored by the observation of the electron dispersion relation near the Dirac point

(the K or K ′ point) in graphene [27, 28, 29]. The EPC renormalization causes appearance

of a kink structure in the electron dispersion relation. The ARPES intensity is expressed

in terms of the complex self-energy where its real and imaginary parts determine the kink

structure and width in the electron dispersion relation respectively [30, 31]. Fig. 1-8 shows

the observation of the kink in the electron dispersion relation of graphene when ARPES data

taken along K–M direction [26]. The electron dispersion of graphene as function wave vector

changes linearly if the EPC is not considered; however, the EPC is renormalized electron

dispersion and it causes the observation of the kink in electron dispersion.

It is known that the ARPES spectra around the Γ point and near the Fermi level (with

binding energy around Eb ≈ 0–3 eV) do not exist for the direct optical transition because

there is no corresponding energy state [27]. However, recent ARPES experiments show that
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Figure 1-14: Normal-emission spectrum from HOPG showing a step-like function near
67 meV and 154 meV. (a) Integrated normal-emission spectra (b) Absolute value of the
first derivative.

measurement of the ARPES intensity around the Γ point and near the Fermi level could

also provide valuable information on the electron-phonon interaction [11, 12]. For example,

Liu et al. have observed the ARPES spectra at the Γ point and near the Fermi level for

graphene-based materials [11]. They pointed out that the observation of ARPES spectra

originates from the indirect transition of electrons, which is mediated by phonons. In their

experiment, the observed ARPES spectra with binding energy around 154 meV and 67 meV

have been ascribed to the energy and momentum of the phonon at the K (or K′) point.

They suggest that the electron is scattered from the K to the Γ point by emitting a phonon

through the indirect transition. However, the phonon dispersion from their experiment could

not be determined because they used photon energies of more than 20 eV.

Tanaka et al. have reported ARPES spectra of highly-oriented pyrolytic graphite (HOPG)

around the Γ point and near the Fermi level for various photon energies less than 15 eV [12].

This experiment probes the energies and momenta of the electrons and phonons involved

in the indirect transition, for different photon energies, so that the phonon dispersion of

HOPG can be obtained (see Fig. 1-15). They found that, when the incident p-polarized

photons are given to the sample surface, the ARPES intensity increases like a step-function

at the binding energy around 154 meV and 67 meV for ℏω = 11.1 eV and for ℏω = 6.3 eV,

respectively, and that the ARPES spectra cannot be observed for the ℏω = 13 − 15 eV in

their experiment (see Fig. 1-15(b)). Then, differential of the photoelectron intensity with

respect to the binding energy is calculated (see Fig. 1-15(c)). Finally, Fig. 1-15(c) and (d)
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Figure 1-15: (a) Surface-normal photoelectron spectra of HOPG at 50 K taken at 6 eV ≤
ℏω ≤ 16 eV. (b) Typical spectra of HOPG taken at several photon energies along with
that of the Au film at 40 K. (c) Differential of the photoelectron intensity with respect to
the binding energy. (d,e) Differentials of the photoelectrons as a function of the parallel
momentum of the electron.

Differentials of the photoelectrons as a function of the parallel momentum of the electron is

plotted that it is express the phonon dispersion relation of the HOPG. However, not all the

possible phonon dispersion relations of graphite could be well-resolved since HOPG is not a

single crystal of graphite. Thus, the phonon modes involved in the indirect transition were

not assigned properly from previous experimental measurements.

Therefore, the second subject of this thesis is studying the indirect transition of ARPES

spectra near the Γ point and closed to the Fermi level. We will assign that which phonon

modes can be involved in the indirect transition. Then, we will studying the photon and

polarization dependent of the indirect transition ARPES spectra.
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Chapter 2

Basics of graphene and graphite

Basic physical properties of graphene and graphite are reviewed in this section. The discus-

sion includes a description of the geometrical structure, electronic properties and vibrational

properties of graphene and graphite. The electronic and vibrational structures are calculated

by Quantum Espresso package [32].

2.1 Geometrical structure

The electronic configuration of a free carbon atom is 1s22s22p2. When a solid is formed from

carbon atoms, the electrons in the 2s and 2p orbitals form so-called hybrid orbitals that

point along the chemical bonds. Depending on the crystal that we have, a different number

of hybrid orbitals is required to point from two to four nearest neighbor atoms. Thus, carbon

forms spn hybrid orbitals with n = 2 for graphene and graphite which are crystallized in a

planar hexagonal lattice. We can define graphene as a single layer of carbon atom and it

is shown in Fig. 2-1(a). Several layers of graphene sheet stacked together will form three

dimensional graphite, shown in Fig. 2-1(b) and (c). The distance between planes is 0.3 nm.

Bonding between layers is via weak van der Waals bonds, which allows layers of graphite to

be easily separated, or to slide past each other. spn hybrid orbitals include two 2s electrons

and one 2p electron (2px or 2py in graphene plane) form three sp2 hybrid orbitals and one

2pz electron which is oriented perpendicular to the graphene plane. The 2pz electron makes

a valence π band. The π band is calculated by Wannier90 package [33] and it is shown in
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(a) graphene (b) graphite (c) graphite 
                 (top view)

Figure 2-1: (a) Graphene is the single layer of carbon atoms hexagonal lattice. (b) Graphite
has a layered, planar structure. In each layer, the carbon atoms are arranged in a hexagonal
lattice. (c) Graphite (top view).

Fig. 2-2(a). The blue and red regions indicate positive and negative values of the real part

of the wave function amplitudes, respectively. The in-plane sp2 make strong σ-bonds, shown

in Fig. 2-2(b) .

Figure 2-3(a) and (b) shows the unit cell and Brillouin zone of graphene, respectively.

The graphene sheet is generated from the dotted rhombus unit cell shown by the lattice

vector a1 and a2, which are define in (x,y) coordinate as

a1 = a(

√
3

2
,
1

2
, 0), a2 = a(

√
3

2
,−1

2
, 0), a3 = c(0, 0, 1), (2.1)

where the in-plane lattice parameter is a =
√
3aCC is the lattice constant for the graphene

sheet and aCC = 1.42 Å is the nearest-neighbor inter-atomic distance. The out-of-plane

lattice parameter for graphite is c = 2c0, where c0 = 3.35 Å, the distance between carbon

atoms on the adjacent layer planes. Thus a direct lattice vector is:

Rn = n1a1 + n2a2 + n3a3

= a
(√3

2
(n1 + n2),

1

2
(−n1 + n2), cn3

)
,

(2.2)

where n1, n2 and n3 are integers. The unit cell consists two distinct carbon atoms from the

A and B sublets shown in Fig. 2-3. The reciprocal lattice vector b1, b2 and b3 are related
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(a) (b)

Figure 2-2: Surface plots for the maximally localized (a) π-band and (b) σ-bond orbital
Wannier function. The blue and red regions indicate positive and negative values of the real
part of the wave function amplitudes, respectively.

to the real lattice vectors a1, a2 and a3 according to the definition

ai · bj = 2πδij, (2.3)

where δij is the Kronecker delta, so that b1 and b2 are given by

b1 =
2π

a

( 1√
3
, 1, 0

)
, b2 =

2π

a

( 1√
3
,−1, 0

)
, b3 =

2π

c

(
0, 0, 1

)
. (2.4)

A reciprocal lattice vector is defined

Gm = m1b1 +m2b2 +m3b3

=
( 2π√

3a
(m1 +m2),

2π

a
(m1 −m2),

2π

c
m3

) (2.5)

The first Brillouin zone of graphene is shown as a shaded hexagon in Fig. 2-3, where

Γ (center), K, K ′ (hexagonal corners), and M (center of edges) denote the high symmetry

points.
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(a) (b)

Figure 2-3: (a) The unit cell of graphene is shown as the dotted rhombus. a1 and a2 are the
unit vectors of graphene. The graphene unit cell in real space contains two carbon atoms
A and B. (b) Brillouin zone (BZ) of graphene is displayed as the shaded hexagon . The BZ
is given by reciprocal lattice vectors b1 and b2 with |b1| = |b2| = 4π√

3a
. The dots labeled

Γ, K,K ′ and M in the BZ indicate the high-symmetry points.

2.2 Electronic properties

The electron dispersion relations of graphene and graphite are calculated along Γ–K–M–Γ

by the quantum Espresso (QE) package [32] and it is shown in Fig. 2-4(a) and (b). Graphene

has three σ bands, formed by, s, px and py orbitals, and a π band, formed by pz orbital.

While, graphite has six σ bands, and two π and two π∗, bands because its unit cell has four

atoms. Although the interlayer interaction is weak, this interaction has an effect on the π and

π∗ bands near the edges zone of graphite and it results in a band overlap that is responsible

for the semi-metallic properties of graphite, in contrast to graphene which is a zero gap

semiconductor [34]. The Brillouin zone of graphite is shown in Fig. 2-5(a). The dots labeled

Γ, K, M , A, L, H in the Brillouin zone of graphite indicate the high symmetry points. Γ–A

is the direction corresponding to the lattice vector normal to the surface of graphite. Fig. 2-

5(b) shows the electron dispersion relation of the graphite along high symmetry points. For

both graphene and graphite, we adopt the norm-conserving pseudo-potential with Perdew-

Zunger (LDA) exchange-correlation scalar relativistic functional to calculate the electronic

dispersion relations. The kinetic energy cut-off is taken as 60 Ry. For each atom and the

kinetic energy cut-off for density potential is set 600 Ry. In order to verify the convergence

of all wave functions. The k-point mesh grid for self-consistent calculation is 42 × 42 × 1
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(b)     graphite(a)    graphene

Figure 2-4: Electron energy dispersion relation in (a) graphene, (b) graphite, calculated by
QE package [32] are shown along high-symmetry points Γ–K–M–Γ.

in the graphene and 20 × 20 × 4 in the graphite Brillouin zones. The lattice parameter of

graphene is considered 2.4Å and the lattice constant for unit cell normal to graphene planes

is taken as c/a = 20.0 and c/a = 2.7 for graphene and graphite, respectively.

2.3 Vibrational properties

Phonon energy dispersion relations are a fundamental physical properties of solid for deter-

mining the mechanical, thermal and other condensed matter phenomena. The phonon disper-

sion of graphene and graphite have been explored experimentally by inelastic neutron [35, 36],

electron energy loss spectroscopy (EELS) [37, 38] and x-ray scattering [39] techniques. While,

Theoretically, a number of techniques including elastic continuum model [40], force constant

models [41, 42, 43], bond charge models [44] and ab-initio calculations[45, 46, 47] have been

used to calculate phonon energy dispersion relations of graphene and graphite. Here, we cal-

culate the phonon dispersion relations through QE package [32], which calculate the phonon

dispersion via Density Functional Perturbation Theory (DFPT). Thus, first, we have to find

the ground state atomic and electronic configuration; then, the phonon dispersion relations

are calculated by DFPT (see Appendix D). To calculate the phonon energy and eigenvec-

tors of graphene and graphite, we adopted the Perdew-Burke-Ernzerhof (PBE) generalized
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A L

(a) (b)

Figure 2-5: (a) Graphite Brillouin zone showing for several high symmetry points. The dots
labeled Γ, K, M , A, L, H in Brillouin zone indicate the high symmetry points. (b) The
electron energy dispersion relations of graphite along the high symmetry point is calculated
by QE package [32].

gradient approximation (GGA) for the exchange-correlation function. The kinetic energy

cut-off is taken 100 Ry for each atom and kinetic energy cut-off for density potential is set

1200 Ry. The dynamical matrix is calculated on a 6× 6× 1 and 6× 6× 3 q-points mesh in

graphene [48].

The calculated phonon dispersion is shown in Fig. 2-6 for (a) graphene (b) graphite.

Since there are four atoms in the unit cell of graphite, there will be twelve phonon modes.

Most of the phonon modes are nearly doubly degenerate and similar to graphene [49, 50]. An

exception is near the Γ point, where the acoustic modes of the single layer split in graphite

into an acoustic mode (ZA) and an optical mode (ZO′), as shown in Fig. 2-6(a). In graphene,

there are six phonon branches, four in-plane and two out-of-plane. At the Γ point, there

are three acoustic (A) branches: (1) the transverse and (2) longitudinal in-plane acoustic

phonon modes, which are labeled in Fig. 3 as TA and LA respectively, and (3) the out-

of-plane acoustic phonon mode which is labeled ZA. Furthermore, there are three optical

phonon modes: (1) the transverse and (2) longitudinal in-plane optical modes, which are

labeled by TO and TA, respectively, and (3) the out-of-plane optical phonon mode, which is

labeled by ZO. The phonon eigenvectors of graphene at the Γ point are also shown in Fig. 2-7

and each phonon mode is labeled. In graphite, the are twelve phonon modes because there

24



(a)      graphene (b)      graphite 

Figure 2-6: (a) Graphene phonon dispersion, (b) graphite phonon dispersion are calculated
by QE along high-symmetry points Γ–K–M–Γ.

LA LO TA TO

ZA ZO

Figure 2-7: The vibration eigenvectors of graphene at the Γ point are shown and each phonon
mode is labeled[51].

are four atoms in the unit cell.
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Chapter 3

Direct and indirect transition of

ARPES spectra

In this chapter, firstly, we will explain the experimental set-up of ARPES that we consider

in this thesis. Then, the direct and indirect transitions mechanisms will be discussed. The

direct transition, shown in Fig. 3-1(a), is a transition an electron from a valence band is

excited to a conduction band by photoabsorption while the momentum of the electron does

not change during this process. The direct transition is formulated by first-order perturbation

theory. On the other hand, the indirect transition, shown in Fig. 3-1(b), is a transition that

the momentum of the electron is also changed due to involving a photon, phonon or impurity

interaction. The indirect process is formulated by second-order perturbation theory. In this

thesis, we consider the indirect transition as a transition includes electron-photon interaction

and electron-phonon coupling.

3.1 Geometry of ARPES

The experimental set-up of the direct transition is shown schematically [13], in Fig. 3-2(a).

The graphene surface is irradiated by photons with the incident angle ψ with respect to

z axis, normal to the surface. The emitted electrons, with emission angle θ, are analyzed

with respect to their kinetic energy and momentum [22]. We can define a mirror plane

which contains the incident light (−z′ axis), the electrons ejected from the surface, and
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Figure 3-1: (a) The direct transition is a transition an electron from a valence band is
excited to a conduction band by photoabsorption while the momentum of the electron does
not change during this process. (b) the indirect transition is a transition that the momentum
of the electron is also changed due to involving a photon and phonon or impurity interaction.

the axis normal to the graphene surface (z-axis). When the incident light polarization is

perpendicular (parallel) to the mirror plane, the light is named s-polarized (p-polarized)

light [13, 7, 8, 9]. From the z′ axis viewpoint, as shown in Fig. 3-2(b), we see that the light

polarization angle can be defined by angle ϕ in the x′y′ plane and measured by the y′ axis.

ϕ = 0◦ and ϕ = 90◦ corresponds to the p and s polarization, respectively.

3.2 Direct transition of ARPES

Here, we show how to calculate the electron-photon matrix elements. The Hamiltonian for a

charge particle with mass m and charge −e in an electromagnetic field with vector potential

At(t), where t index indicates the transmitted vector potential into the solid, and a periodic

crystal potential V (r) is given by

H =
1

m
(−iℏ∇+ eAt(t))2 + V (r). (3.1)
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Figure 3-2: (a) Geometry of the photoemission process [13]. The incident photon with energy
ℏω are shown by an arrow going to the graphene plane. We can define a mirror plane which
contains the directions of the incident light (z′ axis), the electrons ejected from the surface,
and an axis (z-axis) normal to the graphene surface. The angle between incident light, the
ejected electron, and the z-axis is denoted by ψ, θ. (b) Viewing the set-up from the z′ axis,
the light polarization angle, ϕ, is in the x′y′-plane and measured with respect to the y′ axis.
Here, ϕ = 0◦ and ϕ = 90◦ correspond to the p- and s-polarization, respectively.

If we neglect quadratic terms in At(t) as well as use the Coulomb gauge ∇ ·At(t) = 0, the

electron-photon perturbation Hamiltonian Hopt is given

Hopt =
ieℏ
2m

At(t) · ∇. (3.2)

The vector potential in the vacuum, Ai(t) , can be obtained from the Maxwell equation

which is given as

∇×B = ϵ0µ0
∂E

∂t
. (3.3)

The electric and magnetic fields of the incident light are

E(t) = E0 exp(i(k · r+ iωt)),

B(t) = B0 exp(i(k · r+ iωt)).
(3.4)

Hence, B = ∇×A = ik×A and B = ik×B. We can write,

∇×B = k2A =
1

c2
∂E

∂t
. (3.5)
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Since E is a plane wave we get ∂E
∂t

= −iωE then using, ω = kc, we can write Ai in vacuum

as, Ai = − iE
ω
. Thus, the electrical field and vector potential direction are the same. The

energy density I0, of the electromagnetic wave is given by,

I0 =
EB

µ0

=
E2

µ0c
. (3.6)

The unit of I0 is J/m2sec. Thus, the vector potential in vacuum can be written in terms of

the incident light intensity, I0 and the polarization of the electric field component P as,

Ai(t) = − i

ω

√
I0
cϵ0

exp(iωt)P (3.7)

where ω is the angular frequency of a photon, ε0 is the dielectric constant of the vacuum

and c is the velocity of the light.

In ARPES, we change the angle of the incident light, ψ, with respect to normal to the

sample to observe different k points, (see Fig. 3-2(a)). The relationship between the angle of

incident light and the transmitted light in the sample is given by Fresnel equation [52, 53, 54].

The Fresnel equation is obtained in the Appendix B. In Fresnel equation, for a given vector

potential of incident light Ai in the vacuum, the vector potential of transmitted light At in

the graphene with a dielectric function ε(ω) = ε1(ω) + iε2(ω) is given as follows [52, 53, 54]:

At
x =

2 cosψ sinϕ

cosψ +
√
ε(ω)− sin2 ψ

|Ai|,

At
y =

2
√
ε− sin2 ψ cosψ cosϕ

ε(ω) cosψ +
√
ε(ω)− sin2 ψ

|Ai|,

At
z =

2 cosψ sinψ cosϕ

ε(ω) cosψ +
√
ε(ω)− sin2 ψ

|Ai|,

(3.8)

where At
x,y,z are x, y, and z component of At, ϕ is the light polarization angle measured

from the y′ axis as shown in Fig. 3-2(b). In particular, ϕ = 0◦ and ϕ = 90◦ correspond to

the p-polarization and s-polarization, respectively.

The electron-photon matrix element is defined by

Mopt(ki,kf ) = ⟨Ψf (kf , r)|Hopt|Ψi(ki, r)⟩, (3.9)
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where Ψi(ki, r) and Ψf (kf , r) are the wave functions of an initial and a final state, respec-

tively, and k is the wave vector. When we assume that vector potential is slowly changing

function of r compared with Ψi or Ψf , the electron-photon matrix element can be written

as [23]:

Mopt(ki,kf ) = At(t) ·D(ki,kf ), (3.10)

where the dipole vector D(ki,kf ) is defined as

D(ki,kf ) = ⟨Ψf (kf , r)|∇|Ψi(ki, r)⟩. (3.11)

To consider the final state effects on the matrix elements, we expand the wave functions

of the initial states and final states in terms of plane waves,

Ψi(ki, r) =
∑
G

Ci
G(ki) exp

(
i
(
ki +G

)
· r
)
,

Ψf (kf , r) =
∑
G

Cf
G(kf ) exp

(
i
(
kf +G

)
· r
)
,

(3.12)

whereG are the reciprocal lattice vectors of graphene and Ci,f
G (k) are plane wave coefficients.

We set the upper limit of photon energy as 60 eV. In this case, the optical transition occurs

vertically in the k space, that is, ki ≈ kf = k. It should be noted that this assumption is

no longer valid in the XPS measurement [55]. Inserting Eq. (A.2) to Eq. (A.1), we obtain

D(k) = i
∑
G

Cf∗
G (k)Ci

G(k)
(
k+G

)
. (3.13)

ARPES intensity I as a function of wave vectors k and photon energy ℏω can be calculated

by using the Fermi’s golden role as follows [14]:

I
(
k, ℏω

)
∝
∑
i

∣∣∣∑
f

Mopt(k)
∣∣∣2δ(Ef − Ei − ℏω

)
, (3.14)

where Ei and Ef are the energies of the initial and final states of the electron, respectively,

and the delta function implies an energy conservation. The absolute value is taken after

the summation of the final states to assure that all interference phenomena for a given
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initial state are included [56]. In our calculations, the Dirac delta function is replaced by

a Lorentzian, having a finite half-width of energy 0.6 eV which is obtained by fitting to

experimental spectra. The excited electrons can escape from the surface if Ef is larger than

the work function of graphene ϕwf = 4.5 eV [57].

3.3 Indirect transition AEPES

The observation of the ARPES spectra near Fermi level around Γ point can be explained by

the indirect transition. Let us define the Hamiltonian He for electrons, Hph phonon, Hopt for

the electron-photon interaction and Hepc for the electron-phonon coupling. Then, the total

Hamiltonian is written as

H = He +Hph +Hopt +Hepc, (3.15)

The unperturbed Hamiltonian of electrons and phonons is considered as H0 = He + Hph.

We adopt the adiabatic approximation which implies the total wave function can be written

as a product of an electron eigenstates and phonon eigenstates[31]. Thus, the eigenstates of

the unperturbed Hamiltonian are expressed as

|j⟩ = |jk⟩, (3.16)

where j = i,m, f refers to an initial, an intermediate and a final state of the electron,

respectively. k is an electron wave vector. The unperturbed electron and phonon dispersion

relation and their eigenstates along the high symmetry points are calculated by Quantum

Espresso package [32]. The calculated electron dispersions of graphene and graphite are

shown in Figs. 2.4(a) and (b) and Figs. 2.5(a) and (b) , respectively.

The perturbation Hamiltonian is considered as

H ′ = Hopt +Hepc (3.17)

The transition rate from an initial sate |i⟩ to a final state |f⟩ through a virtual state |m⟩ is
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given by the second-order perturbation theory [58, 59].

W (kf ,ki) =
2π

ℏ

∣∣∣∣S(kf ,ki)

∣∣∣∣2δ(εi − εf ). (3.18)

where εi and εf represent energy of an initial state and a final state, respectively, and

S(kf ,ki) is

S(kf ,ki) =
∑
m

⟨f |H ′|m⟩⟨m, |H ′|i⟩
εi − εm

. (3.19)

Two processes can contribute to the indirect transition. These processes are depicted in

Fig. 3-3(a). The first process is: (1) a photon excites an electron from the initial state |Aki⟩

to a state |Bkm⟩, A → B. Then, the photoexcited electron from the state |Bkm⟩ is scattered

to the final state |Dkf⟩ by a phonon emission, B → D. Since the sample temperature is

considered at 60 K the absorption of phonon is negligible. (2) A phonon scatters an electron

from the initial state |Aki⟩ to a state |Ckm⟩, A → C. Then, a photon excites a scattered

electron from the state |Ckm⟩ to the final state |Dkf⟩, C → D. These processes are expressed

by the following equation:

S(kf ,ki) =

⟨Dkf , |Hepc|Bkm⟩⟨Bkm|Hopt|Aki⟩
εi − εB

+
⟨Dkf |Hopt|Ckm⟩⟨Ckm|Hepc|Aki⟩

εi − εC
,

(3.20)

The energy and momentum of the processes mentioned in Eq. (3.20) are given by

kf = ki + q

εi − εf = Ei(ki) + ℏω − ℏωα
q − Ef (kf )

εi − εB = Ei(ki) + ℏω − EB(ki)

εi − εC = Ei(ki)− ℏωα
q − EC(kf ).

(3.21)

where ℏω denotes the photon energy and ℏωα
q − refers to the energy of α-nth phonon branch
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with the wave vector q. We note since the applied photon energy is less than ℏω = 15 eV in

this study, the optical transition occurs vertically [55].

In order to relate the measured energy distribution curve (EDC), namely I(E, ℏω) to the

theoretical photoemission, one has to integrate over all initial states and final states. The

summation on initial states and final states can perform independently when the experimen-

tal conditions are chosen [14]; hence, we have

I(E, ℏω) ∝∑
i,f

∫
dkidkfM(kf ,ki)×

δ(εi − εf )δ(E − εf + ϕwf )(N
α
q + 1)f occ

F ,

(3.22)

where ϕwf = 4.5 eV is the graphene work function [57], f occ
F denotes Fermi-Dirac distribution

function of an occupied state and Nα
q is the phonon quantum number of mode α with wave

vector q. The second delta function ensures that the photoelectrons have a higher energy

than the graphene work function. Therefore, in order to determine the indirect ARPES

intensity, we need to calculate the electron-phonon coupling and electron-photon interaction

matrix elements.

3.3.1 Electron-phonon coupling

Let us define the equilibrium position of an atom σ = A,B in the nth unit cell by Rn
σ

Rn
σ = Rn + dσ (3.23)

and displacement vector of the atom by Sα
n,σ(t) and α = 1, . . . , 6 denotes the phonon modes.

The changes of the potential energy due to the lattice displacement is given by

Hepc =
∑
n,σ

[Vn(r−Rn
σ + Sα

n,σ(t))− Vn(r−Rn
σ)]

=
∑
n,σ

Sα
n,σ(t) · ∇Rn

σ
Vn(r−Rn

σ).
(3.24)
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Figure 3-3: The electronic energy dispersion relation of graphene (b) are calculated by first-
principles calculation is plotted along the high symmetry points Γ–K–M–Γ up to 15 eV.
(1)A → B → D, a photon excites an electron from the initial state |Aki⟩ to a virtual state
|Bki⟩, A→ B. Then, a phonon scatters the electron from the virtual state |Bki⟩ to the final
state |Dkf⟩, B → D. (2) A → C → D, a phonon scatters an electron from the initial state
|Aki⟩ to a virtual state |Ckf⟩, A→ C. Then, a photon excites an electron from the virtual
state |Ckm⟩ to the final state |Dkf⟩, C → D.

The lattice displacement vector Sα
n,σ(t) is given by

Sα
n,σ(t) = Aα

ρ (q)e
α
σ(q)e

iq.Rn

e±iωα(q)t (3.25)

where Aα
ρ is atomic vibration amplitude. The ± and ρ indices refer to whether a phonon is

emitted (” − ” and ρ = E) or absorbed (” + ” and ρ = A). eα(q) is the unit vector of the

lattice displacement vector. ω(q) is the angular frequency of phonon with a wave vector q.

The amplitude of the vibration, Aα
ρ , is given by

Aα
ρ (q) =

√
2ℏNα

ρ (q)

mωα(q)N
(3.26)

the number of phonons in the vibrational mode with index α given by Nα
ρ and the number

of atoms N that contribute to the phonon. m = 1.9927× 10−26 Kg is the mass of a carbon

atom.

Nα
A(q) =

1

exp(ℏω
α(q)

kBT
)− 1

Nα
E(q) = Nα

A(q) + 1 (3.27)
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We follow the rigid-ion approximation where the potential V follows rigidly the motion

of the ions [31, 60]. Thus, the EPC Hamiltonian can be expressed by

Hepc = −
N−1∑
n=0

∑
σ=A,B

6∑
α=1

Aα
ρ (q)S

α
n,σ(t) · ∇rVn(r−Rn,α

σ ). (3.28)

Using the perturbation theory, the non-zero matrix elements for this potential is given by

M v,v′

epc (kf ,ki) = ⟨kf |Hepc|ki⟩, (3.29)

where v and v′ indicate different electron bands energies. To calculate the electron-phonon

matrix elements for different bands, we expand the wave function of the initial states and

final states in terms of plane waves,

|kv
i ⟩ =

1√
V

∑
G

C i,v
G (ki) exp

(
i
(
ki +G

)
· r
)
,

|kv′

f ⟩ =
1√
V

∑
G′

Cf,v′

G′ (kf ) exp
(
i
(
kf +G′) · r), (3.30)

where V is the volume of the sample, G represents the reciprocal lattice of graphene and

Ci,f,v,v′

G is the plane-wave coefficients. Thus, the electron-phonon matrix elements is given

by

M v,v′

epc (kf ,ki) =
1

V

N−1∑
n=0

6∑
α=1

∑
σ=A,B

∑
G,G′

C∗f,v′
G′ (kf )C

i,v
G (ki)

× Aα
ρ (q)e

iq·Rn

eασ(q) ·mD(kf ,ki),

(3.31)

where mD is expressed by

mD(kf ,ki) =

∫
ei(kf−ki+G′−G)·r∇rV (r−Rn

σ)dr. (3.32)

We multiply the Eq. (3.31) by

1 = ei(kf−ki+G′−G)·Rn
σe−i(kf+G′)·Rn

σei(ki+G)·Rn
σ , (3.33)
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thus, the electron-phonon matrix elements by changing variables r′ = r −Rn
σ and dr′ = dr

is given by

M v,v′

epc (kf ,ki) =
1

V

N−1∑
n=0

6∑
α=1

∑
σ=A,B

∑
G,G′

C∗f,v′
G′ (kf )C

i,v
G (ki)

×Aα
ρ (q)e

−i(kf−ki+G′−G)·Rn
σeiq·R

n

eασ(q) ·mD(kf ,ki),

(3.34)

and the mD(kf ,ki) is expressed by

mD(kf ,ki) =

∫
ei(kf−ki+G′−G)·r′∇r′V (r′)dr′. (3.35)

Now, the momentum conservation rule can be obtained by replacing Eq. (3.23) into Eq. (3.34)

and sum over the lattice vector Rn, and using lattice point and reciprocal lattice properties

that eiG·Rn
= 1

N−1∑
n=0

e−i(kf−ki−q+G′−G)·Rn

= δkf ,ki+q. (3.36)

Thus, the electron-phonon matrix elements become

M v,v′

epc (kf ,ki) =
1

V

6∑
α=1

∑
σ=A,B

∑
G,G′

C∗f,v′
G′ (kf )C

i,v
G (ki)

×Aα
ρ (q)e

−i(kf−ki+G′−G)·dσδkf ,ki+qe
α
σ(q) ·mD(kf ,ki).

(3.37)

In order to proceed the calculation, we expand the ion potential of a free carbon atom,

obtained by ab-initio method [61, 62, 63], into a Gaussian basis function. In the expansion

of the ion potential V (r), screening from the two 1s core electrons is considered and then the

fitted potential has the spherical symmetry. Since V (r) goes to minus infinity for r → 0, it

is not possible to fit the potential directly. Instead we fit rV (r) and divide later by r. The

potential is given by

V (r) = −1

r

4∑
p=1

vp exp (
−r2

2τ 2p
). (3.38)
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Table 3.1: The coefficient for the potential is given by substituting vp and τp into
Eq. (3.38)[61, 62, 63]. The unit of vp is [Hartree × at.u.] and τp is given [at.u.] (1 Hartree
is 27.211 eV, 1 a.u. is 0.529177) Angstrom.

p 1 2 3 4
vp -2.13 -1.00 -2.00 -0.74
τp 0.25 0.04 1.00 2.80

The fitting parameters for the potential in Eq. (3.38) is listed in table I.

Thus, by putting Eq. (3.38) into the Eq. (C.3), and considering momentum conservation

mD(kf ,ki) becomes

mD(kf ,ki) =− i2π
√
2π

Q

|Q|
×

4∑
p=1

vpτpErfi(
(|Q|)τp√

2
)×

exp (−(
(|Q|)τp√

2
)2)

(3.39)

where Q = q+G′ −G and Erfi(z) is the imaginary error function.

Furthermore, the summation on the atomic position σ = A,B for the LO and TO

branches zone center phonon q = 0 can be done analytically. Thus, when ki = kf = k

along the chosen energy counter the absolute value of the electron phonon coupling matrix

elements |M(k)| are proportional to | sin θ| and | cos θ| for LO and TO modes, respectively,

where tan θ = ky/kx [61].

In order to approximate the mD in two limits for long and show wave vector, we expand

exp (−z2), and Erfi(z) as follow

exp (−z2) = 1− z2 +
1

2
z4 − 1

6
z6 +

1

24
z8 + .... (3.40)

It has series z → 0 given by

Erfi(z) = π−1/2(2z +
2

3
z3 +

1

5
z+

1

21
zz + ...). (3.41)
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Figure 3-4: To approximate the EPC coupling for the short and long wave phonons, we
expand Erfi(q)× exp (−q2).

when z → ∞ we have

Erfi(z) = −i+ ez
2

√
π
(z−1 +

1

2
z−3 +

3

4
z−5 +

15

8
z−7 + ...). (3.42)

We plot the following function, Erfi(q)× exp (−q2), in Fig. 3-4, to approximate when the

EPC for the short and long wave phonon, q → 0 and q → ∞ respectively. Then, we can

approximate the EPC for the q → 0 and q → ∞. In the case of short wave, if we assume

ωLA(q) = CLAq for LA phonon mode and expand m′
D(kf ,ki) for the q → 0, the expanded

EPC can be approximated by q1/2 [62]. In the case of short wave and optical phonon modes,

we can assume that the phonon frequency is almost constant ω(q) ≈ const; the expanded

EPC is proportional to q−1 and finally becomes constant [64].
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Chapter 4

Symmetry selection rules of ARPES

In this Chapter, we will study the selection rules in the ARPES for the direct and indirect

transitions. We will introduce C2v symmetry briefly because the the experimental measure-

ments and theoretical calculation presented in this thesis is along Γ–K-M which have C2v

symmetry. Then, the selection rules for the direct and indirect transition will be obtained.

Studying the selection rules in the APRES is enable us to understand when transitions is

allowed and there is non-negligible ARPES spectra.

4.1 Graphene and graphite symmetry

The classification of objects according to symmetry elements corresponding to operations

that leave at least one common point unchanged give rise to the point group. In graphene and

graphite, the three high-symmetry points Γ, K(or K ′), and M correspond to the D6h, D3h

and D2h point group symmetries, respectively. The electronic states and vibrational modes

along the K ′–Γ–K and K ′–M–K lines, shown in Fig. 4-1(a) with red dots line, belong to the

C2v point group, while any other general k points belong to the C1h point group [65, 66, 67].

The C2v point group has three kinds of symmetry operations. (1) The identity E, consists of

doing nothing: the corresponding symmetry element is an entire object. In general, object

undergo this symmetry operation. (2) The 2-fold rotation about an 2-fold axis of symmetry,

C2 is a rotation through the angle 180◦. (3) The reflection in a mirror plane, σv where v

denotes the vertical. In Fig. 4-1(b), the stereographic projections of the C2v(mm2) is shown.
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(a) (b)

Figure 4-1: (a) Graphene and graphite have C2v group symmetry along the high symmetry
points: Γ–K–M–Γ. C2v symmetry has 4 symmetry operations, E, C2, σv(xz) and σ′

v(yz).
The two mirror plane symmetry are shown in the BZ of graphene. (b) The stereographic
projections of the C2v(mm2) is shown. It is seen that how the symmetry operations keep
the C2v symmetry.

Table 4.1: Character table of the C2v(2mm) point group.
E C2 σv(xz) σ′

v(yz) bases
A1 1 1 1 1 z, ∇z

A2 1 1 −1 −1 Rz

B1 1 −1 1 −1 x,Ry, ∇x

B2 1 −1 −1 1 y,Rx, ∇y

It is seen how the E, C2 and σv operations do not change the figure. The C2v group has four

irreducible representations {A1, A2, B1, B2} as shown in Table I. A is used if the character

under the principle rotation is +1, while B is used if the character is −1.

4.2 Direct transition symmetry selection rules

In Figs. 4-2(a)-(c), we show the experimental ARPES spectra near the Dirac point for several

polarization angles in which the photon energy is fixed at ℏω = 50 eV and the incident angle

is ψ = 18◦. The polarization angles ϕ = 0◦ and ϕ = 90◦ in Figs. 4-2(a) and 4-2(c) correspond

to the case of pure p- and s-polarized light, respectively, while ϕ = 78◦ in Fig. 4-2(b) has

some contributions from both the p- and s-polarized light. The π and π∗ bands of graphene

along the Γ–K direction near the Dirac point are brightened by the p- and s-polarized light

(in the case of n-doped graphene), as shown in Figs. 4-2 (a) and 4-2(c), respectively. On

the other hand, for the direction along K–M , the π and π∗ bands are brightened by the

s- and p-polarized light, respectively. The energy band brightened by the p-polarized light
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Figure 4-2: ARPES spectra of graphene near the Dirac point (K) as a function of the wave
vector for: (a) the p-polarized light at ϕ = 0◦, (b) the ϕ = 78◦ polarized light, and (c) the
s-polarized light at ϕ = 90◦. The photon energy is ℏω = 50 eV and the incident angle is
ψ = 18◦. In this case, ky = 0 refers to the K point and ky > 0(ky < 0) is along K–M (K–Γ )
direction.

Figure 4-3: pz orbital as an initial state has C2v symmetry. pz orbital can be considered as
an arrow along the z axis that the E, C2 and 2σv symmetry operations do not change its
symmetry.
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Figure 4-4: (a) Hexagonal Brillouin zone of graphene (shaded area). The ARPES calculation
is performed near the K point along the line Γ–K and K–M , which is shown by the orange
line. (b) The schematic linear band structure of graphene along Γ–K and K–M on the
orange color line with their representation of point group symmetry. The p-polarized light
illuminates the blue energy band with B2 symmetry and the s-polarized light illuminates the
green energy band with A2 symmetry.

is referred to as the p-branch, while that brightened by the s-polarized light is called the

s-branch. In the case of other polarization angles which are not equal to ϕ = 0◦ and ϕ = 90◦,

we might expect some brightening on either the p-branch or the s-branch, such as the one

shown in Fig. 4-2(b). In order to explain the polarization dependence of the π and π∗ bands

near Dirac point, the symmetry of the wave function and electron-photon matrix element

can be analyzed by the group theory [68, 22].

The optical dipole selection rule imposes non-zero matrix element for the transition which

satisfies

Γo ⊂ Γf ⊗ Γi (4.1)

where Γi,Γf and Γo are, respectively, irreducible representations for the initial state, the

final state of electron wave function, and x, y, z component of ∇ in Eq. 4.1. In the case of

graphene, the point group symmetry of wave functions along the Γ–K and K–M lines in

Fig. 4-4(a) belongs to C2v point group [65, 66, 67]. Studying the symmetry of wave functions

from first principles calculation also indicates that there is a C2v symmetry along the high

symmetry points of graphene near the Dirac point. The π and π∗ bands, as initial states,

in graphene make from pz orbital. pz orbital has C2v point group symmetry. In Fig. 4-2, we
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Table 4.2: Product of C2v representation, Γf ⊗ Γi, with the initial states Γi = {A2, B2} and
the final states Γf = {A1, B2}. The s-polarized light is parallel to x axis and it has B1

symmetry, while the p-polarized light is coplanar with the mirror plane and it has both y
and z component of the light which transform as A1 and B2 symmetry.

↓ Ef/Ei → A2 B2

A1 A2 B2(p)
B2 B1(s) A1(p)

show that pz orbital. pz orbital can be considered as an arrow along the z axis that the E,

C2 and 2σv symmetry operations do not change its symmetry. The calculation shows that π

and π∗ bands of graphene along the Γ–K (K–M) line have B2 (A2)and A2 (B2) symmetry,

respectively. We give a schematic illustration for the symmetry of the wave function for each

band in Fig. 4-4(b).

In ARPES, to have a non-zero intensity in detector, the integral of the ⟨Ψf |A · P|Ψi⟩

must be an even function under reflection with respect to the mirror plane σ′
v(yz) which was

defined in Fig. 3.1. Moreover, the final state the photoemitted electron which is observable

in the detector must be an even function under reflection with respect to the mirror plane

σ′
v(yz) [22, 6, 69, 8]. Hence, the final state can have either Γf = A1 or B2 symmetry. As

a result, applying the p-polarized light which has even symmetry with respect to σ′
v(yz)

brightens the π band along Γ–K line and π∗ band along K–M line with same B2 symmetry,

comparably the dipole vector in the direction of y- and z-axes. On the other hand, the

s-polarized light which has odd symmetry with respect to σ′
v(yz) brightens π band along

K − M and π∗ band along Γ–K, corresponding to the dipole vector in the direction of

x-axis [22, 7]. Consequently, it can be the origin of the chiral dependence of the graphene

bands near the Dirac point based on the calculation of the dipole vector. Therefore, applying

p- or s-polarized light imposes a specific optical transition selection rule for the direction of

ejected electron which is summarized in Table II. It is noted that in the product table (Table

II), the A2 symmetry does not refer any dipole vector direction.
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T=60 K

Figure 4-5: The indirect scattering of electron. An electron around the K or K ′ point
scatters around the Γ point by the indirect transition. The shaded region line along Γ–K
what we observed Ekin and k.

4.3 Indirect transition

The geometry of the indirect scattering of electrons is schematically illustrated in Fig.4 4-5.

The electrons around the K or K′ point can scatter to the region near the Γ point by an

indirect transition. The shaded region along Γ–K direction displays the location where the

photoemission electrons are measured in the ARPES experiment. The scattering processes

are limited by the selection rules arisen from the presence of symmetries that are enforced

by conservation laws. There are three kinds of the symmetry selection rules involved in

the indirect transition that restrict the observation of a certain phonon branch: a) The

lattice symmetry [11]. b) Optical and lattice vibration transition selection rules [68]. c)

Conservation of parity under reflection [22]. Therefore, to understand the indirect transition

mechanism we will discuss the mentioned selection rules.

a) The lattice symmetry: We consider electrons are scattered by phonons from around

the K or K ′ points into a certain k as shown by a yellow circle at the Γ–K line in Fig. 4-6 (a).

The phonon wave vectors which scatter electrons from the K and K ′ into k, are shown by

the red solid and green dot arrows, respectively. The phonon wave vectors q1,q3,q5 and

q2,q4,q6 indicate scattering from the K and K ′ points, respectively. However, only two
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Figure 4-6: (a) Electrons are scattered from around K or K ′ point into a k point, P, shown
in yellow dot, along Γ–K by phonons. The phonon wave vectors which scatter electrons from
K and K ′ into the observation point, P, are shown by red and green dot arrow, respectively.
(b) The phonon wave vector q1,q3,q5 and q2,q4,q6 indicate scattering from K and K ′

respectively. (d) Only two phonon momenta are nonequivalent, whereas the phonon momenta
q3,q5 and q4,q6 are folded back into the first Brillouin Zone, q1 and q2, respectively, due
to the lattice symmetry [11].

phonon momenta are equivalent whereas the phonon momenta q3,q5 and q4,q6 are folded

into the first Brillouin zone q1 and q2, respectively, due to the lattice symmetry [11], see

Fig. 4-6 (b). As a result, when the ARPES intensity along the Γ–K direction is investigated,

the phonon Γ–K ′ andK–M–K ′ can be observed. Similarly, when the ARPES intensity along

the Γ–K ′ direction is investigated, the phonon along the Γ–K andK ′–M–K can be observed.

Thus, we can distinguish whether the electrons scatter from K or K ′ points by observation

of the Γ–K ′ or K–M–K ′ phonon dispersions, respectively.

b) The selection rules: the optical and lattice vibration transition rules [68] impose

nonzero ARPES intensity satisfying

Γf ⊂ Γq ⊗ Γm ⊗ Γo ⊗ Γi (4.2)

where Γi, Γm, Γf , Γo, Γq are, respectively, irreducible representations for the initial state,

intermediate state, final state of the electron wave function, the dipole vector and the phonon

mode symmetry. The calculated symmetry of the electron state for different bands, which

are important for our discussion, is shown in Fig. 2(a) graphene (b) graphite. Since the

observation line is along K–Γ and K ′–Γ, the mirror plane is aligned with σ′
v(yz).

The π band as the initial state, Γi of the electron has to have B2 or A2 symmetry, as
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Figure 4-7: Electronic energy dispersions of (a) graphite and (b) graphene are calculated by
first-principles calculations and plotted along the high symmetry points Γ–K–M–Γ up to 15
eV. In panel (a), the two possibilities of indirect transitions (A → B → D and A → C → D)
are shown by the red dash-dotted arrows, in which an electron from the initial state A can
reach the final state D mediated by electron-phonon interaction. The separation between the
states A and B (or C and D) is determined by the incident photon energy used in ARPES
(in this picture it is ∼ 7 eV). Note that in both panels (a) and (b) we show some symmetry
representations for the energy bands which might be involved in the indirect transitions in
graphene and graphite.

shown in Fig. 3-3,

Γi = A2 or B2. (4.3)

The lowest conduction band near the Γ point shown with orange dots has A1g symmetry at

the Γ point and A1 symmetry along the Γ–K for both graphene and graphite. The symmetry

and atomic wave function of this band resemble to σ3 which has A1g symmetry at the Γ point,

and A1 symmetry along the Γ–K. We project the wave function of this state on the atomic

orbital basis; this projection also verifies that this state has s orbital shape ( Y m
ℓ (θ, ϕ) with

ℓ = 0 and m = 0 ) near the Γ; while this state near the K point is formed by s, px, py orbitals.

We call this band in this paper, A1 band. The second lowest conduction band near the Γ

point for graphene shown in Fig. 2(a) with green dots has A2u symmetry at the Γ point and

B2 symmetry along the Γ–K. This band has the same symmetry in comparison with π band

at the Γ point and along the Γ–K [70, 71]. Furthermore, the projection of the wave function

of this band on atomic basis around Γ and K point confirms that this band is formed by
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Figure 4-8: The phonon energy dispersion relations for (a) graphite and (b) graphene,
obtained from first-principles calculations and density functional perturbation theory [32].
Since there is C2v symmetry along the Γ–K–M and Γ–M directions, each phonon mode is
labeled by the irreducible representation of the C2v point group along Γ–K–M direction [72].

the pz orbital (ℓ = 1 and m = 0) near Γ and K points. In graphite, the conduction bands

with energy ≈ 11 eV around the K point have A2 and B2 symmetry. The projection of their

wave function also shows that they are formed by the pz orbital. The σ∗
1 and σ∗

2 conduction

bands at the Γ have the E2g and E1u symmetry for graphite and E1u for the graphene. The

σ∗
1 and σ∗

2 along the Γ–K have A1 and B1 symmetry for graphene and graphite. The σ∗
3 has

A1g symmetry at the Γ point and A1 symmetry along Γ–K. This band has s shape.

Since most of the phonon branches of graphite are nearly double degenerate and almost

similar to graphene, in following symmetry discussion, we will use the symmetry of the

phonon in graphene for simplicity [50]. Graphene has six phonon modes as shown in Fig. 4-

8(b). The four in-plane phonon modes TA, LA, TO and LO along Γ–K–M transform as

B1, A1, A1 and B1, respectively. The-out-of-plane phonon modes ZA and ZO along Γ–K–M

transform as B2 and A2 respectively [73, 39, 50]. Moreover, the parity under the σ′
v(yz)

reflection along the Γ–K line are odd for TA, LO, ZO and are even for ZA and LA, TO.

Since the parity of phonon modes does not change at the Γ point and along the Γ-K [51],

we show the parity of graphene phonon modes at the Γ point in Fig. 4-9..

c) Conservation of parity under reflection: imposes that the integral of the ⟨f |H ′|m⟩⟨m|H ′|i⟩

must be an even function under reflection with respect to the mirror plane which was defined

in Fig. 1(a). Furthermore, the final state has to have even symmetry w.r.t the mirror plane

in ARPES [22, 6, 69, 8]. Thus, The final state can be either B2 or A1. Eventually, we have
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(+) (-) (-) (+) (+) (-)

Figure 4-9: Honeycomb lattice phonon eigenvector at the Γ point, with their polarization
defined with respect to the Γ–K. The mirror planes σ′

v (that leaves Γ–K invariant) are
presented as the dashed lines. The parity of each phonon under the corresponding reflection
is indicated in parenthesis [51]. phonon with odd (-) parity are not observed.

Table 4.3: Product table of C2v representation for the indirect transition for the first process
A → B → D, Γi indicates the initial states Γi = {A2, B2}, Γo{A1, B1, B2} refers the optical
transition and Γq assigns the phonon eigenvector symmetry along Γ–K–M . the final states
Γf = {A1, B2} shows the symmetry of the allowed final state.

Γi Γo(Pol.) Γm Γq(Ph.) Γf

B2 A1(p) B2 A1(TO,LA) B2

B2 B2(p) A1 A1(TO,LA) A1

B2 A1(p) B2 B2(ZA) A1

B2 B2(p) A1 B2(TO,LA) B2

A2 B1(s) B2 A1(TO,LA) B2

A2 B1(s) B2 B2(ZA) A1

to mention that the p-polarized and s-polarized light transform as B2, A1 and B1 symmetry.

Finally, the discussion of the selection rules is summarized in the Table 4.3. It is seen

that the dispersion relation of the TO, LA and the ZA phonon modes of graphene and

graphite which have even symmetry with respect to a mirror plane, can be extracted from

the symmetry viewpoint.
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Chapter 5

Photon energy dependent of ARPES

in graphene

In this chapter, we presents our result for the direct transition. We will compare the exper-

imental measurement and theoretical calculation of the ARPES intensity near the K point

and along the Γ–K and K–M for π and π∗ bands. is changed by using different photon

energies and light polarizations.

5.1 Photon and polarization energy dependence

We calculate the wave function coefficients of graphene in terms of plane waves within

first-principles approach as implemented in Quantum Espresso package [32]. We adopt the

norm-conserving pseudopotential with Perdew-Zunger (LDA) exchange-correlation scalar rel-

ativistic functional. The kinetic energy cut-off is taken as 60 Ry for each atom and the kinetic

energy cut-off for density potential is set 600 Ry in order to verify the convergence of all

wave functions. The k-point mesh grid for self-consistent calculation is 52 × 52 × 1 in the

graphene Brillouin zone. The lattice parameter of graphene is 4.602 a.u. and the lattice

constant for unit cell normal to graphene planes is taken as c/a = 10 to avoid interlayer

interaction.

In Fig. 5-1, we show the calculated energy band structure of graphene along the high

symmetry points in the first Brillouin zone of graphene. The energy dispersions are calculated
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Figure 5-1: The electronic energy dispersion relation of graphene obtained from first-
principles calculation is plotted along the high symmetry points Γ–K–M up to 70 eV.

up to 70 eV above the Dirac point. As seen in Fig. 5-1 the energy bands of graphene cross each

other around 20 eV and 50 eV near the K point, consistent with some earlier studies [10, 8].

To investigate the photon energy dependence of graphene bands ARPES intensity near

the Fermi level, the ratio of the p-branch intensity to the s-branch intensity, Ip/Is, is measured

and calculated as a function of photon energy at the Fermi level, as shown in Fig. 5-2 (The

taken Is and Ip points are shown in the inset of Fig. 5). The Dirac point is located at about

−0.4 eV below the Fermi energy. The polarization angle of light is fixed to be ϕ = 80◦

and the incident angle is ψ = 18◦ for the photon energies in the range of ℏω = 42 eV to

55 eV. In Fig. 5-2, the circles denote the experimental measurement, while the solid line

denotes the calculated result. For the polarization angle ϕ = 80◦, which is close to ϕ = 90◦

(s-polarization), it is expected that the intensity of the s-branch (A2) is stronger than the p-

branch (B2). However, our study shows that Ip increases more significantly near ℏω = 46 eV

rather than Is. The drastic change in the intensity ratio Ip/Is near ℏω = 46 eV indicates

such an enhancement of the p-branch intensity. Moreover, the experimental values of Ip/Is

are larger than the theoretical values. We believe that the discrepancy might arise from

our experimental setup. Since the photoelectron detection efficiency for the s-polarization is

smaller than that for the p-polarization, we expect that the detection efficiency of Is is smaller

than Ip. Particularly, when Ip increases, the difference between the experimental observation

and the theoretical calculation also increases. A more detailed comparison between the

experimental and calculation results are shown in Fig. 5-3. In Figs. 5-3(a) and (b), we show
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Figure 5-2: The ratio of the p-branch intensity to the s-branch intensity (Ip/Is) is plotted
as a function of photon energy ℏω. The polarization angle is fixed at ϕ = 80◦. Open circles
represents the experimental results, while the solid line represents the calculated Ip/Is. The
initial state Ei = 0.4 eV above the Dirac point is considered in the calculation. Both the
experimental measurement and the theoretical calculation have a sharp peak around 46 eV.
Inset shows a particular example how Is and Ip (given by two dots) are taken along the
s-branch and p-branch, respectively, at a given photon energy ℏω = 50 eV.
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Figure 5-3: (a) Experimental and (b) calculated result of ARPES intensity (Is and Ip) as a
function of the wave vector ky along Γ–K–M direction for several photon energies. In both
experimental measurement and theoretical calculation, the light polarization angle ϕ = 80◦

and the incident light angle ψ = 18◦ are considered. For each photon energy, the Is and Ip
values are normalized to the largest value between the two. Furthermore, ∆k = 0.1 angstrom
is considered to plot the intensity as a function of the wave vector.
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Figure 5-4: The real part and imaginary part of transmitted vector potential components:
(a) At

x, (b) At
y and (c) At

z, plotted s a function of the incidence angle, ψ, for the light
polarization angle ϕ = 80◦.

both Ip and Is from experiment and calculation along Γ–K–M direction for several photon

energies. For a given photon energy and polarization angle, Ip (Is) is normalized to the

maximum intensity values along the p-branch (s-branch) as shown in the inset of Fig. 5-2.

The graphene is slightly n-doped because of charge transfer from the substrate. The Dirac

point is located at about −0.4 eV below the Fermi level. It can be seen that around the

photon energy of 45–48 eV the intensity of p-branch is higher than the intensity of s-branch.

The origin of enhanced intensity of p-branch near the photon energy ℏω = 46 eV can

then be explained by the electron-photon matrix element effects in graphene. Since the light

incident angle is not perpendicular to the graphene surface, the vector potential outside of

graphene relates to the transmitted vector potential into the graphene by Eq. (7), which is

a function of the light incident angle and the dielectric function of graphene. The x, y, z

component of the transmitted vector potential A is plotted as a function of incident light

angle in Fig. 5-4 with the polarization angle of light ϕ = 80◦. It can be seen from Figs. 5-

4(a) and (b) that the transmitted vector potential have values for its x- and y-components

even for ψ = 0◦, and that their real and imaginary part are almost constant for ψ < 30◦.

Meanwhile, as shown in Fig. 5-4(c), the value of the z-component of transmitted vector

potential is zero. Increasing the angle ψ will give the stronger Az. The z-component of the

vector potential can enhance the intensity of p-branch (B2) by brightening the z-component

of dipole vector when the incident light is not normal to the surface.

To discuss the final state dependence of the dipole vector, we plot in Fig. 5-5 the absolute

value of the dipole vector components as a function of the final state energy for different k-
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Figure 5-5: The x-, y-, and z- components of the dipole vector, i.e. Dx (circles), Dy (dots),
Dz (asterisks), plotted as a function of the energy of the final state Ef . The initial energy
is taken to be Ei = 0.4 eV. In (a), the symmetry of the initial state along Γ–K is A2,
while in (b), the symmetry of the initial state along K–M is B2. Around 46 eV, the strong
z-component of the dipole vector (as indicated by the arrow) results in a larger increase of
the ARPES intensity of the p-branch compared to that of the s-branch in the presence of
ϕ = 80◦ light polarization.
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points near the Dirac point along Γ–K andK–M lines, which satisfy the explained symmetry

rule discussed in the Sec. IV [74]. The initial state energy is Ei = 0.4 eV. The circles, dots,

and asterisks in Fig. 5-5 denotes the x-, y-, and z- component of the dipole vector, i.e,

Dx, Dy, and Dz, respectively. In our calculation, the direction of dipole vector for π − π∗

transition (B2 − A2), Dx, is consistent with the results from Grüneis et al. for the dipole

vectors along the Γ–K and K–M lines [23]. The dipole vector direction for each final state

can be only in one direction of x, y or z (see Fig. 5-5). Thus, the linearly-polarized light

cannot break the mirror symmetry rules in the observation of photoexcited electrons, which

is also confirmed by experimental measurement.

A large Dz is seen in Fig. 5-5 in the B2 branch, around 46 eV, while the Dy values are

very small near the photon energy ℏω = 46 eV. Hence, the dependence Dy on the photon

energy almost disappears, while Dz has large enhancement of the intensity for the p-branch

near ℏω = 46 eV as indicated by the arrow in Fig. 5-5(b). Therefore, when the z-component

of the vector potential has a non-negligible value, the z-component of the dipole vector gives

the contribution to enhancing the p-branch. For this reason, the intensity of the p-branch

in graphene becomes much stronger than that of the s-branch for the photon energy near

ℏω = 46 eV. Consequently, the origin of the strong peak observed around 46 eV corresponds

to the final state effects on the electron-photon interaction in graphene. Moreover, since the

direction of the dipole vector does not depend on the light polarization, our study suggests

that near the ℏω = 46 eV the circular light dependency of ARPES intensity should almost

disappear due to the small Dx and Dy values compared to the Dz value [24].
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Chapter 6

Phonon-assited indirect of ARPES in

graphene and graphite

In this Chapter, we will show our calculated result of the indirect transition. We will compare

the experimental measurement for HOPG ARPES spectra near the Γ point with the theoret-

ical calculation for graphene and graphite. We will discuss about the transition mechanism,

resonant and nonresonant, for different photon energies. Furthermore, we will assign the

phonon modes which can be involved and observed through the indirect transition ARPES

spectra. Finally, we will explore the polarization dependence of the indirect transition for

the single crystal of the graphite, experimentally and theoretically.

6.1 Phonon-assited indirect transition

To investigate the observation of the ARPES spectra at the Γ point and near the Fermi

level energy, we calculate here the indirect transition ARPES intensity as a function of the

binding energy, for the k vectors very close to the Γ point, at k = 2π
a
× 10−4, along Γ–K for

several photon energies of graphene and graphite. Here, we consider the p-polarized light

with an incident angle ψ = 40◦. The, calculated results can then be compared with the

experimental ARPES spectra.

Figure 6-1(a) shows the experimental ARPES intensity as a function of the binding

energy for highly-oriented pyrolytic graphite (HOPG), whereas Figs. 6-1(b) and (c) show the
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Figure 6-1: (a) The experimental ARPES intensities for HOPG compared with the calculated
ARPES intensities for (b) graphite and (c) graphene near the Γ point for several incident
photon energies. The incident photon is p-polarized light and the incident angle is ψ = 40◦.
In (a), step-like features are found at the binding energy Eb ≈ 154 meV (red bar) and
Eb ≈ 67 meV (blue bar), which are assigned to the TO and ZA modes, respectively. In (b),
the step-like features from the calculations for the TO and ZA modes are found to be at
Eb ≈ 160 meV and Eb ≈ 67 meV, respectively. In (c), from our calculation, we find only the
TO mode, but no ZA mode.

calculated the ARPES intensity for graphite and graphene, respectively. Looking at Figs. 6-

1(a) and (b), the calculated ARPES intensity basically reproduces the experimental data.

We can see that there are step-like features in the ARPES intensity at the binding energies

Eb ≈ 154 meV and Eb ≈ 67 meV for the experimental measurements and at Eb ≈ 160 meV

and Eb ≈ 67 meV for the corresponding theoretical calculations for graphite. The small

discrepancy between the experiment and theory for the positions of step-like features might

originate from the Kohn anomaly [30], which is neglected in our calculations for simplicity.

We assign the step-like features at Eb ≈ 154 meV (or 160 meV) and at Eb ≈ 67 meV to

the TO and ZA modes, respectively. Furthermore, in Fig. 6-1(c), we can see the step-like

features only at Eb ≈ 160 meV and there is no such one at Eb ≈ 67 meV. In the present

work, we only perform the calculations for graphite and monolayer graphene. However, for

the TO mode, we expect that the ARPES intensity in the case of few-layer graphene might

show similar results to that of graphite. As for the ZA mode, few-layer graphene might show

a transition from the feature of monolayer graphene to graphite. We will understand all
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Figure 6-2: The x-, y-, and z- components of the dipole vector, i.e.,Dx (circles),Dy (dots), Dz

(asterisks), plotted as a function of the energy of the intermediate state (Em) for (a) graphite
with B2 symmetry as the initial state, (b) graphite with A2 symmetry as the initial state,
(c) graphene with B2 symmetry as the initial state, and (d) graphene with A2 symmetry
as the initial state. Symmetry labels near the circles, dots, and asterisks correspond to the
symmetry of the intermediate states.

these behaviors by discussing the detailed scattering processes in the following subsections.

6.1.1 Resonant indirect transitions

For the photon energy range of 10–15 eV, it is possible to obtain a resonance process, and

thus the ARPES intensity for the A → B → D transition [see again Fig. 3-3(a)] is 10 times

larger than that for the A → C → D transition. In this case, the first step of the A → B → D

transition is the direct optical transition, A → B, from the carbon π band to the conduction

bands around the K point. For this purpose, in Fig. 6-2, we show the absolute value of the

dipole vector, D(k) = ⟨mk|∇|ik⟩, as a function of the intermediate state energy for different

conduction bands in graphite [Figs. 6-2(a) and (b)] and graphene [Figs. 6-2(c) and (d)]. For

the initial states that satisfy Table II, we plot the dipole vectors for |i⟩ = B2 [Figs. 6-2(a)

and (c)] and for |i⟩ = A2 [Figs. 6-2(b) and (d)]. The wave vector of the initial state of the
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electron is considered at a point with a distance of 2π
a
× 10−4 from the K point along the

Γ–K line. The circles, dots, and asterisks denote the x-, y-, and z- components of the dipole

vectors, i.e., Dx, Dy, and Dz, respectively. The symmetry of each intermediate state is also

labeled.

More detailed information about the dipole vectors plotted in Figs. 6-2(a)-(d) can be

obtained by comparing them with the electronic band structures in Figs. 3-3(a)-(b). The

two lowest energy optical transitions around Em ≈ 1 eV shown in Figs. 6-2(a) correspond

to the π → π∗ transitions of graphite. Next, the optical transition around Em ≈ 11 eV

may originally correspond to the π → B2 or the π → A2 transition, since either choice is

possible following Fig. 3-3(a). However, the π → A2 optical transition can be excluded by

the selection rule in Table 4.3. At Em ≈ 12 eV, the intermediate state can be the A1, or

σ∗
1 or σ∗

2 bands (see Fig. 2). The nonzero value of the dipole vector corresponds to Dy for

the B2 → A1 transition, while the dipole vector becomes D = 0 for A2 → A1. The σ∗
1 and

σ∗
2 bands as the intermediate states have A1 and B1 symmetries. The dipole vector for the

B2 → B1 and A2 → B1 transitions are D = 0 and Dy, respectively.

In Figs. 6-2(c) and (d), we show similar properties with those in Figs. 6-2(a) and (b),

but now for the case of graphene. The direction of the dipole vector for π → π∗ transition

at Em ≈ 0 eV along the Γ–K and K–M is Dx, which is consistent with the results from

Grüneis et al. [23]. The π → B2 transition takes place at Em ≈ 11 eV and the dipole

vector components for this transition are Dz and Dx, as shown in Figs. 6-2(c) and (d). In

the case of the third and fourth lowest conduction bands in graphene, the band with A1

symmetry (orange dots in Fig. 3-3 around the K point) and σ∗
1 band with A1 symmetry are

both involved in the electron-photon excitation. The directions of the dipole vector for the

π → A1, and π → σ∗
1 transitions along the Γ–K directions and K–M are denoted by Dy and

Dx, respectively.

The electron-phonon matrix element calculation reveals that, although the TO and LA

phonon modes have the same symmetry (A1), the matrix element for the LA phonon mode

near the K point is negligibly small. The insignificant electron-phonon interaction for the

LA phonon mode near the K point physically originates from the direction of atomic dis-

placements of the LA mode [75]. In Figs. 6-3(a)-(f), we show the calculated electron-phonon
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Figure 6-3: The electron-phonon matrix elements for the scattering events from the interme-
diate states |m⟩ with particular symmetries (B2 and A1) into some final states with different
energies Ef . Panels (a)-(c) are for graphite, while panels (d)-(f) are for graphene. The dots
and asterisks refer to the electron-phonon interaction for ZA and TO phonon modes, respec-
tively. Note that |m⟩ in panels (b)-(c) and (e)-(f) have the same symmetries but originate
from different bands. In particular, (c) and (f) are related with |m⟩ of the σ∗

1 band.

matrix elements as a function of the final state energy, Ef , in graphite and graphene. The

dots and asterisks correspond to the coupling of the photoexcited electron with the ZA and

TO phonon modes, respectively. The difference between graphene and graphite is physically

related to the ZA phonon mode, which cannot (can) be observed in the ARPES spectra

for graphene (graphite), because graphene does not have interlayer electron-phonon interac-

tion [76]. Besides, the value of the electron-phonon matrix element decreases with increasing

Ef .

For the incident photon with ℏω ≈ 11 eV, photoexcited electrons in the B2 band are

scattered into the final states near the Γ point (see Fig. 2). In the case of graphite, final

states can be π∗, σ∗
1 or σ∗

2. As shown in Figs. 6-3(a) and (d), the most dominant ARPES

intensity for the ℏω ≈ 11 eV arises from the coupling between the photoexcited electron

and the TO phonon. From these facts, we can conclude that the ARPES intensity around

154 meV for ℏω ≈ 11 eV is due to the photoexcitation from the π band to the B2 band

and then the scattering of the photoexcited electron by the TO phonon mode into a state

near the Γ point. It should be noted that the discrepancy between the experimental and

theoretical binding energy might come from the effect of the electron-electron correlation on
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the phonon dispersion [77], which is beyond the scope of this work. For ℏω ≈ 13 eV, the

intermediate state can be associated with A1, σ
∗
1 or and σ∗

2 bands. In this case, both the

ZA and TO phonon modes can be coupled with the photoexcited electron. However, the

electron-phonon interaction for the ZA phonon mode is weaker than that for the TO phonon

mode as discussed above. Thus, the ARPES intensity observed for ℏω ≈ 12.5 eV is assigned

to the TO and ZA phonon modes.

6.1.2 Nonresonant indirect transition

Now we consider the case when the incident photon energy is ℏω ≈ 6 eV. The excitation

process is the nonresonant indirect transition and the final state is the A1 band, which

is a nearly free-electron state. Let us again discuss the possibilities of A → B → D and

A → C → D transitions. If we assume that the virtual state comes from the closest real

states of the electrons, the optical excitation in the second process (σ1, σ2 → A1) has a

negligible intensity [78]. Furthermore, the optical transition along the high symmetry points

on the Γ–A line ( perpendicular to the Γ–K–M–Γ plane) for the second process also has a

negligible intensity. Thus, the dominant mechanism should be the A → B → D transition.

As we mentioned before, although we find that the A → B → D transition would also be

more preferable for ℏω ≈ 6 eV, the physical origin why this transition is dominant for ℏω ≈ 6

eV is different from that for ℏω ≈ 11.1 eV.

We can see that for the A → B → D transition with ℏω ≈ 6 eV, the intermediate state

is the B2 band and the dominant dipole vector is Dz (see Fig. 6-2). Therefore, only the ZA

phonon mode can be involved in this process (see Table 4.3). The electron-phonon matrix

element as a function of the final state is plotted in Fig. 6-4. It can be seen that there is a

strong coupling between the π∗ band and the A1 band [79, 80]. We conclude that the ZA

phonon mode corresponds to the ARPES signal at Eb = 67 meV if photons with ℏω ≈ 6 eV

and p-polarization come to the graphite surface.

When we look at the ARPES intensity for ℏω ≈ 6 eV and ℏω ≈ 12.5 eV in Fig. 5, there

is a discrepancy between the experimental data of the ARPES intensity and the calculated

results. The experimental ARPES intensity is higher than the calculated intensity for ℏω ≈ 6

eV, while the experimental ARPES intensity is much smaller than the calculated intensity
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Figure 6-4: Electron-phonon matrix elements for the ZA phonon mode of graphite for the
transitions from an intermediate state m⟩ having B2 symmetry (the π∗ band near the K
point) into some different final states with energies Ef .

Table 6.1: Phonon (|Ph⟩) assignment for different photon energies (ℏω). Columns for |i⟩,
|m⟩ and |f⟩ show the orbital shapes for initial, intermediate, and final states, respectively,
while |O⟩ denotes the direction of the dipole vector.

ℏω(eV ) |i⟩ |O⟩ |m⟩ |Ph⟩ |f⟩
6 pz Dz pz ZA s
11 pz Dz,Dy pz TO pz
13 pz Dy s, px, py TO s

for ℏω ≈ 12.5 eV. The origin of this discrepancy might be explained by the angle between the

emission direction of the ejected photoelectron and the detector [11]. The direction of the

detector is considered to be normal to the surface in the experiment [11, 12]. In Table 6.1, we

show the shapes of the orbitals for the initial state |i⟩, the intermediate state |m⟩, the final

state |f⟩, the dipole vector direction, |O⟩, and the phonon polarization, |Ph⟩, for photon

energies ℏω = 6 eV, 11 eV and 13 eV. Every initial state is the π electron band, formed

by the pz orbital. For the ℏω ≈ 6 eV transition, the |m⟩ also has the pz orbital character.

The dipole vector becomes Dz and the out-of-plane phonon mode ZA also couples to the

photoexcited electron. In this case, the final state, |f⟩, has an s orbital shape. Therefore,

the ejected electron from this excitation process can be observed in the direction normal to

surface more dominantly. For the ℏω ≈ 11 eV excitation, the |m⟩ also has pz shape and the

dipole vector also becomes Dz. However, in this case, the electrons couple to the in-plane

phonon mode TO and |f⟩ has pz shape. As a result, the ejected electrons from this process

also can be well-observed in the direction normal to the surface. But we should note that the
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Figure 6-5: (a) Experimental measurement and (b) theoretical calculation of the ARPES
intensity as a function of the binding energy. The energy of the incident photon is ℏω = 11
eV. The higher and lower curves correspond to the ARPES intensity for s-polarized and
p-polarized light, respectively.

intensity of the observed electrons can decrease due to the coupling between the electron and

the phonon mode. For the ℏω ≈ 12.5 eV, the intermediate state has s, px, py orbital shapes

and the dipole vector is Dy and also the electron is coupled with the in-plane TO phonon

mode, and in this case the final state has an s orbital shape. The ejected electrons from

this process thus have a large dipole vector component parallel to the surface so that the

possibility of the observation of the electrons from this process when the detector is normal

to the surface will dramatically decrease.

6.1.3 Effects of s- and p-polarizations

Finally, we discuss the polarization dependence of the incident light. In figures. 6-5 (a)

and (b), we plot the experimental and calculation data of graphite for the s-polarized and

p-polarized light for ℏω = 11 eV. It can be seen that the ARPES intensity for p-polarized

light is stronger than s-polarized light for both experimental measurement and theoretical

calculation. It is because that the z-component of the vector potential (Az) is stronger than

the x−component (Ax) for ℏω = 11 eV and ψ = 40◦ although the dipole vector components

Dz and Dx have the same magnitude (see Fig. 6-2).
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Chapter 7

Conclusion

In this thesis, we have discussed the theoretical calculation for the ARPES in graphene and

graphite and the calculated results were compared with the experimental measurements.

Calculation have been performed particularly near the K point and Γ point and closed

to the Fermi level which are correspond to the observation of the direct and the indirect

transition ARPES spectra. In order to understand the direct and indirect ARPES spectra,

we need a detailed knowledge of the electronic structure, optical matrix elements, phonon

modes and electron-phonon matrix elements. In this study we drive two formula to calculate

the electron-photon interaction and the electron-phonon coupling based on the plane wave

wave functions. Then, we make codes to calculate them. The eigenvalues and eigenvectors of

the electronic structure and phonon modes are obtained by the Quantum Espresso package.

Our finding can be divided in two parts:

7.1 Direct transition of ARPES spectra

The direct transition of the ARPES spectra is studied for the electronic bands near the

K point and closed to the Fermi level in graphene. We have discussed the photon energy

dependence of ARPES intensity for π and π∗ bands, by the ARPES measurement and

first-principles calculations. Based on the measured and calculated ARPES intensity, we

conclude that the intensity of the p-branch in graphene near the photon energy ℏω = 46 eV

is stronger than that of the s-branch even when the polarized light is almost parallel to
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the s-polarization. The origin of this observation is explained by the effects of the electron-

photon matrix elements on ARPES intensity in graphene. This study suggests that the

presence of larger z-component of the dipole vector compared to the y-components results

in the enhanced intensity of p-branch near ℏω = 46 eV. Furthermore, the chiral dependence

in ARPES can be explained by the group theory. This approach also confirms that the p-

polarized light brightens the band with B2 symmetry which has even symmetry with respect

to mirror plane and s-polarized light brightens the band with A2 symmetry which has odd

symmetry with respect to the mirror plane.

7.2 Indirect transition of ARPES spectra

The indirect transition for the ARPES spectra in graphene and graphite have been investi-

gated for different incident photon energies and light polarizations. Our symmetry analysis

shows that the phonon modes, ZA, TO and LA, which have even symmetry with respect

to the mirror plane, σ′
v(yz), can be involved in the indirect interband transition. Although

the LA phonon mode has even symmetry with respect to the mirror plane, its phonon en-

ergy cannot be observed because it has a negligible electron-phonon interaction near the K

point in the Brillouin zone. Thus, the ARPES spectra with binding energy Eb = 154 eV

is assigned to the TO phonon modes of graphene and graphite when p-polarized photons

with ℏω ≈ 11 eV are used. The relevant mechanism for the observation of the TO phonon

mode is a resonant indirect transition. Meanwhile, for the incident photons with ℏω ≈ 6 eV,

the ZA mode becomes dominant, being observable through a nonresonant indirect transition

occurring in graphite for p-polarized light. Furthermore, the ARPES intensity of graphite

for p-polarized light is stronger than for s-polarized light when the incident photon energy is

ℏω ≈ 11 eV because the vector potential of the p-polarized light is expected to be stronger

than that of s-polarized light.

By understanding the indirect transitions in the ARPES spectra of graphite and graphene,

we expect that more detailed phonon dispersion relations might be observed in our future

experiments. Besides, we believe that the validity of our methods should not be limited to

graphene-based materials. We may expect that the electron-phonon coupling for a large class
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of two-dimensional materials should also be observable by ARPES with indirect transitions.
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Appendix A

Appendix: Electron-photon dipole

vector

In this section, we will describe how to calculate the electron-photon interaction matrix ele-

ment by using first-order time-dependent perturbation theory and plane wave wave function

for different bands.

A.1 Dipole vector

The dipole vector D(ki,kf ) is defined as

D(ki,kf ) = ⟨Ψf (kf , r)|∇|Ψi(ki, r)⟩. (A.1)

To consider the final state effects on the matrix elements, we expand the wave functions

of the initial states and final states in terms of plane waves,

Ψi(ki, r) =
∑
Gi

Ci
Gi
(ki) exp

(
i
(
ki +Gi

)
· r
)
,

Ψf (kf , r) =
∑
Gf

Cf
Gf

(kf ) exp
(
i
(
kf +Gf

)
· r
)
,

(A.2)

whereG are the reciprocal lattice vectors of graphene and Ci,f
G (k) are plane wave coefficients.
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Hence, the dipole vector has been calculated in the plane wave basis as

D(kf ,ki) =
∑
Gi,Gi

Cf∗

Gf
(kf )C

i
Gi
(ki)⟨

exp
(
−i

(
kf +Gf

)
· r
)
|∇| exp

(
i
(
ki +Gi

)
· r
)⟩
,

(A.3)

If we take the derivative from the initial state wave function, the dipole vector can be

calculated as

D(kf ,ki) = i
∑

Gi,Gf

Cf∗

Gf
(kf )C

i
Gi
(ki)

(
ki +Gi

)
∫

exp
(
−i

(
kf +Gf

)
· r
)
exp

(
i
(
ki +Gi

)
· r
)
dr,

(A.4)

and then

D(kf ,ki) = i
∑

Gi,Gf

Cf∗

Gf
(kf )C

i
Gi
(ki)

(
ki +Gi

)
∫

exp
(
−i

(
kf +Gf − ki −Gi

)
· r
)
dr,

(A.5)

where the integral is taken over all super cell and it is the definition of the delta Dirac

function. Thus the dipole vector is given as

D(kf ,ki) = i
∑

Gi,Gf

Cf∗

Gf
(kf )C

i
Gi
(ki)

(
ki +Gi

)
δ(kf +Gf − ki −Gi), (A.6)

We set the upper limit of photon energy as 60 eV. In this case, the optical transition

occurs vertically in the k space, that is, ki ≈ kf = k. It should be noted that this assumption

is no longer valid in the XPS measurement [55].

D(k) = i
∑
G

Cf∗
G (k)Ci

G(k)
(
k+G

)
. (A.7)

70



Appendix B

Appendix: Fresnel equation

In this Chapter, we will obtain the Fresnel equation which relate the incident light to the

transmitted light by the incident angle of the light, its polarizations, and the electric per-

mittivity.

B.1 Fresnel equation

In this section, we discuss how the propagation of electromagnetic radiation changes at

the boundary between free space and a solid. The description of the phenomena leads to

understanding of the reflectively R, the absorptive A, and transmission T in optical process.

All of these quantities are directly accessible to experiments although the relation between the

incident light and transmitted one is more useful [52, 53, 54]. Let us consider the propagation

of a plane electromagnetic wave from a vacuum with electric permittivity ϵ0 = 1, magnetic

permittivity µ0 = 1, and conductance σ = 0 into a solid with with ϵ1 and σ1 while the µ1 = 1

remains the same. The Maxwell equation in the vacuum is expressed as

∇2E− µϵ
∂2E

∂t2
= 0,

∇2H− µϵ
∂2H

∂t2
= 0,

(B.1)
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(a) (b)

Figure B-1: (a) Field vectors of the incident, transmitted, and reflected waves in case the
electric field vectors are perpendicular to the plane of incident (S polarization). (b) Field
vectors of the incidence, transmitted, and reflected wave in case the electric field lie within
the plane of incidence (P polarization).

thus, the incident, reflected and transmitted electromagnetic wave are

Ei = E0i exp (iki · r− ωit)Er = E0r exp (ikr · r− ωrt)Et = E0t exp (ikt · r− ωtt) (B.2)

where ki, kr and kt are the incident, reflected and transmitted wave vector. First, we

consider that the incident wave is S-polarized (see Fig. B-1 (a)). Since there is no charge on

the surface, the boundary condition becomes:

∇ ·D = 0 ⇒ Ei + Er = Et, (B.3)

and

H∥ : Hi cos θi −Hr cos θr = Ht cos θt. (B.4)
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We know from Maxwell equations that the electromagnetic wave must satisfy the following

equation:

H =

√
ϵ

µ
E =

1

vµ
E, (B.5)

where ϵ and µ are the electric permittivity and magnetic permeability, respectively, of the

materials in which the wave propagates. Since the index of refraction of a material is given

by n = c
√
ϵµ = c/v, we have:

H∥ : c
(
Hi cos θi −Hr cos θr = Ht cos θt

)
, (B.6)

and using Snell’s law:

ni sin θi = nt sin θt, (B.7)

where ni and nt are the refractive indices of the two media and The θi and θt is the incident

and transmitted electromagnetic wave function angle with respect to the normal to the

surface. Note that, the θr angle of the reflected wave is equal to the θi. Combining Eqs. B.3,

B.4 and B.7, we have

E⊥
r =

cos θi −
√
n2 sin2 θi

cos θi +
√
n2 − sin2 θi

E⊥
i ,

(B.8)

and

E⊥
t =

2 cos θi

cos θi +
√
n2 − sin2 θi

E⊥
i .

(B.9)

Now, if we consider that the incident wave is P-polarized (see Fig. B-1 (b)), the boundary
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condition for magnetic field becomes:

Hi +Hr = Ht, (B.10)

and for the electric field is given by

E
∥
i : E

∥
i cos θi − E∥

r cos θr = E
∥
t cos θt. (B.11)

Using the Eqs. B.7, B.10 and B.11 we get:

ni

µi

(
E

∥
i + E∥

r

)
cos θi =

nt

µt

(
E

∥
i + E∥

r

)
cos θt. (B.12)

The reflected electric field is obtained as:

E∥
r =

nt

µt
cos θi − ni

µi
cos θt

nt

µt
cos θi +

ni

µi
cos θt

E
∥
i , (B.13)

and the transmitted electric field is derived as:

E
∥
t =

2ni

µi
cos θi

nt

µt
cos θi +

ni

µi
cos θt

E
∥
i . (B.14)

Therefore, the reflected and the transmitted electric field can be written as follows:

E∥
r =

n2 cos θi −
√
n2 − sin2 θi

n2 cos θi +
√
n2 − sin2 θi

E
∥
i , (B.15)

and,

E
∥
t =

2n cos θi

n2 cos θi +
√
n2 − sin2 θi

E
∥
i . (B.16)

To have each component of the electric field in the x, y and z axes, we project the parallel and

perpendicular component of the electric field on the x, y and z axes. For the z component
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of the electric field we have:

E
∥
t,z =

2n cos θi cos(θt − π
2
)

n2 cos θi +
√
n2 − sin2 θi

E
∥
i =

2n cos θi sin θt

n2 cos θi +
√
n2 − sin2 θi

E
∥
i , (B.17)

then

E
∥
t,z =

2n cos θi sin θi

n2 cos θi +
√
n2 − sin2 θi

E
∥
i . (B.18)

For the y component of the electric field, we have:

E
∥
t,y =

2n cos θi sin θt

n2 cos θi +
√
n2 − sin2 θi

E
∥
i =

2n cos θi
√
n2 − sin2 θi

n2 cos θi +
√
n2 − sin2 θi

E
∥
i . (B.19)

For the x component of the electric field, we have:

E
∥
t,x =

2 cos θi

cos θi +
√
n2 − sin2 θi

E
∥
i . (B.20)
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Appendix C

Appendix: Electron-phonon matrix

elements

C.1 Atomic deformation potential

The atomic deformation potential vector is defined as follows

mD(kf ,ki) =

∫
ei(kf−ki+G′−G)·r∇rV (r′)dr. (C.1)

The potential of the electrons in the field of an atom is

V (r) =
1

r

∑
p

vpe
− r2

2τ2p (C.2)

where vp and τp are given by the fitting the screened potential and listed in Table 3.1. By

getting integration by parts, we have

mD(kf ,ki) = i(kf − ki +G′ −G)

∫
ei(kf−ki+G′−G)·rV (r′)dr. (C.3)
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If we consider kf −ki+G′−G = Q, and putting Eq. C.2 into the Eq. C.3, the integral part

of the atomic deformation potential is given by

m′
D =

∑
p

vp

∫
e−iQ·r′e

r′2

2τ2p

r′
d3r′ (C.4)

If we just consider the integral part of the Eq. C.4 as, m′′
D, we have

m′′
D =

∫ 2π

0

dϕ

∫ π

0

∫ ∞

0

r′2e−iQr′ cos θe
−r′2

2τ2p

r′
d cos θdr′ (C.5)

The angle dependence of Eq. C.5 is calculated as follows

m′′
D =

2π

i|Q|

∫ ∞

0

(
eiQr′ − e−iQr′

)
e

−r′2

2τ2p dr′. (C.6)

Now, we make a full square for the exponential function in Eq. C.6, by follows

r′2 − 2iQr′τ 2p + (iQτ 2p )
2 − (iQτ 2p )

2

r′2 + 2iQr′τ 2p + (iQτ 2p )
2 − (iQτ 2p )

2, (C.7)

then, we have

− 1

2τ 2p
(r′2 − 2ir′Qτ 2p ) = − 1

2τ 2p
(r′ − iQτ 2p )

2 − 1

2
(Qτp)

2

− 1

2τ 2p
(r′2 + 2ir′Qτ 2p ) = − 1

2τ 2p
(r′ + iQτ 2p )

2 − 1

2
(Qτp)

2.
(C.8)

Therefore, m′′
D, Eq. C.6, becomes

m′′
D =

2πe
1
2
(Qτp)2

i|Q|

∫ ∞

0

(
e
− 1

2τ2p
(r′+iQτ2p )

2

− e
− 1

2τ2p
(r′−iQτ2p )

2)
e

−r′2

2τ2p dr′. (C.9)
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If we change the variables, z = r′ + iQτ 2p and z′ = r′ − iQτ 2p ,

z = r′ + iQτ 2p if r′ = 0 ⇒ z = −iQτ 2p if r′ = ∞ ⇒ z = ∞

z′ = r′ − iQτ 2p if r′ = 0 ⇒ z = iQτ 2p if r′ = ∞ ⇒ z = ∞
(C.10)

and considering the integral part of Eq. C.6, as m′′′
D, we have

m′′′
D =

∫ ∞

−iQτ2p

e
− z2

2τ2p dz −
∫ ∞

iQτ2p

e
− z′2

2τ2p dz′. (C.11)

The error function is defined as follows

Erfi =
2√
π

∫ ∞

x

e−t2dt (C.12)

thus Eq. C.11 becomes

m′′′
D =

√
π

2

( 1√
1

(
√
2τp)2

+
√
2τpErfi(

iQτp√
2
)− 1√

1
(
√
2τp)2

+
√
2τpErfi(

−iQτp√
2

)
)

(C.13)

and the m′′′
D becomes

m′′′
D =

√
2π

(
τpErfi(

iQτp√
2
)
)

(C.14)

Finally we the atomic deformation potential is

mD(kf ,ki) =− i2π
√
2π

Q

|Q|
×

4∑
p=1

vpτpErfi(
(|Q|)τp√

2
)×

exp (−(
(|Q|)τp√

2
)2)

(C.15)

where Q = q+G′ −G and Erfi(z) is the imaginary error function.
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Figure C-1: Electron-phonon interaction matrix elements (in units of eV), (a) TO phonon
mode, (b) LA phonon mode, are calculated by DFPT for k at conduction-band minimum
(i.e. the Dirac point) as a function of phonon wave vector[81].

C.2 Electron LA phonon mode coupling discussion

Our calculation for the electron LA phonon mode coupling shows that the electron-phonon

coupling is negligibly small for the scattering of the electron from the K point to near the

Γ point by LA phonon modes because of the atomic displacements and it is independent

on the electronic band structure. To investigate this acclaim we will show that the DFPT

calculation for the scattering the electron from the K into the Γ point by LA phonon mode

for the lowest conduction band [81].

Fig. C-1 shows the EPC matrix elements is obtained from the DFPT [81]. The initial

state of the electron is considered at the direct point (K = (4π/3a, 0)) of the lowest con-

duction band. Comparing the EPC for TO with LA phonon modes in Fig. C-1(a) and (b),

respectively, near the q ≈ K, shows that the EPC for LA phonon is much less than TO

phonon mode [81].
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Appendix D

Appendix: Phonon dipersion

calculation in graphene by QE

In this section, we will show as an example the input file of QE to calculate the phonon

dispersion relations of graphene which is included a self consistent calculation and phonon

calculation. Therefore, the inputs card that in the thesis is mentioned can be clearly seen.

D.1 the self consistent calculation for graphene

The input file to calculate the self consistent calculation:

& control calculation = ’scf’

prefix=’graphene’,

tstress = .true.

tprnfor = .true.

pseudo dir = ,

outdir=

/

& system ibrav = 4,

celldm(1) = 4.653048814,

celldm(3) = 4.000020191,

nat = 2,
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ntyp = 1,

ecutwfc = 100.0,

ecutrho = 1200.0,

occupations = ’smearing’

smearing = ’m-p’

degauss = 0.02

/

& electrons convthr = ,

mixingmode = plain ,

mixingbeta = 0.7 ,

diagonalization = cg ,

/

ATOMIC SPECIES

C 12.0107 C.pbe-rrkjus.UPF

ATOMIC POSITIONS alat

C 0.00 0.00 0.00

C 0.00 0.57735026918962576451 0.00

K POINTS

20 20 1 0 0 0

D.2 The phonon calculation for graphene

The input file to calculate phonon of graphene: & inputph

tr2 ph=1.0× 10−10,

prefix=’graphene’,

epsil=.false.,

amass(1)=12.0107,

outdir=,

fildyn=’graphene.dyn’,

ldisp=.true.,
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nq1= 6,

nq2= 6,

nq3= 1,

/
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