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Abstract

Atomic layer material, such as the well-known graphene, has attracted many research
interests due to its unique two dimensional (2D) nature of electron. The bounded
nature of electron to the surface of atomic layer material gives us one of interesting
phenomena, which is known as the surface electromagnetic (EM) wave, or simply
surface wave. Surface wave is useful for their capability to transport the EM energy
across the surface. There are two polarization of surface wave, the transverse magnetic
(TM) and transverse electric (TE). The TE surface wave is unique for its ability to
propagate longer than the TM and is not available on the surface of conventional 2D
electron gas system or even the surface of bulk metal. Graphene has been predicted to
support both TM and TE surface waves within terahertz (THz) frequency range due
to the Dirac cone shape of electronic structure. However, it was predicted that the
TE surface wave in graphene may only exist for a narrow frequency range. Moreover,
the TE surface wave in graphene is less confined to the surface than the TM surface
wave. To solve this problem, we may use other 2D material whose electronic structure
is similar to graphene, such as silicene. Different to graphene, silicene is single layer
of silicon atom and is known to have a band gap that can be controlled by external
electric field, which might affects the properties of the TE surface waves.

Another subject of this thesis is phenomenon of the surface plasmon excited by
light in graphene. The surface plasmon is collective oscillation of electrons on the
surface of material and it can be seen as TM surface wave. Experimentally, the
surface plasmon excitation can be observed as a peak on optical absorption spectrum.
In order to excite surface plasmon by light, the resonant conditions have to be fulfilled,
in which the parallel component of wave vector and frequency of light match with the
wave vector and frequency of the surface plasmon. However, it is not clear from only
the description of classical electrodynamics, the reason why obtaining the resonant
conditions means excitation of surface plasmon and how the resonant conditions give
a peak on optical absorption spectra. To answer these questions, we might adopt
the quantum picture, in which the surface plasmon and light can be quantized and
considered as interacting quasi-particles.

In this thesis, we show the optical conductivity of silicene with several external
electric fields obtained from linear response theory. We also compare it with the case
of graphene. We show that the frequency range of TE surface wave in silicene is
wider compared with the one in graphene with the same Fermi energy. For fixed
Fermi energy, increasing the external electric field increases the frequency range and
confinement length of TE surface wave in silicene, which is in contrast with the case of
graphene, in which they do not change. The TE surface wave in silicene is also found
to be much confined to the surface compared with the one in graphene, due to the
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more pronounced interband conductivity. We also show that the TE surface wave can
propagate much longer compared with the surface plasmon. The TE surface wave can
reach distance in order of meter, while the surface plasmon can only reach distance
less than one millimeter.

In this thesis, we also discuss the quantum description of the excitation of surface
plasmon by light in graphene by explaining the interaction between surface plasmon
and external light within second quantization. We derive the matrix element of inter-
action in which we create one surface plasmon by annihilating one incident photon.
From the matrix element, we understand that the parallel wave vector of light should
match with the surface plasmon wave vector (k‖ = q) in order to have non zero ma-
trix element. The frequency matching comes from the Fermi golden rule, from which
the maximum excitation rate of surface plasmon is obtained in the case of frequency
matching. From the Fermi golden rule, we derive the absorption probability of light
due to the excitation of surface plasmon in graphene (Asp). The peak of Asp cor-
responds to the maximum excitation rate of surface plasmon, in which the resonant
conditions are fulfilled as explained before. The peak on the optical absorption spec-
trum comes from the excitation of surface plasmon, since it is coincides with the peak
of Asp, where the resonant conditions are fulfilled. For other part of the optical ab-
sorption spectrum, the resonant conditions are not fulfilled and the absorption comes
from the single particle excitation of electron.
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Chapter 1

Introduction

1.1 Purpose of the study

Nowadays, atomic layer material has attracted many research interests due to its
unique two dimensional (2D) nature of electron. Graphene, which is a single layer of
carbon atom, is one of the most well-known example of atomic layer material [1, 2, 3,
4, 5, 6, 7]. The bounded nature of electron to the surface of atomic layer material gives
us one of interesting phenomena, which is known as the surface electromagnetic (EM)
wave, or simply surface wave [1, 8, 9, 10, 11]. Surface wave is electromagnetic wave that
propagates on and confined to the surface of material [8, 9, 12, 13, 11]. Surface wave
is useful for their capability to transport the EM energy across the surface. There are
two polarization of surface wave, the transverse magnetic (TM) and transverse electric
(TE). The TE surface wave is unique for its ability to propagate longer than the TM
and is not available on the surface of conventional 2D electron gas system or even the
surface of bulk metal [8, 9, 10, 12, 13, 14]. Graphene has been predicted to support
both TM and TE surface waves within terahertz (THz) frequency range due to the
Dirac cone shape of electronic structure [9, 10]. However, it was predicted that the
TE surface wave in graphene may only exist for a narrow frequency range. Moreover,
the TE surface wave in graphene is less confined to the surface than the TM surface
wave. To solve this problem, we may use other 2D material whose electronic structure
is similar to graphene, such as silicene. Different to graphene, silicene is single layer of
silicon atom and is known to have a band gap that can be controlled by external electric
field, which might affects the properties of the TE surface waves [15, 16]. Therefore,
detailed study of TE surface wave in silicene must be important to investigate, which
is one of subjects of this thesis.

Another subject of this thesis is phenomenon of the surface plasmon excited by light
in graphene. The surface plasmon is collective oscillation of electrons on the surface
of material [1, 8, 9]. In point of view of electromagnetism, surface plasmon can be
seen as TM surface wave [8, 9, 10, 13]. Experimentally, the surface plasmon excitation
can be observed as a peak on optical absorption spectrum, which usually gives large
optical absorption for doped graphene [8, 10, 13, 17, 18, 19, 20, 21]. In order to
excite surface plasmon by light, the resonant conditions have to be fulfilled, in which
the parallel component of wave vector and frequency of light match with the wave
vector and frequency of the surface plasmon [8, 10, 21]. These conditions have guided
the researchers for exciting the surface plasmon and getting large optical absorption.
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2 Chapter 1. Introduction

However, the reason why obtaining the resonant conditions means excitation of surface
plasmon and how the resonant conditions gives a peak on optical absorption spectra
are not clearly understood by only the description of classical electrodynamics. To
answer these questions, we might adopt the quantum picture, in which the surface
plasmon and light can be quantized and considered as interacting quasiparticles. The
quantum description of surface plasmon excitation by light in graphene should be
consistent with the classical electrodynamic one.

The purposes of this thesis are: (1) to investigate the properties of surface wave
in graphene and silicene, and (2) to explain by the quantum mechanics the excitation
of surface plasmon for doped graphene by light. For discussing the first purpose, we
calculate the optical conductivity of graphene and silicene by using the linear response
theory. We also solve the Maxwell equations to get the energy of surface wave. For
the second purpose, we quantize both photon and surface plasmon, and calculate the
interaction between them by using the Fermi golden rule. The calculated results are
compared with those by classical electrodynamics. When we discuss the surface wave
phenomena, the boundary conditions at the interface are taken into account by the
transfer matrix method. The transfer matrix method is very useful and we can solve by
this method the optical spectra of the material, such as graphene inside the multilayer
or other new emerging material such as the Weyl semimetal.

1.2 Organization of thesis

This thesis is organized as follows. In Sec. 1.3 we present some basic concepts which
are important for understanding this thesis. We introduce the atomic layer materials
that we study, which are graphene and silicene. We also present the basic concept of
surface wave and the previous studies of surface wave for both TM surface wave or
surface plasmon and TE surface wave. In Chapter 2, we introduce our methods of
calculation. First we show the method for achieving the first purpose as follows. We
show the electronic structure of graphene and silicene, which is used to calculate the
optical conductivity. The general expression of optical conductivity is derived by using
the well-known linear response theory. For the second purpose, we show the method
for calculating the optical spectra of graphene within classical electrodynamics. We
discuss the method for quantizing photon and surface plasmon. In Chapter 3, we show
the calculated results and discussion of the first purpose, which is the TE surface wave
in silicene. In Chapter 4, we show the results and discussion of the second purpose,
which is the quantum description of surface plasmon excitation by light in graphene.
In Chapter 5, we present our interesting findings on the unique transmission of light
in the Weyl semimetal, even though this work is not directly related to the main topic
of the surface wave phenomena. In Chapter 6, we summarize our works.

1.3 Background

Here we show the basic concepts which are important for understanding this thesis.

1.3.1 The electromagnetic surface wave

The electromagnetic surface wave is electromagnetic wave that propagates in the direc-
tion parallel to the surface, but its amplitude decays as a function of z in the direction
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perpendicular to surface [8, 10, 13, 11, 21, 20, 22]. Such kind of wave can be con-
sidered as a two-dimensionally confined wave. The electromagnetic surface wave, or
simply surface wave, might occur at the interface between dielectric medium and bulk
metal or between two dielectric media that satisfies appropriate boundary conditions.
The works on surface wave started in 1907 in which J. Zenneck and A. Sommerfeld
tried to understand the propagation of radio wave on the surface of earth or ocean.
They found that the Maxwell equations had a solution related to the confined wave
coupled with the flat surface. This surface was understood to be the interface between
a dielectric material, that is air, and a weakly conductive medium, that is the ocean
or land [13, 11].

Nowadays, the study of surface wave does not focus on the radio communication
across the earth, instead it focuses on the potential applications in nanoscale opto-
electronic devices, such as for transmitting signal and signal processing with high
bandwidth and high transmission rate, which bring the advantages realized by optical
fiber to nanoscale [13, 11, 23, 8, 24, 25, 26, 27, 28, 29]. Other application includes a
very sensitive biochemical sensor based on the excitation of surface wave [13, 11, 8, 30,
31, 32, 33, 34, 35, 36, 37]. In all applications, the basic principle underlying the surface
wave phenomenon is the solution of the Maxwell equations in the interface. The surface
wave can be excited by external electromagnetic wave incident to the interface [23,
8, 22]. The polarization of the surface wave is determined by the polarization of the
incident wave. Therefore, there are two kinds of surface wave, the transverse magnetic
(TM) and transverse electric (TE) surface waves. In the TM surface wave, the incident
field has a component of magnetic field perpendicular to the incidence plane, while in
the TE surface wave, the incident field has a component of electric field perpendicular
to the incidence plane. These conditions determine the components of field for each
surface wave. For our convention, it is noted that the surface wave propagates in the
direction of x and the field decays in the direction of z as shown in Fig. 1.1.

1.3.1.1 TM surface wave

E

kH
Ez

Ex
Hy

qMetal

(1)

(2)

TM
Incident Surface

wave

Figure 1.1 The TM surface wave with a component of electric field in the direction of
propagation. The direction of propagation of the surface wave is given by q, which is the
wave vector of surface wave wave vector, while k is the wave vector of incident wave.

Fig. 1.1: Fig/Fig1k1a.eps



4 Chapter 1. Introduction

Let us first discuss the TM surface wave on the surface of a bulk metal shown
in Fig. 1.1. For TM surface wave, the field components are the Ex, Ez, Hy. The
electromagnetic fields of the TM surface wave are given by [8],

In medium 1

E(1)
x = E1e

iqxe−κ1z ,

E(1)
z =

iq

κ1
E(1)
x ,

H(1)
y = − iωε0ε1

κ1
E(1)
x , (1.1)

and in medium 2 or metal

E(2)
x = E2e

iqxeκ2z ,

E(2)
z = − iq

κ2
E(2)
x ,

H(2)
y =

iωε0ε1

κ2
E(2)
x , (1.2)

where Ei, E
(i)
x , E

(i)
z , H

(i)
y (i = 1, 2) denote the amplitude of electric field in the x

direction, the magnitude of electric field in the x direction, the magnitude of electric
field in the z direction, and the magnitude of magnetic field in the y direction for the
i-th medium, respectively. q is the propagating wave vector of the surface plasmon
and κi is decay constant of the fields inside the i-th medium given by

κi =
√
q2 − ω2εi/c2. (1.3)

The dielectric constant of the bulk metal can be expressed in the Drude form, given
by the following equation.

ε2(ω) = 1−
ω2

bp

ω2
, (1.4)

where ω is frequency of the EM wave and ωbp is the bulk plasmon frequency of metal
defined by [38],

ωbp =

√
ne2

mε0
, (1.5)

where n and m is the density of electron in metal and mass of electron, respectively.
The ωbp is a threshold frequency that determines whether an EM wave is allowed to
propagate through the metal (ω > ωbp) or to be reflected by metal (ω < ωbp). For
example, the plasmon frequency of bulk silver is ωbp = 12 × 1015 Hz. If ω < ωbp,
the electrons can follow the EM wave and thus the EM wave is reflected due to the
screening of the electron field by electrons. On the other hand, if ω > ωbp, the electrons
cannot follow the EM wave, and thus the EM wave can be transmitted through the
metal. It is noted that ε2 is positive (negative) if ω > ωbp (ω < ωbp) [38].

We also use the following relations that relate the magnetic field with electric field,

H(i)
y = iωε0εi

∫
E(i)
x dz (1.6)

E(i)
z = −q/(ωε0εi)H

(i)
y , (1.7)
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which can be derived from the Maxwell equations [8]. It is understood that the surface
of metal is at z = 0. The boundary conditions of electromagnetic field tell us that
the electric field and the magnetic field parallel to the surface should be continuous
at the surface (z = 0) if there is no surface current. Therefore we have the following
equations,

E(1)
x = E(2)

x (1.8)

H(1)
y = H(2)

y . (1.9)

By substituting the EM fields of TM surface wave to Eq. (1.9), we obtain the following
equality,

ε1

κ1
= − ε2

κ2
. (1.10)

Equation (1.10) requires the dielectric constant of metal to be negative ε1 < 0, which
can be achieved with ω < ωbp, shown in Eq. (1.4). By substituting κi for each medium
given by Eq. (1.3) to Eq. (1.10), we obtain an equation for q, which gives the relation
between the wave vector of the TM surface wave and the frequency as follows [8],

q =
ω

c

√
ε1ε2(ω)

ε1 + ε2(ω)
. (1.11)

0 0.5 1 1.5 2
0

2

4

6

8

10

q (108 m-1)

ω
 (

1
0

1
5
 H

z
) Light 

medium 1  

TM surface 

wave 

Figure 1.2 The TM surface wave frequency as a function of wave vector obtained from
Eq. (1.11) for silver. ωbp = 12× 1015 Hz, and ε1 = 1. The dispersion of light in medium 1 is
shown as the red curve. The blue dashed line denotes the ω = ωbp/

√
ε1 + 1.

In Fig. (1.2), we show the frequency of the TM surface wave as a function of wave
vector by substituting Eq. (1.4) to Eq. (1.11) shown by the black curve. We also show
the dispersion of light in medium 1 by red line. We can see that the ω linearly increases
with increasing q for q ≈ 0, but it saturates at ω = ωbp/

√
ε1 + 1, which is obtained

by setting q ≈ ∞ in Eq. (1.11) or ε1 + ε2(ω) = 0.

Fig. 1.2: Fig/Fig1k2.eps
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q

ε

ε2

Metal

Prism

εp
θIncident

wave

TM surface wave

(a) (b)

θ

Reflection (R)

R

θTM

k

Figure 1.3 (a) the Otto geometry for exciting TM surface wave. q is the wave vector of
the excited surface wave. (b) The experimental measurement of reflectance of Otto geometry
shown in Fig. 1.3 (a) with gold as metal. The TM surface wave is excited at θTM ≈ 68◦.

In the experiment, exciting the TM surface wave requires the resonant conditions,
in which the parallel component of wave vector and frequency of the incident EM
wave match with the wave vector and frequency of the TM surface wave [8, 10, 21].
To obtain such kind of resonant conditions, a special geometry is generally used. In
Fig. 1.3(a) we illustrate the Otto geometry or the attenuated total reflection (ATR)
geometry, which is generally used for exciting TM surface wave on the surface of a
bulk metal [8, 10, 21, 20, 18]. The incident TM wave comes from a coupling prism
whose dielectric constant εP larger than the dielectric constant of medium 1 (εP > ε1).
This geometry allows us to achieve total internal reflection of light, in which there is
no transmission of incident wave to medium 1 if θ is larger than a critical angle θc,
where θc = sin−1

√
ε1/εP. In this case, the TM surface wave is excited on the metal

surface, and there is a sudden drop of the measured reflection (R) of incident wave at
an angle θTM > θc as shown in the case of gold in Fig. 1.3(b) or there will be a peak on
the absorption spectrum. As mentioned before, this excitation occurs if the resonant
conditions are satisfied. Therefore, we can approximate the incident angle that gives
the excitation, θTM by using Eq. (1.11) as follows [39],

k‖ =q

ω

c

√
εP sin θTM =

ω

c

√
ε1ε2(ω)

ε1 + ε2(ω)
, (1.12)

where k‖ is the parallel component of the incident wave in the prism and we assume
that the frequency of TM surface wave is equal to the frequency of light ω. We
can think that if the resonant conditions in Eq. (1.12) are satisfied, there will be a
maximum energy transfer from the incident wave to the metal surface that excites the
TM surface wave. Therefore, the reflection is minimum as shown in Fig. 1.3 (b) and
the absorption of incident wave is maximum [39].

Fig. 1.3: Fig/Fig1k3.eps
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E
k

H

Hz
Hx

Ey qMetal

(1)

(2)

TE

Incident Surface

wave

Figure 1.4 The TE surface wave with a component of magnetic field in the direction of
propagation. The direction of propagation of the surface wave is given by q, which is the
wave vector of surface wave wave vector, while k is the wave vector of incident wave.

1.3.1.2 TE surface wave

Now let us discuss the second kind of surface wave, which is transverse electric (TE)
surface wave as shown in Fig 1.1 (b). For TE surface wave, the field components are
the Ey, Hx, Hz. The electromagnetic fields of the TE surface wave are given by, In
medium 1

H(1)
x = H1e

iqxe−κ1z ,

H(1)
z =

iq

κ1
H(1)
x ,

E(1)
y =

iωµ0µ1

κ1
H(1)
x , (1.13)

and In medium 2 or metal

H(2)
x = H2e

iqxeκ2z ,

H(2)
z = − iq

κ2
H(2)
x ,

E(2)
y = − iωµ0µ2

κ2
H(2)
x , (1.14)

where µ0 is the permeability of vacuum, µi is the relative permeability of the i-th
medium. We use the following relations,

E(i)
y = −iωµ0µi

∫
H(i)
x dz (1.15)

H(i)
z = q/(ωµ0µi)E

(i)
y . (1.16)

By using the boundary conditions of electromagnetic field at the surface z = 0, which
are the same as the case of TM surface wave given in Eq. (1.9), we obtain the following
equation [8, 39],

µ1

κ1
= −µ2

κ2
. (1.17)

Fig. 1.4: Fig/Fig1k1b.eps
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Equation (1.17) implies that we should have the medium 2 with negative relative
permeability (µ2 < 0), since κi is positive [39]. This condition cannot be fulfilled
by a normal bulk metal or any other common material found in nature, due to the
weak coupling between the magnetic field to the atom. Therefore, the TE surface
wave cannot be excited on the surface of conventional bulk metal or other normal
material. Even though we can develop artificial material, which possess the negative
permeability, which is known as meta material [39, 40], it is generally complicated to
fabricate. However, it is predicted that by simply using 2D material such as graphene
instead of bulk metal, TE surface wave can exist on the surface of 2D material [9, 10],
which will be discussed in the Section 1.3.3.

+++ --- +++ ---

z

xe -e

E
Hy

p

z

x

H m

x x x x x x

Ey

J

(a) (b)

Figure 1.5 (a) The TM surface wave can be seen as the surface plasmon, which is the
collective oscillation of electron on the surface of material. Since there is an oscillation of
charge density across the surface, surface plasmon can be seen physically as a electric dipole
(p) wave. (b) The TE surface wave can be seen a magnetic dipole (m) wave on the surface
of the material due to the self-sustained surface current (J) oscillation [40].

Before ending this section, we will briefly discuss the surface wave in the electron
point of view. Physically, the TM surface wave can be seen as the surface plasmon [9,
10, 40]. Surface plasmon is a collective oscillation of charge density of electrons that
propagates on the surface of a material. This propagating oscillation of charge density
creates a wave of electric dipole (p) as shown in Fig. 1.5 (a) as a black arrow. The
electric field of the electric dipole is nothing but the electric field the TM surface wave,
with one component in the direction of propagation (x) and the other component in
the perpendicular direction of propagation (z).

On the other hand, the TE surface wave can be considered as a magnetic dipole (m)
wave on the surface of the material due to the self-sustained surface current oscillation
(J) [10, 40]. The magnetic dipole, which is shown as black arrow in Fig. 1.5 (b),
induces the magnetic field with one component in the direction of propagation (x)
and the other compenent in the perpendicular direction of propagation (z), which is
nothing but the magnetic field of the TE surface wave. Hence, the to support TE
surface wave, the surface current density should be finite on the surface of a material,
which is absent in the bulk metal, where we have only bulk current. This condition is
satisfied for the 2D material, in which the electric current is always surface current. It
is important to note that the radiation loss of magnetic dipole (Pmag) is much smaller
than that of electric dipole (Pel ∝ c2Pmag) [41, 42]. Therefore, the TE surface wave
can propagate longer than the TM surface wave, which makes the TE surface wave
desirable for transporting EM energy over long distance [14, 43, 44, 9].

Fig. 1.5: Fig/Fig1k4.eps
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Figure 1.6 (a) Graphene hexagonal lattice observed experimentally by transmission electron
aberration-corrected microscope (TEAM). It is shown that carbon-carbon distance is 0.142
nm [3]. (b) The graphene unit cell consisting of two atomic sites A and B. a1 and a2

are the unit vectors and acc is the nearest neighbor carbon-carbon distance [4]. (c) The
silicene hexagonal lattice, shown as bright color, observed experimentally by STM. The lattice
of silicene is the same honeycomb lattice of graphene as shown in (b), however it is not
planar [45]. (d) Silicene lattice from side view. Sublattice A and B are separated vertically
by d = 0.46 . Sublattice A (B) is depicted by red (green) atom. In graphene atom A and B
are carbon atom, while in silicene they are silicon atom.

1.3.2 Graphene and silicene

Before discussing the surface wave in the atomic layer material, first we introduce the
atomic materials that we study, which are graphene and silicene. Graphene is a planar
allotrope of carbon in a honeycomb lattice structure where all the carbon atoms form
covalent bonds in a single plane [3, 4, 46, 47, 48, 49, 5, 6, 7]. Graphene is well-known as
the mother of the three carbon allotropes of fullerene, nanotube, and graphite. Several
layers of graphene sheets are stacked together by the van der Waals force to form three
dimensional (3D) graphite, while by wrapping it up, a 0D fullerene can be made and
by rolling it up, a 1D single wall nanotube is made [3, 4]. The first isolation of single
layer graphene was done by A. Geim and C. Novoselov at Manchester in 2004, in which
they use mechanical exfoliation technique to isolate the 2D crystal from 3D graphite.
They obtain single- and few-layer graphene flakes that were attached weakly to the
substrate by the van der Waals forces, which can be made free standing by etching
away the substrate.

The lattice structure of graphene has been observed experimentally and is shown
by Fig. 1.6(a) and (b) [3]. In Fig. 1.6(b) we show the honeycomb lattice of graphene,
which consists of two carbon atoms in the unit cell. The covalent bonds between
nearest neighbor carbon atoms are called σ-bonds, which are the strongest covalent

Fig. 1.6: Fig/Fig1k5.eps
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bond among the materials. The σ-bonds have the electrons localized along the plane
connecting two carbon atoms and are responsible for the great strength and mechanical
properties of graphene. Due to the unique Dirac cone shape of the electronic structure,
graphene acquire zero effective mass of electron, which allows graphene to achieve very
high electron mobility (µ ≈ 104 cm2 V−1s−1) due to the supression of scattering [47, 48,
49]. This high mobility allows graphene to be used in the future of nanoelectronics at
a high frequency of THz [46]. However, the absence of the band gap in graphene might
hinder the the possible application of graphene in logic application. Therefore, other
2D material similar to graphene, such as silicene, which has band gap (≈ 1.55−7.9 meV
for the spin-orbit band gap [50]), might give more advantage than graphene[51, 52].

Silicene is a monolayer of silicon atoms arranged in honeycomb lattice and the
stable structure of silicene is not purely planar, but slightly buckled, i.e., the two
sublattices are separated by vertical distance d = 0.046 nm due to the sp3-like hy-
bridization as shown in Fig. 1.6 (d) [51, 52, 45, 15, 16, 53, 54, 55, 56]. The honeycomb
lattice of silicene observed experimentally by STM as shwon in Fig. 1.6 (c), which
clearly shows the hexagonal shape given by the bright color [45]. The buckling of the
atoms creates potential difference between two sublattices when an external electric
field is applied in the direction perpendicular to the surface. The induced potential
difference, along with the non-negligible spin orbit (SO) coupling in silicene due to the
larger mass of silicon atom compared with carbon atom, will give a tunable energy
gap, which can be tuned by the external electric field [52, 15, 16, 53, 54, 56]. The
tunable band gap gives silicene more advantage in logic application compared with
graphene. Moreover, silicene will be much more compatible for the integration with
the existing silicon-based electronics [51, 52].

1.3.3 The surface waves in 2D material

1.3.3.1 TM surface wave

Now let us return our discussion to the surface wave phenomena in the 2D material,
which is predicted to support the TE surface wave due to the presence of surface
current. First, let us focus on the TM surface wave or surface plasmon. To discuss
the existence of surface wave, let us obtain the dispersion of TM surface wave in the
surface of 2D material. We assume that the 2D material is surrounded by two dielectric
media 1 and 2 as shown in Fig. 1.7. The TM surface wave propagates on the surface
of graphene in the direction of x with wave vector q. Similar to the discussion of TM
surface wave in bulk metal, the electromagnetic fields of TM surface wave are given
as follows [8, 57],

In medium 1

E(1)
x = E1e

iqxe−κ1z , (1.18)

E(1)
z =

iq

κ1
E(1)
x , (1.19)

H(1)
y = − iωε0ε1

κ1
E(1)
x , (1.20)
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Figure 1.7 TM surface wave in the surface of 2D material. 2D material is shown as red
color with negligible thickness.

and in medium 2

E(2)
x = E2e

iqxeκ2z , (1.21)

E(2)
z = − iq

κ2
E(2)
x , (1.22)

H(2)
y =

iωε0ε1

κ2
E(2)
x , (1.23)

where κi (i = 1, 2) is decay constant given by Eq. (1.3). However, due to the pres-
ence of surface current that flows on the 2D material, the magnetic fields component
in the direction parallel to the surface are not continuous anymore at the surface of 2D
material. Therefore, the boundary conditions of electromagnetic wave on the surface
of 2D material are given by,

E(1)
x = E(2)

x (1.24)

H(1)
y −H(2)

y = −J, (1.25)

where J = σ(ω)E
(2)
x is the surface current on the 2D material. In the calculation, we

consider that 2D material has a negligible thickness, therefore it appears only in the
boundary conditions and σ(ω) is the optical conductivity of 2D material. If we take
graphene as the 2D material, the σ(ω) is given by the following equation [9, 58, 59,
57, 60, 61],

σ (ω) ≡σD + Re σE + Im σE

=
EF e

2

π~
i

~ω + iΓ
+
e2

4~
Θ (~ω − 2EF)− ie2

4π~
ln

∣∣∣∣~ω + 2EF

~ω − 2EF

∣∣∣∣ . (1.26)

The first term in Eq. (1.26) is the intraband conductivity, which is known as the
Drude conductivity σD [57, 59, 60]. We add a spectral width Γ as a phenomenological
parameter for scattering rate or electron damping due to the impurity or scattering
with phonon, and Γ depends on EF as Γ = ~ev2

F/µEF, where vF = 106 m/s is the
Fermi velocity of graphene, µ = 104 cm2/Vs is the mobility for ideal graphene [57]. The
second and the third terms in Eq. (1.26) correspond to the real part and the imaginary

Fig. 1.7: Fig/Fig2DTM.eps
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part of interband conductivity σE , respectively [59, 9, 60]. The real part and imaginary
part of σ(ω) are related with each other by the Kramers-Kronig relation. We have
two kinds of optical conductivity corresponding to two possible optical scattering or
excitation of electron by photon in graphene, which are the intraband and interband
transitions as shown in Figs. 1.8 (a) and (b), respectively. The intraband transition
is the transition of electron within the same conduction band, which is dominant if
~ω < 2EF. The optical transition of electron with q 6= 0 is possible in intraband
transition, due to the additional scattering of electron by impurity or phonon, which
might modify the momentum of electron. For ~ω > 2EF, we might have transition
from valence to conduction band, which is called the interband transition [60].

Intraband Interband

v-band

c-band

(a) (b)

/
0

Figure 1.8 (a) The intraband transition of electron (b) The interband transition of electron,
which occurs if ~ω > 2EF. (c) the optical conductivity of graphene σ(ω) normalized to
σ0 = e2/4~. σ(ω) consists of intraband σD and interband σE conductivity. c and v-bands
denote conduction and valence bands, respectively [61]

.

The optical conductivity of graphene is given in Fig. 1.8 (c), where we plot σ(ω) of
Eq. (1.26) normalized to real part of σE , σ0 ≡ e2/4~. At low frequency (~ω << 2EF),
the σD is dominant, while the σE can be neglected, while σE is dominant for large
frequency (~ω > 2EF), where the real part of conductivity is constant at σ0.

It is noted that for 2D electron gas system, such as GaAs/AlGaAs quantum-well
structure, the optical conductivity is only described by the the Drude conductivity or
intraband conductivity, given by [38, 9]

σ2D gas = i
ne2

m(ω + iγ)
, (1.27)

where n,m, γ are the density, effective mass, and scattering rate of 2D electron gas
system.

The dispersion of TM surface wave is obtained by substituting Eqs. (1.18) - (1.23) to
boundary conditions of Eqs. (1.24) and (1.25). The following equation is a requirement
to have TM surface wave in the 2D material [9, 57, 59, 62].

ε1

κ1
+
ε2

κ2
+
iσ(ω)

ωε0
= 0, (1.28)

Fig. 1.8: Fig/Fig1k7.eps
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Figure 1.9 (a) The dispersion relation of TM surface wave or surface plasmon in graphene
by Eq. (2.98 for EF = 0.64 eV. (b) The dispersion relation of TM surface wave or surface
plasmon in graphene obtained by calculating the dielectric function of graphene εg(q, ω) using
random phase approximation (RPA) method and solve εg(q, ω) = 0 [58]. It is noted that for
EF = 0.64 eV, we have kF = 9.7× 108 m−1.

where εi, (i = 1, 2) is the dielectric constant of the i-th medium, which surrounds
the 2D material. Because εi and κi are positive values, the imaginary part of the
optical conductivity should be positive (Im σ(ω) > 0) to satisfy Eq. (1.28). This
requirement is satisfied by the conventional 2D electron gas system, since Im σ2D gas =
ne2ω/(m(γ2 + ω2)) > 0 [9]. This condition is also satisfied in the case of graphene,
since from Fig. 1.8 (c), Im σ(ω) > 0 for ~ω < 1.667EF. Therefore, the TM surface
wave or surface plasmon can exist in both conventional 2D electron gas system and
graphene [9, 59].

We can derive the dispersion relation of TM surface wave for graphene by solving
Eq. (1.28). Suppose that ~ω << 2EF, for example with EF = 0.64 eV, we take the
frequency in terahertz (THz) range, the optical conductivity can be taken only as the
Drude conductivity (σ(ω) ≈ σD(ω)). The scattering of electron or Γ can be ignored,
since it gives only the spectral broadening of the TM surface wave. Since the velocity
of light can be considered to be much larger than the group velocity of surface plasmon
vsp, we can approximate the q >> ω/c and we get κ1 = κ2 = q in Eq. (1.3). This
situation is called the non-retarded regime [57, 20, 63]. By substituting σD of Eq. (1.26)
to Eq. (1.28) and solve for ω, we obtain the dispersion relation [57, 20, 63, 24],

ω =
1

~

√
EFe2q

πε0(ε1 + ε2)
, (1.29)

where we have a square-root dependence of q ω ∝ √q. The square-root dependence
can also be obtained for conventional 2D electron gas by substituting Eq. (1.27) to
Eq. (1.28) and solve for ω. Therefore, the ω ∝ √q dependence is the characteristic of

Fig. 1.9: Fig/Fig1k8.eps
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TM surface wave or surface plasmon in the 2D material [57, 20, 63, 58]. In Fig. 1.9
(a), we show the dispersion relation of the TM surface wave of graphene.

When we consider graphene as a medium, we can derive the dispersion from the
dielectric function of the graphene εg(q, ω). εg(q, ω) has been derived by Hwang et al.
by using Random Phase Approximation (RPA) method [58]. The dispersion of TM
surface wave can be obtained by solving εg(q, ω) = 0, in which the surface plasmon is
excited [58, 64]. Figure 1.9 (b) shows the TM surface wave or surface plasmon disper-
sion of graphene obtained by εg(q, ω) = 0 as thick black line for graphene surrounded
by vacuum. We can clearly see that for q << kF, ω ∝

√
q and we return to Eq. (2.98),

while for k >> kF, ω ∝ vFq. For k >> kF, the dispersion enters the regime of sin-
gle particle excitation (SPE) by interband, in which the electron undergoes interband
transition and the imaginary part of dielectric function is not zero (Im εg(q, ω) > 0).
In this regime, the TM surface wave or surface plasmon experiences damping, known
as the Landau damping [58, 64]. The Landau damping is caused purely due to the
optical excitation of electron, not due to the scattering of electron by other means.
In the white region I in Fig. 1.9(b), where we have ω ∝ √q, the Landau damping
does not occur, and the lifetime of TM surface wave can be infinity, if we ignore the
scattering of electron by impurity or phonon. It is also noted that the TM surface
wave disperion for silicene has also been studied by using RPA method by Tabert et
al., where they derive the dielectric function of silicene and they got similar results as
Fig. 1.9 (b). But, the white region for silicene can be tuned due to the tunable band
gap by external electric field [53, 56].

1.3.3.2 TE surface wave

k

qEy

Hz Hx
E

H

2D material

Medium 1

Medium 2

TE
Incident

Surface
wave

Figure 1.10 TE surface wave in the surface of 2D material. 2D material is shown as red
color with negligible thickness.

Now let us discuss the existence of TE surface wave in 2D material as shown
in Fig. 1.10 (b). The electromagnetic fields of TE surface wave are expressed as
follows [8, 39],

Fig. 1.10: Fig/Fig2DTE.eps
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In medium 1

H(1)
x = H1e

iqxe−κ1z ,

H(1)
z =

iq

κ1
H(1)
x ,

E(1)
y =

iωµ0

κ1
H(1)
x , (1.30)

and in medium 2

H(2)
x = H2e

iqxeκ2z ,

H(2)
z = − iq

κ2
H(2)
x ,

E(2)
y = − iωµ0

κ2
H(2)
x , (1.31)

where µ0 is the permeability of vacuum. By using the boundary conditions, which are
E

(1)
y = E

(2)
y and H(1)

x −H(2)
x = −J at z = 0, where J = σ(ω)E

(2)
y , and assuming that

the two dielectric media as vaccum (ε1 = ε2 = 1, thus κ1 = κ2 =
√
q2 − (ω/c)2 ≡ κ),

we obtain the following equation [9],

2− iσ(ω)ωµ0

κ
= 0. (1.32)

Since ω is a positive value, Eq. (2.99) requires a negative value of Im σ [9, 10]. There-
fore, the TE surface wave cannot be supported by the conventional 2D electron gas
system, since the Im σ2D gas > 0 as is given by Eq. (1.27) [9]. However, the imag-
inary part of optical conductivity of graphene can be negative (Im σ(ω) < 0) at a
certain frequency range as shown in Fig. (1.8) (c). This unusual property has also
enabled graphene to have the TE surface wave. However, it was predicted that the
TE surface wave in doped graphene may only exist for a narrow frequency range of
1.667EF < ~ω < 2EF [9, 10, 65, 59, 66].

Xiao et al. reported that the TE surface wave in graphene is less confined to the
surface, but can propagate longer compared with the TM surface wave [43]. Figure 1.11
shows the calculated results of the decay length of TM surface wave in air (1/κ1) and
the propagation length of TM and TE surface waves in graphene at T = 3K. Because
TM and TE surface waves cannot occur simultaneously in the same frequency range
for fixed EF, EF = 0.2 eV and 8.6 meV are adopted in the calculation and comparison
of TM and TE surface waves, respectively. In this case, graphene is surrounded by
air (A-G-A) or by air and SiO2 (A-G-SiO2). The frequency range for TE surface
wave is denoted by the circle, which can only occurs within 3.7 - 9 THz. Within this
frequency range, we can see that the decay length of TE surface wave is larger than
the TM surface wave, which means that the TE surface wave decays slowly in the
air. In other words, TE surface wave is less confined to the surface compared with
the TM surface wave. The shortest decay lenght for the TE surface wave is roughly
103 µm, while for TM surface wave, it is 10 µm. However, the TE surface wave can
propagate longer compared with the TM surface wave in graphene as shown in the
inset of Fig. 1.11. The TE surface wave can propagate with maximum distance 1 m,
while the TM surface wave can only reach 1 mm.
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TE

TM

Figure 1.11 The decay length in air (1/κ1) for TM and TE surface waves in graphene. The
inset gives the propagation length of TM and TE surface waves in graphene. For TM(TE)
surface wave calculation, EF = 0.2 (8.6) eV(meV) is adopted so that we can compare TM
and TE surface waves within the same frequency range [43]. The temperature is 3K.

The existence of TE surface wave has been proved experimentally by Menabde et
al. by monitoring the reflection of TE EM wave coming to graphene, which is put
inside the Otto geometry as shown in Fig. 1.12 (a) [10]. They use both TM and
TE incident wave with frequency within frequency range of TE surface wave. As the
control experiment, they perform the measurement of reflection of TM and TE incident
wave without the presence of graphene, in which the reflection coefficient turns unity
for both polarizations at angle of incident larger than critical angle due to the total
reflection. In the experiment with graphene, they change the doping level of graphene
by changing the gate voltage, which is applied to graphene.

Figure 1.12 (c) shows the experiment results of the reflection coefficient of TM
and TE incident wave with the presence of graphene. Changing the doping level does
not change the reflection of TM incident wave, however, the reflection coefficient of
TE wave suddenly drop at incident angle close to critical angle. This dip of reflection
coefficient implies that there is a peak on the absorption spectrum of TE incident wave
and the TE surface wave is excited on the surface of graphene.

1.3.4 The Weyl semimetal

Graphene and silicene are the two-dimensional Dirac material, since their low energy
dispersion is linear to the wavevector. For three-dimensional material, the Dirac ma-
terial is known as the Dirac semimetal, where the valence and conduction bands touch
at so called Dirac point [67, 68, 69]. The examples of Dirac semimetal are Cd3As2

and Na3Bi [68]. In Dirac semimetal, two Dirac cones overlap each other, thus the
Dirac point is doubly degenerate. The Dirac semimetal is the consequence of the

Fig. 1.11: Fig/Fig1k9.eps



1.3. Background 17

(a) (b)

(c)

Figure 1.12 (a) The structure to observe the TE surface wave in graphene [10]. (b) The
control experiment with no graphene. The reflection turns unity for angle of incident larger
than critical angle due to the total reflection. (c) The experimental reflection coefficient for
both TM and TE incident wave with changing the gate voltage. There is a sudden drop in
reflection coefficient for TE incident wave by changing the gate voltage.

time-reversal and inversion symmetries [67]. When one of the symmetries is broken,
the Dirac point is split into a pair of Weyl nodes and we have two separated Dirac
cones. This material is called the Weyl semimetal (WSM) [67]. The examples of
WSM are Eu2Ir2O7 and YbMnBi2 [68]. The WSM possesses topological properties,
even though it is not topological insulator, including protected surface states and
unusual electromagnetic response [69, 67].

In Fig. 1.13, we show the energy dispersion of the Dirac semimetal and the WSM.
Due to the symmetry breaking, two Dirac cones of Dirac semimetal are separated
and we have the WSM. The separation can be in momentum [Fig. 1.13 (b)] and
in energy [Fig. 1.13 (c)]. The touching points of valence and conduction band are
called Weyl nodes for WSM. For our discussion, we focus on the WSM with the Weyl
nodes separated in momentum. The separation of two Dirac cones introduces the
topological properties in the WSM. The topological properties are characterized by
so-called the axion angle given by θ = 2(b · r), where b is a wave vector separating
the Weyl nodes [67, 68, 69]. One of unique topological properties is the presence
of the Hall current, even without magnetic field [68, 70, 67]. This phenomenon is

Fig. 1.12: Fig/Fig1k10.eps
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Dirac 

points

Figure 1.13 (a) The Dirac semimetal with doubly degenerate Dirac points. The Weyl
semimetal with two Dirac cones separated in (b) momentum and (c) energy [67].

known as the anomalous Hall effect, which is responsible for the tensor form of the
dielectric function of the WSM [71, 68]. The electromagnetic response of WSM can
be derived from the formula of action for the electromagnetic field [71, 67, 72]. Here,
we will give brief derivation of the electromagnetic response of WSM represented by
electric displacement vector D. The more detailed derivation is given by Zyuzin and
Burkov [69, 73] or Hosur and Qi [74]. The action of electromagnetic field is given by,

Sθ = − e2

8π2~

∫
dtdr∂γθεγνρηAν∂ρAη, (1.33)

where Aν is electromagnetic potential, εγνρη is the Levi-Civita tensor and each index
γ, ν, ρ, η takes values 0, 1, 2, 3. The current density jν is given by varying the action
with respect to electromagnetic potential,

jν ≡
δSθ
δAν

=
e2

4π2~
∂γθε

γνρη∂ρAη. (1.34)

By writing E = −(∇A0)−∂0A, Eq. (1.34) gives the Hall current j = e2

4π2~∇θ×E, which
gives additional terms in D of the normal metals as the second term of Eq. (1.35). We
can write the electric displacement vector as follows,

D = ε0εb

(
1−

ω2
p

ω2

)
E +

ie2

4π2~ω
(∇θ)×E, (1.35)

where ωp is the plasmon frequency, εb is the background dielectric constant (εb = 13
for Eu2Ir2O7). The first term of Eq. (5.1) is the Drude dielectric function, which
is similar to normal metals. The anomalous Hall effect given by the second term of
Eq. (1.35). The anomalous Hall current only depends on the structure of the electron
dispersion of WSM represented by θ.

Fig. 1.13: Fig/wsm.eps



Chapter 2

Methods of calculation

In this chapter, we will describe formalisms that are useful for the main calculations.
We will discuss the electronic structure of graphene and silicene, which is used in the
linear response theory for obtaining the optical conductivity. The optical conductivity
is useful for discussing the existence of TE surface wave in silicene. We also discuss
about the method to quantize the photon and surface plasmon. Finally we show how to
calculate the optical spectra of graphene, which is useful for discussion of the quantum
description of surface plasmon excitation by light.

2.1 The optical conductivity by linear response theory

The definition of the linear response theory is a theory, in which we consider that
the response of a material to the external perturbation is linear to the strength of
perturbation. In this section, we will consider the response of a material as electric
current J to the external electric field E. Within the linear approximation, the electric
current can be related to the field as follows,

J = σE, (2.1)

where the constant of proportionality σ is conductivity. Equation (2.1) is known
as Ohm’s law. In this section, we will derive the general expression of σ by linear
response theory, which will be used to derive the optical conductivity of silicene in the
next chapter.

2.1.1 Kubo formula

Suppose that we measure an observable quantity O, such as the current density J.
The relation between the change of an observable quantity δO to the perturbation is
described by the Kubo formula [75, 76]. In the perturbed system, the Hamiltonian
can be written as follows,

H(t) = H0 +H ′(t)θ(t− t0), (2.2)

where H0 is the unperturbed Hamiltonian, which does not depend on the time, H ′(t)
is the perturbation Hamiltonian, which depends on time and θ(t − t0) is the step

19
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function, which implies that the perturbation starts at t = t0. The expectation value
of an observable quantity O at a given time t is given as follows,

〈O(t)〉 =
1

Z0

∑
n

〈ψn(t) |O| ψn(t)〉e−βEn , (2.3)

where Z0 is partition function, β = 1/kBT , En is the eigenvalue of Eq. (2.2), and |ψ(t)〉
is the time-dependent state, which is governed by the Schrödinger equation below

i~
∂

∂t
|ψn(t)〉 = H(t)|ψn(t)〉. (2.4)

Since the perturbation is weak, it is convenient to work in the interaction picture.
In the interaction picture, the evolution of a state is governed by the perturbing
Hamiltonian only. The time evolution of a state |ψ̂n(t0)〉 at t = t0 to a state |ψ̂n(t)〉
is given by

|ψ̂n(t)〉 = Û(t, t0)|ψ̂n(t0)〉, (2.5)

where |ψ̂n(t)〉 is the state in the interaction picture, and Û(t, t0) is the unitary operator,
which only depends on H ′(t). The unitary operator in interaction picture is the
solution of the following self-consistent equation,

Û(t, t0) =1 +
1

i

t∫
t0

dt′Ĥ ′(t′)Û(t′, t0)

=1 +
1

i~

t∫
t0

dt1Ĥ ′(t1) +
1

i2~2

t∫
t0

dt1Ĥ ′(t1)

t1∫
t0

dt2Ĥ ′(t2) + ... (2.6)

If we consider only linear order of perturbing Hamiltonian, then the unitary operator
is given only up to the second term of Eq. (2.6).

The state in Schrödinger picture |ψ(t)〉 is related with the interaction picture |ψ̂(t)〉
by the following equation,

|ψn(t)〉 =eiH0t/~|ψ̂n(t)〉

=eiH0t/~Û(t, t0)|ψ̂(t0)〉, (2.7)

where we use Eq. (2.5) to obtain Eq. (2.7). Therefore, by substituting Eqs. (2.6)
and (2.7) up to linear order to Eq. (2.3), we obtain the following equation for the
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expectation value of observable quantity A at a given time,

〈O(t)〉 =
1

Z0

∑
n

〈
ψ̂n(t0)

∣∣∣∣eiH0t/~
(

1 +
i

~

∫
dt′Ĥ ′(t′)

)
Oe−iH0t/~

×
(

1− i

~

∫
dt′Ĥ ′(t′)

)∣∣∣∣ψ̂n(t0)

〉
e−βEn

=

〈
O

〉
0

− i

~

t∫
t0

dt′
1

Z0

∑
n

e−βEn
〈
ψ̂n(t0)

∣∣∣∣[Ô(t), Ĥ ′(t′)

]∣∣∣∣ψ̂n(t0)

〉

=

〈
O

〉
0

− i

~

t∫
t0

dt′
1

Z0

∑
n

e−βEn
〈
ψn(t0)

∣∣∣∣[Ô(t), Ĥ ′(t′)

]∣∣∣∣ψn(t0)

〉
(2.8)

=

〈
O

〉
0

− i

~

t∫
t0

dt′
〈[
Ô(t), Ĥ ′(t′)

]〉
0

, (2.9)

where all the averages 〈· · · 〉0 are taken with respect to the unperturbed Hamiltonian
H0 The term that is not linear to Ĥ ′ is neglected in Eq. (2.9) due to the linear
approximation. The time dependence of the operator O is taken in the interacting
picture as follows,

Ô(t) = eiH0t/~Oe−iH0t/~. (2.10)

In Eq. (2.8), we use the fact that |ψ̂n(t0)〉 = eiH0t0/~|ψn(t0)〉 = eiEnt0/~|ψn(t0)〉.
Eq. (2.9) is known as the Kubo formula. By using the Kubo formula, the expected
value of an observable quantity in a perturbed system is determined by the average
with respect to the unperturbed system. The average in the second term of Eq. (2.9)
is known as the retarded correlation function, because the response O appears after
the perturbation starts (t > t′).

2.1.2 The optical conductivity

In this section, we will use the Kubo formula in Eq. (2.9) to derive the general expres-
sion of the optical conductivity of a material [76, 60]. The corresponding response is
the current density. We assume that the external field is represented by the vector
potential A. The current density operator is give as follows,

Ĵ(r, t) =− e~Ψ̂†(r, t)vΨ̂(r, t)− e2

m
Ψ̂†(r, t)Ψ̂(r, t)A(r, t),

=JP(r, t) + JD(r, t), (2.11)

where v = ∂H0/∂k is the velocity operator with k is the wave vector of electron. JP
and JD are called the paramagnetic and diamagnetic current. The Ψ̂†(r, t) and Ψ̂(r, t)
are the field operator that creates and annihilates electron at position r, respectively.
The perturbing Hamiltonian is given by,

Ĥ ′(t) =

∫
dr Ĵ(r, t) ·A(r, t)

=− e~
∫
dr Ψ̂†(r, t)vΨ̂(r, t)A(r, t), (2.12)
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where we neglect the non-linear term with respect to A(r, t) (JD(r, t)). Moreover,
the current and field are considered to be parallel to each other. By substituting
Eqs. (2.11) and (2.12) to Eq. (2.9), we can determine the expectation value of current
density up to linear order of A(r, t), as follows,

〈
J(r, t)

〉
=

〈
J

〉
0

− ie2~
t∫

t0

dt′
∫
dr′

×
〈[

Ψ̂†(r, t)vΨ̂(r, t), Ψ̂†(r′, t′)v′Ψ̂(r′, t′)A(r′, t′)

]〉
0

=

〈
J

〉
0

+

t∫
t0

dt′
∫
dr′CR(r, r′, t, t′)A(r′, t′, ), (2.13)

where 〈J〉0 is the averaged current without perturbation, and it can be taken as zero
and CR(r, r′, t, t′) is defined as below,

CR(r, r′, t, t′) = −ie2~ T
〈[

Ψ̂†(r, t)vΨ̂(r, t), Ψ̂†(r′, t′)v′Ψ̂(r′, t′)

]〉
0

, (2.14)

where we add time ordering operator T , since perturbation has to start before the
response t > t′. Suppose that the function C(r, r′, t, t′) depends only at the time
difference t− t′, we can write,

〈
J(r, t)

〉
=

t∫
t0

dt′
∫
dr′CR(r, r′, t− t′)A(r′, t′). (2.15)

If the perturbation is applied for long time t >> t0, we can take a limit of t→∞ and
t0 → −∞, and Eq. (2.15) becomes the convolution equation. Thus, we get the current
density in frequency domain as follows,〈

J(r, ω)

〉
=

∫
dr′CR(r, r′, ω)A(r′, ω)

=
1

iω

∫
dr′CR(r, r′, ω)E(r′, ω), (2.16)

where A(r′, ω) = 1/iω E(r′, ω). By comparing Eq. (2.16) with Ohm’s law of Eq. (2.1),
we can define the optical conductivity

σ(r, r′, ω) =
1

iω
CR(r, r′, ω). (2.17)

Let us return to time domain, the function C(r, r′, t− t′) can be written as

CR(r, r′, t− t′) = − i
~
T

〈[
ĴP(r, t), ĴP(r′, t′)

]〉
0

. (2.18)
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Suppose that we have translation invariant system, the CR(r, r′, t − t′) depends only
on r − r′ and we can define it in the momentum domain as follows,

CR(q, t− t′) =− i

~

∫
dr

1

S

∑
q1q2

T

〈[
ĴP(q1, t), ĴP(q2, t

′)

]〉
0

eiq1·r+iq2·r
′
e−iq·(r−r′)

=− i

~
1

S
T

〈[
ĴP(q, t), ĴP(−q, t′)

]〉
0

, (2.19)

where S is the area of the system for 2D material. The current operator in the
momentum domain can be obtained as follows,

ĴP(r, t) =− e~Ψ̂†(r, t)vΨ̂(r, t)

=− 1

S
e~
∑
kk′

ei(k−k′)·rc†k′(t)vck(t)

=
1

S

∑
q

{
− e~

∑
k

c†k(t)vck+q(t)

}
eiq·r

=
1

S

∑
q

ĴP(q, t)eiq·r. (2.20)

Equation (2.19) is called retarded Green’s function that is defined for t > t′. To
obtain the general expression of Eq. (2.19) and the optical conductivity in frequency
domain, it is convenient to work on the imaginary time Green function, known as
the Matsubara-Green function [76]. The Matsubara-Green function C(q, τ − τ ′) for
Eq. (2.19) is expressed by the following function,

C(q, τ − τ ′) = −1

~
1

S
T

〈
ĴP(q, τ)ĴP(−q, τ ′)

〉
0

, (2.21)

where τ = it is the imaginary time. Since C(q, τ − τ ′) only depends on the time
difference, we can set τ ′ = 0. By using the expression of ĴP(q, τ) obtained from
Eq. (2.20), we rewrite the Matsubara Green function as follows

C(q, τ) =− e2~
S

∑
kk′

T

〈
c†k(τ)vck+q(τ)c†k′(0)v′ck′−q(0)

〉
0

=− e2~
S

∑
kk′

(
− v T

〈
ck+q(τ)c†k′(0)

〉
0

v′T

〈
ck′−q(0)c†k(τ)

〉
0

)
=
e2~
S

∑
kk′

(
vG0(k+q,k′, τ)v′G0(k′ − q,k,−τ)

)
=
e2~
S

∑
k

(
vG0(k+q, τ)v′G0(k,−τ)

)
, (2.22)

where we introduce the Matsubara-Green function of a single electron G0(k, τ) and
its Fourrier transform G0(k, iωn), which are defined, respectively, as follows,

G0(k, τ) = −T
〈
ck(τ)c†k(0)

〉
0

=
∑
k′

G0(k,k′, τ)δk,k′ (2.23)



24 Chapter 2. Methods of calculation

and

G0(k, iωn) =
1

iωn − ε(k)
, (2.24)

where G0(k, iωn) is the Matsubara Green function in frequency domain, iωn is the
Matsubara frequency, and ε(k) is the energy of electron with wave vector k. In
Eq. (2.22), we use the Wick’s theorem that enables us to interchange the fermion
operators. Eq. (2.22) can be written in the frequency domain as follows,

C(q, iωn) =
e2~
β

∫
d2k

(2π)2

∑
iνn

Tr
(
vG0(k+q, iνn + iωn)v′G0(k, iνn)

)
. (2.25)

If we have two energy bands of electron, then the Green function can be cast into
2× 2 diagonal matrix with component Gij0 (k, iωn) = 1/(iωn− εi(k))δij , where i = 1, 2
denotes the band index. Therefore, we can write Eq. (2.25) as follows,

C(q, iωn) =
e2~
β

∫
d2k

(2π)2

∑
iνn

(
v11G11

0 (k+q, iνn + iωn)v11G11
0 (k, iνn)

+ v22G22
0 (k+q, iνn + iωn)v22G22

0 (k, iνn)

+ v12G22
0 (k+q, iνn + iωn)v21G11

0 (k, iνn)

+ v21G11
0 (k+q, iνn + iωn)v12G22

0 (k, iνn)

)
. (2.26)

Eq. (2.26) consists of four terms of summation of the Green function over the Mat-
subara frequency. In general, the summation is done by the following way,

1

β

∑
iνn

G0(k+q, iνn + iωn)G0(k, iνn) =
f0(ε(k))− f0(ε(k+q))

iωn + ε(k)− ε(k+q)
, (2.27)

where f0(ε) is the Fermi distribution function. By using Eq. (2.27) in Eq. (2.26), we
obtained the following equation,

C(q, iωn) =
e2~

(2π)2

∫
d2k
(

(v11)2 f0(ε1(k))− f0(ε1(k+q))

iωn + ε1(k)− ε1(k+q)

+(v22)2 f0(ε2(k))− f0(ε2(k+q))

iωn + ε2(k)− ε2(k+q)

+v12v21 f0(ε1(k))− f0(ε2(k+q))

iωn + ε1(k)− ε2(k+q)

+v21v12 f0(ε2(k))− f0(ε1(k+q))

iωn + ε2(k)− ε1(k+q)

)
. (2.28)

The retarded Green function of Eq. (2.19) in frequency domain CR(q, ω) is related
to the Matsubara-Green function of Eq. (2.28) by the analytic continuation, which is
obtained by replacing the iωn → ~ω + iγ with γ → 0,

CR(q, ω) = C(q, ~ω + iγ) (2.29)
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The expression of optical conductivity can be obtained by using Eq. (2.29) in
Eq. (2.18). However, when the ω = 0 or the vector potential does not vary with time,
the electric field and the current should also be zero. Therefore, we have to substract
the contribution of ω = 0 in Eq. (2.29) (CR(q, 0)) and we arrive at the following
expression of optical conductivity,

σ(q, ω) =
1

iω

(
CR(q, ω)− CR(q, 0)

)
(2.30)

=
ie2~
(2π)2

∫
d2k
(

(v11)2 f0(ε1(k))− f0(ε1(k+q))

(ε1(k+q)− ε1(k))(~ω + ε1(k)− ε1(k+q))

+(v22)2 f0(ε2(k))− f0(ε2(k+q))

(ε2(k+q)− ε2(k))(~ω + ε2(k)− ε2(k+q))

+v12v21 f0(ε1(k))− f0(ε2(k+q))

(ε2(k+q)− ε1(k))(~ω + ε1(k)− ε2(k+q))

+v21v12 f0(ε2(k))− f0(ε1(k+q))

(ε1(k+q)− ε2(k))(~ω + ε2(k)− ε1(k+q))

)
, (2.31)

where we neglect the γ. Since we are interested in optical transition, we set q → 0,
and we arrive at the general expression of optical conductivity for system with two
energy bands [60],

σ(ω) =
ie2~
(2π)2

∫
d2k
(
− (v11)2

~ω
df0(ε1(k))

dε1
− (v22)2

~ω
df0(ε2(k))

dε2

+v12v21 f0(ε1(k))− f0(ε2(k))

(ε2(k)− ε1(k))(~ω + ε1(k)− ε2(k))

+v21v12 f0(ε2(k))− f0(ε1(k))

(ε1(k)− ε2(k))(~ω + ε2(k)− ε1(k))

)
. (2.32)

Equation (2.32) is used to calculate the optical conductivity of silicene and graphene
in the next chapter. To derive the optical conductivity, the electronic structure of
graphene and silicene have to be obtained beforehand, which is discussed in the next
section.

2.2 The electronic structure of graphene and silicene

2.2.1 The electronic structure of graphene

The electronic energy dispersion of graphene is calculated by using simple tight binding
(STB) model [4, 2]. The electronic energy dispersion describes the energy E as a
function of wave vector k. In the tight binding approximation, the eigenfunctions of
electrons are made up by the Bloch function that consists of the atomic orbitals.

In graphene, the valence orbitals (2s, 2px, 2py) of a carbon atom are hybridized
to one another and form σ-bonds, while 2pz orbital gives a π bond. The 2pz forms
the π band independently from σ bands and the π band lies around the Fermi energy.
Hence, the electronic transport and optical properties of graphene originate mainly
from the π band. Therefore, hereafter we can adopt the STB method to model the π
band for simplicity.
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The wave function of an electron in graphene can be written as a linear combination
of the atomic orbitals

Ψ(k, r) = CA(k)φA(k, r) + CB(k)φB(k, r), (2.33)

where φj(k, r) with j = A,B, is the Bloch wave function made of A or B atom in the
unit cell. The Cj (j = A,B) is the coefficient of Bloch wave function . This Bloch
wave function consists of the linear combination of atomic orbital, that is 2pz orbital.
The Bloch wave function can be written as

φj(k, r) =
1√
N

N∑
Rj

eik·Rjϕ(r−Rj), (j = A or B), (2.34)

where RA and RB are the position of A and B sites in solid as shown in Fig. (2.1),
respectively. The electronic energy dispersion E(k) is obtained by minimizing

E(k) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

, (2.35)

in respect to the wave function coefficients. Inserting Eq. (2.33) to Eq.( 2.35), a secular
equation is obtained [2]∑

j′

Hjj′Cj′(k) = E
∑
j′

Sjj′Cj′(k) (j, j′ = A,B), (2.36)

where Hjj′ = 〈φ|H|ψ〉 and Sjj′ = 〈φ|ψ〉 are called the transfer integral matrix and the
overlap integral matrices, respectively. Then, Eq. (2.36) has turned into eigenvalue
problem, where it can be written explicitly as(

HAA(k) HAB(k)
HBA(k) HBB(k)

)(
CA(k)
CB(k)

)
= E(k)

(
SAA(k) SAB(k)
SBA(k) SBB(k)

)(
CA(k)
CB(k)

)
.

(2.37)
Thus, the electron energy dispersion can be obtained by solving the secular equation

det [H− ES] = 0 . (2.38)

To solve Eq. (2.38), we need to evaluate the matrix elements of transfer integral
matrix and overlap matrix. First, we evaluate the matrix elements of transfer integral
matrix. By using Bloch wave function in Eq. (2.34),

HAA =
1

N

∑
RA,R′

A

eik·(RA−R′
A)
〈
ϕ(r−R′A)|H|ϕ(r−RA)

〉
=ε2p + (terms equal to or more distant than
RA ± ai). (2.39)

The high order contribution to HAA can be neglected. Therefore, the value of HAA

gives ε2p, which is the energy of the 2p orbital of a carbon atom. By using the same
calculation, HBB also gives ε2p. As for off-diagonal elements of the transfer integral
matrix, the same method is used. Here, the largest contribution comes from three
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B

a

B

B

RAB

Figure 2.1 The reference atomic site is A. The 3 nearest neighbors (B atomic site) are shown.
The positions of nearest neighbors are indicated by R1, R2, and R3 with respect to A site.

nearest-neighbor atoms and we can neglect more distant terms. The three nearest-
neighbors vectors Ri (i = 1, 2, 3) from A atom to three B atoms are shown in Fig. 2.1.
The off-diagonal elements for can be written as

HAB =
1

N

∑
RA,Ri

eik·Ri 〈ϕ(r−RA)|H|ϕ(r−RA − Ri)〉

≡ tf(k) , (2.40)

where 〈ϕ(r−RA)|H|ϕ(r−RA − Ri)〉 denotes contribution of each nearest neighbor
atom, denoted by t. By inserting the coordinates of the nearest neighbor atoms, f(k)
in Eq. (2.40) can be evaluated

f(k) =
∑
Ri

eik·Ri , (i = 1, ...3)

= eikxa/
√

3 + 2e−ikxa/2
√

3 cos(
kya

2
). (2.41)

Since the transfer integral matrix is a Hermite matrix, we get the HBA(k) = H∗AB(k).
Now we have defined transfer integral matrix. Next let us evaluate the overlap integral
matrix. The overlap of same atomic site is 1, SAA(k) = SBB(k) = 1, while off-site one
should be calculated by considering only the nearest neighbors,

SAB =
1

N

∑
RA,Ri

eik·(Ri) 〈ϕ(r−RA)|ϕ(r−RA −Ri)〉 , (i = 1, ...3)

= sf(k), (2.42)

where 〈ϕ(r−RA)|ϕ(r−RA −Ri)〉 denotes contribution of each neighbor atom, de-
noted by s. This S matrix is also a Hermite matrix, SBA(k) = S∗AB(k).

Fig. 2.1: Fig/Fig2k1.eps
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(a)

K

M

K' K

(b)

K

valence band

conduction band

Dirac 

point

Figure 2.2 (a) The electronic energy dispersion of graphene throughout the whole region of
Brillouin zone. (b) The dispersion around K point [4].

After getting all necessary matrices, the electronic energy dispersion can be calcu-
lated by Eq. (2.38). The solution is

E±(k) =
∓t
√
f∗(k)f(k)

1∓ s
√
f∗(k)f(k)

, (2.43)

where we set ε2p = 0. The value of t = −3.033 eV and s = 0.129 [4, 2]. +(−) sign
denotes the π (π∗) band, with negative value of t. Hereafter, they will be called valence
and conduction band, respectively. The electronic energy dispersion of graphene in
the hexagonal Brillouin zone is plotted in Fig. 2.2. We also show the high symmetry
points in the energy dispersion. These high symmetry points are defined at the center
Γ, the center of an edge M, and the hexagonal corners K and K′ of the Brillouin zone.
The position of the M and K point can be described with respect of Γ point by vectors

ΓM =
2π

a

(
1√
3
, 0

)
, ΓK =

4π

3a
(0,−1) , (2.44)

where |ΓM| = 2π/
√

3a, |ΓK| = 4π/3a and |MK| = 2π/3a, with a =
√

3acc is the
lattice constant of graphene unit cell and acc = 0.142 nm is the distance between two
carbon atoms. There are six K points (including K′ points) and six M points within
the Brillouin zone.

If we assume that the orbital wave function is orthogonal or s = 0, the energy
dispersion is expressed as follows,

E±(k) = ±|t|

√
3 + 2 cos(kxa) + 4 cos(

kxa

2
) cos(

√
3

2
kya) , (2.45)

where +(−) sign denotes the conduction (valence) band.

Fig. 2.2: Fig/Fig2k2.eps
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2.2.2 Second quantization for the tight binding method

The energy dispersion in Eq. (2.45) can also be obtained using second quantization
method. Assuming the tight binding approximation, the Hamiltonian in second quan-
tization form is given as follows,

H = −|t|
∑
i

(
a†i bi+1 + a†i bi+2 + a†i bi+3

)
+ h.c, (2.46)

where 1, 2, 3 represent the R1, R2, R3, which are given in Fig. 2.1. a†i and ai are
the creation and annihilation operators of electron in the sublattice A located at the
site Ri, while b

†
i and bi are the creation and annihilation operators of electron in the

sublattice B located at the site Ri. The term a†i bi+1 means that we annihilate an
electron in the sublattice B located at the site Ri +R1 and then create an electron in
the atom A located at the site Ri. In the other words, the electron hops from atom
B to atom A. Because there are three nearest neighbors, electron can hops from three
different sites of atom B to atom A, therefore we have three terms in the Eq. (2.46).
The reverse hopping is included in the term of Hermitian conjugate (h.c), where it
explains the hopping of electron from atom A to atom B.

To obtain the dispersion relation, we express the Hamiltonian in the momentum
space by transforming the creation and annihilation operators as follows,

ai =
1√
N

∑
k

ake
ik·Ri , bi =

1√
N

∑
k

bke
ik·Ri . (2.47)

By substituting Eq. (2.47) to Eq. (2.46), we get the second quantized Hamiltonian in
the momentum space. For example, let us take the first term,

−|t|
∑
i

a†i bi+1 =− |t|
N

∑
i

∑
kk′

a†kb
′
ke
i(k′−k)·Rieik

′·R1

=− |t|
N

∑
kk′

a†kb
′
kNδk′,ke

ik′·R1

=− |t|
∑
k

a†kbke
ik·R1 (2.48)

The Hamiltonian of Eq. (2.46) can be written as follows,

H =− |t|
∑
k

R3∑
Rj=R1

eik·Rja†kbk − |t|
∑
k

R3∑
Rj=R1

e−ik·Rjb†kak

=− |t|
∑
k

f(k)a†kbk − |t|
∑
k

f∗(k)b†kak

=
∑
k

(
a†k b

†
k

)( 0 −|t|f(k)
−|t|f∗(k) 0

)(
ak
bk

)
(2.49)

The 2× 2 matrix in Eq. (2.49) is the Hamiltonian matrix in the first quantization
discussed in the previous section. The eigen value of this matrix gives the dispersion
relation of electron in graphene,

E±(k) = ±|t|
√
f∗(k)f(k), (2.50)
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which is nothing but Eq. (2.45) with +(−) sign denotes the conduction (valence) band.
It is noted that k is measured from the center of Brillouin zone (Γ point).

Figure 2.2 shows that at the corner of the Brilllouin zone or at theK andK ′ points,
the conduction and valence bands touch each other, which can be proved by substi-
tuting K and K ′ point coordinates to energy dispersion in Eq. (2.45). Coordinates of
the K and K ′ point coordinates are given by 4π

3a (0,−1) and 4π
3a (0, 1), respectively [4].

The energy at K and K ′ points is zero for both valence and conduction bands. It
is also noted that the the energy dispersion close to K and K ′ is linear to the wave
vector of electron as shown in Fig. (2.2). This linearity can be shown by expanding
the f(k) near to K or K ′ points as follows [4],

f(K + k) =

√
3a

2
(ikx + ky) (2.51)

f(K′ + k) =

√
3a

2
(ikx − ky), (2.52)

where now the k is measured from K or K ′, accordingly. Therefore, we can write
down the effective Hamiltonian near K and K ′ points as follows,

H(K + k) =

√
3a|t|
2

(
0 e−iπ/2(kx − iky)

eiπ/2(kx + iky) 0

)
(2.53)

H(K′ + k) =

√
3a|t|
2

(
0 e−iπ/2(kx + iky)

eiπ/2(kx − iky) 0

)
. (2.54)

By extracting the constants e−iπ/2 and eiπ/2 (which does not affect any physical re-
sults, such as energy dispersion), we can obtain the effective Hamiltonian in Eqs. (2.53)
and (2.54) can also be expressed by the Pauli matrix (σ) as follows [16],

H(K + k) =

√
3a|t|
2

σ · k (2.55)

H(K′ + k) =

√
3a|t|
2

(σ · k)∗ (2.56)

Both of Eqs. (2.53) and (2.54) give the same energy dispersion, which is linear to the
wave vector k =

√
k2
x + k2

y,

E(K + k) = E(K′ + k) = ~vFk (2.57)

where ~vF =
√

3a|t|
2 with vF ≈ 106 m/s is the Fermi velocity of graphene.

2.2.3 The electronic structure of silicene

The lattice of silicene is similar to that of graphene, which is honeycomb lattice as
shown in Fig. 2.3 (a). However, due to the sp3-like hybridization, the lattice is not
planar, but buckled as shown in Fig. 2.3 (b). The sublattice A and B of silicene are
vertically separated by distance d = 0.46 Å.

It is reported that the intrinsic spin-orbit (SO) coupling in silicene is much larger
than in graphene, with SO coupling constant ∆SO = 3.9 meV for silicene, while it
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Figure 2.3 (a) Honeycomb lattice of silicene. (b) The buckled lattice of silicene from side
view. The sublattice A and B are vertically separated by d. The sublattice A (B) is depicted
by red (green) atom.

is ∆SO = 10−3 meV for graphene [50, 53, 16, 15, 77, 78]. The intrinsic SO coupling
Hamiltonian in first quantization form is given as follows [77],

HSO ≈(−F‖ × p) · σ

=i
∆SO

3
√

3
vij

σz
2
, (2.58)

where F‖ is the force parallel to the surface due to the potential gradient, p is mo-
mentum of an electron, σ is the Pauli matrices, which represent the spin of electron.
The potential gradient also exist in the perpendicular direction to the surface, which
induces another type of SO coupling known as the Rashba coupling [77]. However,
we neglect the Rashba coupling, since the coupling constant of Rashba SO is much
smaller than the coupling constant of intrinsic SO coupling, roughly 10 times smaller
in magnitude [77, 50, 53, 54, 56]. The ij of vij denotes the next-nearest neighbor
site. Here vij is an integer to select. vij = 1 if the next-nearest neighbor hopping is
counterclockwise from i to j sites and vij = −1 if it is clockwise with respect to z
axis. Therefore, the Hamiltonian of silicene in second quantization form is given by
the following equation,

H = −|t|
∑
〈ij〉α

a†iαbjα − |t|
∑
〈ij〉α

b†iαajα + i
∆SO

3
√

3

1

2

∑
〈〈ij〉〉αβ

vija
†
iασ

z
αβajβ

− i∆SO

3
√

3

1

2

∑
〈〈ij〉〉αβ

vijb
†
iασ

z
αβbjβ , (2.59)

where a†iα is a creation operator that creates an electron in the sublattice A at site Ri
with spin α. The SO coupling of sublattice B denoted in the fourth term has negative
sign, since the direction of the force is opposite to the force for sublattice A. 〈ij〉 and
〈〈ij〉〉 denote the summation over the nearest neighbor and next-nearest neighbor,
respectively. There are three nearest neighbor atoms and six next-nearest neighbor
atoms. To get the dispersion relation, we transform the operators into momentum
space. The transformation of the first and second term give the similar form as in
graphene, which is given by Eq. (2.49). By using Eq. (2.47), the third and fourth
terms of Eq. (2.59) can be written in momentum space, respectively, as follows,

Fig. 2.3: Fig/Figsilicene.eps



32 Chapter 2. Methods of calculation

a

B

B

B

B

B

B

R'1

R'2

R'3

1

2

3

4

5

6

Figure 2.4 The silicene honeycomb lattice. The six next-nearest neighbor atoms of sublattice
A at site i (i = 1, · · · , 6) are shown with number. The R′j is the vector connecting the
sublattice A at site i with its six next-nearest neighbors.

i
∆SO

3
√

3

1

2

∑
〈〈ij〉〉αβ

vija
†
iασ

z
αβajβ =i

∆SO

3
√

3

1

2

∑
iαβ

6∑
j=1

vija
†
iασ

z
αβajβ

=i
∆SO

3
√

3

1

2

∑
k

∑
αβ

6∑
j=1

a†kασ
z
αβakβvje

ik·R′
j

=i
∆SO

3
√

3

1

2

∑
k

∑
αβ

a†kασ
z
αβakβν(k)

=i
∆SO

3
√

3

1

2

∑
k

(
a†k↑ak↑ − a

†
k↓ak↓

)
ν(k), (2.60)

and

i
∆SO

3
√

3

1

2

∑
〈〈ij〉〉αβ

vijb
†
iασ

z
αβbjβ =i

∆SO

3
√

3

1

2

∑
iαβ

6∑
j=1

vijb
†
iασ

z
αβbjβ

=i
∆SO

3
√

3

1

2

∑
k

∑
αβ

6∑
j=1

b†kασ
z
αβbkβvje

ik·R′
j

=i
∆SO

3
√

3

1

2

∑
k

∑
αβ

b†kασ
z
αβbkβν(k)

=i
∆SO

3
√

3

1

2

∑
k

(
b†k↑bk↑ − b

†
k↓bk↓

)
ν(k), (2.61)

Fig. 2.4: Fig/figsil2.eps
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where ν(k) is given by,

ν(k) =

6∑
j=1

vje
ik·R′

j

=− eik·v1 − eik·v2 − eik·v3 + e−ik·v1 + e−ik·v2 + e−ik·v3

=− 2i

(
sin(k · v1) + sin(k · v2) + sin(k · v3)

)
, (2.62)

and R′j (j = 1, · · · , 6) is the vector of the j-th next-nearest neighbor atoms as shown
in Fig. 2.4. It is noted that,

R′1 =−R′4 = v1 = (0, a) (2.63)

R′2 =−R′4 = v2 =

(√
3a

2
,
a

2

)
(2.64)

R′3 =−R′4 = v3 =

(√
3a

2
,−a

2

)
. (2.65)

By substituting Eqs. (2.60) and (2.61) to Eq. (2.59), we can obtain the Hamiltonian
of silicene in momentum space. Since the creation and annihilation operators for spin
up and spin down are decoupled each other, the Hamiltonian can be divided into the
Hamiltonian for each spin as follows,

H↑ =
∑
k

(
− |t|f(k)a†k↑bk↑ − |t|f

∗(k)b†k↑ak↑ + i
∆SO

3
√

3

ν(k)

2

(
a†k↑ak↑ − b

†
k↑bk↑

))

=
∑
k

(
a†k↑ b

†
k↑

)( i∆SO
3
√

3

ν(k)
2 −|t|f(k)

−|t|f∗(k) −i∆SO
3
√

3

w(k)
2

)(
ak↑
bk↑

)
(2.66)

and

H↓ =
∑
k

(
− |t|f(k)a†k↓bk↓ − |t|f

∗(k)b†k↓ak↓ − i
∆SO

3
√

3

ν(k)

2

(
a†k↓ak↓ − b

†
k↓bk↓

))

=
∑
k

(
a†k↓ b

†
k↓

)( −i∆SO
3
√

3

ν(k)
2 −|t|f(k)

−|t|f∗(k) i∆SO
3
√

3

w(k)
2

)(
ak↓
bk↓

)
. (2.67)

The 2 × 2 matrix in the Eqs.(2.66) and (2.67) are the Hamiltonian matrix for
each spin in the first quantization form, from which the energy dispersion can be
obtained. As we mentioned in case of graphene, we can focus only near the K and K ′
points, whose coordinates are given by 4π

3a (0,−1) and 4π
3a (0, 1), respectively. We can

approximate the diagonal terms to the first order as follows [77],

i
∆SO

3
√

3

ν(K + k)

2
≈ −∆SO

2
(2.68)

i
∆SO

3
√

3

ν(K′ + k)

2
≈ ∆SO

2
(2.69)
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Therefore, we get the effective Hamiltonian near the K or K ′ points in the first quan-
tization form given by the following matrix,

Hςη =

(
−ςη∆SO

2 ~vF(kx − iηky)

~vF(kx + iηky) ςη∆SO
2

)
, (2.70)

where ς = +1 and −1 for spin up and spin down, respectively, and η = +1 and −1 for
K and K ′ points. The vF ≈ 105 m/s for silicene.

Due to the buckled structure, there is a potential difference between the two sub-
lattices when an electric field is applied perpendicular to the silicene surface. The po-
tential difference between the A and B atom will add an additional term to Eqs. (2.59)
and (2.70). The additional term is expressed by 1

2∆zσz, where ∆z = eEzd. There-
fore, the effective Hamiltonian near K or K ′ points with the applied electric field is
expressed by [50, 54, 16, 15, 79],

Hςη =

(
− 1

2 ςη∆SO + 1
2∆z ~vF(kx − iηky)

~vF(kx + iηky) ςη∆SO
2 − 1

2∆z

)
, (2.71)

from which we can obtain the energy dispersion of electron in silicene. The energy
dispersion of electron is given by εsςη(k) = (−1)s+1εςη(k), with s is either 1 or 2
for the conduction or valence band, respectively. εςη(k) is the energy dispersion for
electron with ς spin (ς = 1 for up spin andς = −1 for down spin) and at η valley
(η = 1 for K valley and η = −1 forK ′ valley), which is given by

εςη(k) =

√
(~vFk)2 +

1

4
∆2
ςη , (2.72)

where k =
√
k2
x + k2

y and ∆ςη(∆z) = |∆z − ςη∆SO| denotes the energy gap which is

tunable by applying the Ez up to 2.6 V Å−1 where the structure of silicene becomes
unstable [16]. The energy gap is defined as the energy separation from the top of the
valence band to the bottom of the conduction band with the same spin sign. There
are only two distinct values of ∆ςη(∆z) for four possible combination of ∆ςη, since
∆++(∆z) = ∆−−(∆z) and ∆+−(∆z) = ∆−+(∆z).

In Fig. 2.5, we plot the electron energy dispersions around the K and K’ valleys
given by Eq. (2.72) for several ∆z’s. We assume that the silicene is doped, with the
Fermi energy EF = 2∆SO shown as horizontal dotted lines. When we change ∆z,
we can choose three cases for both the K and K’ valleys depending on the position
of EF relative to the energy gap, which are shown in Fig. 3.2. The first case is
∆z = 2∆SO , in which EF is higher than bottoms of the two conduction bands for spin
up and spin down (EF > ∆++/−− and ∆−+/+−) [Figs. 3.2(a) and 2(d)]. The second
case is ∆z = 4∆SO, in which EF lies between two bottoms of the conduction bands
(∆++/−− < EF < ∆−+/+−) [Figs. 3.2(b) and 2(e)] and the third case is ∆z = 8∆SO,
in which EF exists in energy gaps [Figs. 2.5(c) and (f)]. These three cases will be
discussed in Chapter 3 for calculating optical conductivity in silicene.

We can see in Fig. (2.5) that the dispersion relation for each spin is opposite each
other for the K and K ′ valleys. For ∆z > ∆SO as in all case of Fig. (2.5), the band
gap increases with increasing ∆z. The reverse situation occurs if the ∆z < ∆SO,
where the band gap decreases with increasing ∆z and reach zero band gap when the
∆z = ∆SO [80, 15, 54]. At this situation, ∆++/−− = 0 and one of energy band
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Figure 2.5 Electronic energy dispersions of silicene for [(a)-(c)] K and [(d)-(f)] K’ valleys for
several ∆z’s (2∆SO,4∆SO, and 8∆SO). The solid (dash-dotted) lines correspond to spin up
(down) electron dispersion. Positions of EF = 2∆SO are indicated by the horizontal dotted
lines.

is gapless. When no external field is applied, the energy bands for both spin are
degenerate with spin orbit band gap.

2.3 The optical spectra of graphene

In this section, we will discuss the method on how to obtain the optical spectra of
graphene, which is related to the second purpose of this thesis. The optical spectra
include the reflection, transmission and absorption of EM wave incident to graphene.
For the first case, we assume that graphene is put between two dielectric media and
the optical spectra can be obtained by solving the Maxwell equations with boundary
conditions. In the second case, we put graphene inside multilayer of dielectric media
and the optical spectra can be obtained by using transfer matrix method. These
formulations are not restricted to graphene only, but apply to any other 2D material
such as silicene.

2.3.1 Graphene between two dielectric media

Let us discuss the formulation of absorption, reflection and transmission probabilities
of EM wave penetrating to graphene. A simple way to obtain the probabilities is to
solve the amplitude of electric and magnetic fields by solving the Maxwell equations
for EM wave with boundary conditions. We consider that graphene is placed between
two dielectric media as shown in Fig. 2.6.

Fig. 2.5: Fig/Figsildis.eps
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Figure 2.6 Graphene is placed between two dielectric media with dielectric constants ε1
and ε2. Thickness of graphene thickness is neglected in the discusion though electric current
flows on graphene. The incident EM wave comes at an angle θ in medium 1 (left) and is
transmitted at an angle φ in medium 2 (right). The EM wave is p-polarized.

Graphene is modeled as a conducting interface with the conductivity σ between
two dielectric media with dielectric constants ε1 and ε2. When we do not consider
the thickness of graphene, the absorption, reflectance and transmittance probabilities
for this geometry can be calculated by utilizing the boundary conditions from the
Maxwell equations. If we adopt the TM polarization of EM wave as shown in Fig. 2.6,
we can obtain two boundary conditions for the electric field E(i) and magnetic field
H(i) (i = 1, 2) as follows:

E
(1)
+ cos θ + E

(1)
− cos θ = E

(2)
+ cosφ, (2.73)

H
(2)
+ − (H

(1)
+ −H(1)

− ) = −σE(2)
+ cosφ, (2.74)

where +(−) index denotes the right- (left-) going waves according to Fig. 2.6, θ is the
incident and reflection angle, φ is the refraction angle, and σ is the conductivity of
graphene. Eq. (2.73) and (2.74) come from Faraday law and Ampere law, respectively.
The E and H fields are also related each other in terms of the EM wave impedance
in units of Ohm for each medium:

Zi =
Ei
Hi

=
377
√
εi

Ohm, (i = 1, 2), (2.75)

where the constant 377 Ohm is the impedance of vacuum Z0 =
√
µ0/ε0, µ0 and ε0

are vacuum magnetic susceptibility and permitvity, respectively. Quantities φ, θ, and
Zi are related by Snell’s law Z2 sin θ = Z1 sinφ. Solving Eqs. (2.77)-(2.75), we obtain
the reflection R, transmission T , and absorption probabilities A of the EM wave as

Fig. 2.6: Fig/schematic.eps
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follows:

R =

∣∣∣∣∣E(−)
1

E
(+)
1

∣∣∣∣∣
2

=

∣∣∣∣Z2 cosφ− Z1 cos θ − Z1Z2σ cos θ cosφ

Z2 cosφ+ Z1 cos θ + Z1Z2σ cos θ cosφ

∣∣∣∣2 ,
T =

cosφ

cos θ

Z1

Z2

∣∣∣∣∣E(+)
2

E
(+)
1

∣∣∣∣∣
2

=
4Z1Z2 cos θ cosφ

|Z2 cosφ+ Z1 cos θ + Z1Z2σ cos θ cosφ|2
,

A = 1− Re R− Re T

=
4Z1Z

2
2 cos θ |cosφ|2 Re(σ)

|Z2 cosφ+ Z1 cos θ + Z1Z2σ cos θ cosφ|2
, (2.76)

where the values ofR, T , andA are understood to be real quantities and can be denoted
in terms of percentage (0−100%). Note that the factor Z1/Z2 in T of Eq. (2.76) comes
from the different velocities of the EM wave in medium 1 and medium 2. The T should
be calculated by the ratio of the Poynting vectors at medium 1 and 2. By calculating
the optical conductivity using the Kubo formula of Eq. (2.32), we can obtain the
optical spectra of graphene.

2.3.2 Transfer matrix method

In this section, we assume that graphene is put inside the multilayer dielectric media.
The optical spectra of graphene can be obtained by using transfer matrix method [81,
82]. To explain the transfer matrix method in a simple way, we assume the structure
is given in Fig. 2.7. The graphene system contains two mono-layers of graphene, each
placed between two dielectric media, which can be seen as medium 1, 2 and 3 with
dielectric constants ε1, ε2 and ε3, respectively, thus creating two conducting interfaces
of graphene. The incident EM wave with TM polarization comes from medium 1 and
its propagation through medium 2 and 3 is shown in Fig. 2.7, where the EM wave
comes from medium 1 with angle θ1 and propagates through medium 2 with angle θ2

and medium 3 with angle θ3. +(−) index denotes the right (left) going waves. The
direction of the magnetic fields are shown as the following : red dot (cross) for positive
y-direction (negative y-direction). Between two dielectric media, the EM fields can
be related each other through the boundary conditions obtained from the Maxwell
equations. Since we adopt the TM polarization of the incident EM wave, as shown
in Fig. 2.7 for the first interface, we can define the single layer interface’s boundary
conditions of the electric field E(i) and magnetic field H(i) (i = 1, 2) as follows:

E(1)
x = E(2)

x , (2.77)

H(2)
y −H(1)

y = −σE(2)
x , (2.78)

where σ is the conductivity of graphene. Here we can assume, too that the thickness
of graphene is sufficiently small compared to the wavelength of the incident light but
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Figure 2.7 The propagation of the wave through the three media and two graphene layers
can be expressed by transfer matrices (see the text). Red dot (cross) denote magnetic field
in positive (negative) y-direction.

that only finite current density appears in graphene. The electric and magnetic field
in medium 1 can be described by the following:

E(1)
x (z) = E

(1)
x+(z) + E

(1)
x−(z)

= E
(1)
x0+e

ik1z + E
(1)
x0−e

−ik1z, (2.79)

H(1)
y (z) =

ωε0ε1

k1
(E

(1)
x0+e

ik1z − E(1)
x0−e

−ik1z), (2.80)

and for medium 2:

E(2)
x (z) = E

(2)
x+(z) + E

(2)
x−(z)

= E
(2)
x0+e

ik2z + E
(2)
x0−e

−ik2z, (2.81)

H(2)
y (z) =

ωε0ε1

k2
(E

(2)
x0+e

ik2z − E(2)
x0−e

−ik2z), (2.82)

where E(i)
x is the amplitude of the electric field in the x-axis inside medium i and +(−)

index denotes the right- (left-) going waves, εi is the dielectric constant of medium i,
ω is the angular frequency of the EM wave and ki is the wave vector on z-direction
which is defined as:

ki =
2π

λ

√
εi cos θi, (2.83)

where λ is the wave length of the EM wave. E(i)
x0+ and E(i)

x0− describe the amplitude
of electric field of the EM wave going to right and left direction, respectively. Here
we consider E(2)

x0− (left going wave in medium 2) since we expect some reflection of
the EM wave at the second interface with medium 3. The relationship between Hy

and Ex comes from the following equation, H(i)
y = iωε0εi

∫
E

(i)
x dz. θi (i = 1, 2) is

the corresponding angle of propagation of the EM wave inside each dielectric medium
measured from the z-axis as shown in Fig. 2.7. Quantities θi and εi between two
dielectric media are related by the Snell law

√
ε1 sin θ1 =

√
ε2 sin θ2.

With the well-defined boundary conditions, we can now construct transfer matrices.
The transfer matrix method is a method in which we can relate the EM fields between

Fig. 2.7: Fig/schemati2.eps
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two different positions within more than two media or layers (multi-layered system).
We will use this method because we have three dielectric media (and two graphene
layers) in one dimension. Using Eqs. (2.77) through (2.82), we can solve for Ex0+ and
Ex0− at the boundary explicitly, and construct the following matrix:[

E
(1)
x0+

E
(1)
x0−

]
=

1

2

[
1 + β1 + α1 1− β1 + α1

1− β1 − α1 1 + β1 − α1

] [
E

(2)
x0+

E
(2)
x0−

]
, (2.84)

where αi and βi denote

αi =
kiσ

ωε0εi
, βi =

ki
ki+1

εi+1

εi
. (2.85)

The matrix in Eq. (2.84) describes the EM waves in the medium 1 as function
of the EM waves in the medium 2 at the first boundary. Next we can construct a
second matrix describing the propagation of the wave through the medium 2. The
propagation is shown in Fig. 2.7.[

E
(2)
x0+

E
(2)
x0−

]
=

[
e−ik2d 0

0 eik2d

] [
E

(2′)
x0+

E
(2′)
x0−

]
, (2.86)

where d is the length of the medium 2. Substituting Eq. (2.86) into Eq. (2.84), the
total matrix equation now becomes:[

E
(1)
x0+

E
(1)
x0−

]
= [M1][T1]

[
E

(2′)
x0+

E
(2′)
x0−

]
, (2.87)

where

Mi =
1

2

[
1 + βi + αi 1− βi + αi
1− βi − αi 1 + βi − αi

]
, (2.88)

Ti =

[
e−iki+1d 0

0 eiki+1d

]
. (2.89)

The far right matrix is the incident and reflected wave of the second interface as shown
in Fig. 2.7. Continuing the matrices for the second interface, we will have:[

E
(2′)
x0+

E
(2′)
x0−

]
= [M2]

[
E

(3)
x0+

0

]
. (2.90)

Finally, by substituting this matrix into Eq. (2.87), the total matrix equation can be
written as : [

E
(1)
x0+

E
(1)
x0−

]
= [M1][T1][M2]

[
E

(3)
x0+

0

]
. (2.91)

If we multiply these matrices, we can find the total reflection (ρtotal) and transmission
(τtotal) coefficients: [

E
(1)
x0+

E
(1)
x0−

]
=

[
a b
c d

] [
E

(3)
x0+

0

]
, (2.92)

ρtotal =
E

(1)
x0−

E
(1)
x0+

=
c

a
, and τtotal =

E
(3)
x0+

E
(1)
x0+

=
1

a
, (2.93)
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where a, b, c and d are the components of total matrix (Eq. (2.91)). We finally get,

R = |ρtotal|2,

T =

√
ε3 cos θ1√
ε1 cos θ3

|τtotal|2,

A = 1− Re R− Re T, (2.94)

where R, T and A are reflection, transmission and absorption probabilities of EM
wave, respectively. The formulation of transfer matrix can be extended for arbitrary
number of layers by simply multiplying the matching and propagation matrices corre-
spondingly. Suppose that we have have N layers of dielectric media and the incident
EM wave comes from medium 1 and is transmitted to medium N , we have,[

E
(1)
x0+

E
(1)
x0−

]
= [M1][T1][M2][T2] · · · [TN−2][MN−1]

[
E

(N)
x0+

0

]
, (2.95)

where the propagation matrices depend on the thickness of each layer. The R, T and
A can be obtained in the same manner as in Eq. (2.94). If the interface does not have
graphene, then we can set αi = 0 in the matching matrix (Eq. (2.88)) of corresponding
interface.

2.4 The dispersion of surface plasmon in graphene

In this section, we will describe dispersion of surface plasmon in graphene, from which
we can define two kinds of surface plasmon, the non-retarded and retarded surface
plasmon. The dispersion has been discussed briefly in section 1.3.3.1. The dispersion
of surface plasmon in graphene can be obtained by considering the boundary conditions
of electromagnetic wave with TM polarization on the graphene surface and we obtain
the following equation [57], which is also given in Eq. (1.28),

ε1

κ1
+
ε2

κ2
+
iσD(ω)

ωε0
= 0, (2.96)

where κi is the decay constant of surface plasmon in i−th medium given in Eq. (1.3),
and σD(ω) is the intraband optical conductivity of graphene [57] [see also Eq. (1.26)],

σD(ω) = i
EFe

2

π~2ω
, (2.97)

where EF is the Fermi energy of graphene. The solution of Eq. (2.96) gives the surface
plasmon dispersion. Since the velocity of light can be considered to be much larger than
the surface plasmon group velocity vsp, we can approximate the q2 >> ω2ε/c2 and we
get κ1 = κ2 = q in Eq. (1.3). This case is called the non-retarded regime [57, 63]. By
putting the Eq. (2.97) to Eq. (2.96), we can obtain the surface plasmon frequency ω
as a function of q in the non-retarded case as follows

ω =
1

~

√
EFe2q

πε0(ε1 + ε2)
, (2.98)
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Figure 2.8 (Color online) (a) The surface plasmon dispersion of graphene for EF = 0.64 eV
obtained from Eq. (1.28). The dispersion has ω ∝ √q dependence for large q. (non-retarded
regime) (b) The surface plasmon dispersion for smaller q showing the retarded region where
the dispersion is linear to q. The red dashed line is the dispersion of light incident directly to
graphene. Transition frequency (see below) ω∗ = 3.5× 1012rad s−1 is shown as a black dot.

where we have a ω ∝ √q dependence similar to the case of surface plasmon of 2D
electron gas.

From Eq. (2.98), we can say that vsp ∝ 1/
√
q, which means that the vsp might

exceed the velocity of light for small q. At this region, the non-retarded approximation
cannot be used and the vp is comparable to the velocity of light. This case is called
retarded regime [63]. For the retarded case, the dispersion of surface plasmon is linear
ω ∝ q and very close to the dispersion of light. This dispersion can be obtained by
using Eq. (1.3) and solving Eq. (2.96). Supposing that ε1 = ε2 = ε, we have for
retarded regime,

ω ≈ c√
ε
q, (2.99)

which is independent of properties of graphene.
In Fig. 2.8 we show the dispersion of surface plasmon for EF = 0.64 eV. In Fig. 2.8

(a), we plot the exact solution of Eq. (1.28), where we can clearly see the ω ∝ √q
dependence of non-retarded regime and the frequency is in terahertz (THz) range. In
Fig. 2.8 (b), we plot the dispersion of surface plasmon for smaller q where we can
see the retarded regime with ω ∝ q dependence. The dispersion in retarded regime
is close to light dispersion shown as red dashed line. We can also infer that there is
a transition point from retarded to non-retarded regime, where the dispersion starts
to be ω ∝ √q. The transition point (q∗, ω∗) has been discussed by Deng et al. as
follows [63],

ω∗ =
EF

~vF
√
π
× 6.5× 103 Hz, and q∗ =

ω∗

c
, (2.100)

where vF = 106 m/s is Fermi velocity of graphene. For EF = 0.64 eV, the transition
occurs at ω∗ ≈ ω∗ = 3.5 × 1012rad s−1, below which we have retarded regime. The
concept of retarded and non-retarded in surface plasmon can be useful to determine
the method to excite the surface plasmon by light.

Fig. 2.8: Fig/Fig24.eps
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2.5 The quantization of free EM wave and surface plasmon

In this section, we will discuss the method on how to quantize the free EM wave and
the surface plasmon (or TM surface wave). This discussion is useful for the calculation
of matrix element of the interaction between photon and surface plasmon, which will
be discussed later. For the quantization of surface plasmon in graphene, we follow
the work of Archambault et al., in which they discuss the method to quantize surface
plasmon on the surface of bulk metal [83].

2.5.1 Quantization of free EM wave

The quantized free EM wave is called a photon. The quantization can be obtained by
quantizing the energy of EM fields, which can be expressed in terms of creation and
annihilation operator [76, 75]. We start from the EM wave equation,

∇2 ×A(r, t)− 1

c2
∂2

∂t2
A(r, t) = 0, (2.101)

where A(r, t) is the vector potential. We can solve for A(r, t) by assuming that the
EM wave is enclosed inside a box with volume V with periodic boundary condition.
The general solution of Eq. (2.101) is given in form of expansion of plane wave as
follows,

A(r, t) =
1√
V

∑
k

ε̂

(
Ake

i(k·r−ωkt) +A∗ke
−i(k·r−ωkt)

)
, (2.102)

where ε̂ is the polarization vector of the A(r, t), k is the wave vector, and Ak is the
complex expansion coefficient. The EM fields for a given A(r, t) can be written in
terms of vector potential as follows,

E(r, t) =− ∂

∂t
A(r, t)

=
i√
V

∑
k

ε̂ωk

(
Ak(t)eik·r −A∗k(t)e−ik·r

)
, (2.103)

and

B(r, t) =∇×A(r, t)

=
iuk√
V

∑
k

(
Ak(t)eik·r −A∗k(t)e−ik·r

)
, (2.104)

where uk = k×ε̂. We will express the Hamiltonian of EM wave in terms of Eq. (2.102).
The Hamiltonian of EM wave in vacuum is given by the total energy of EM fields as
follows,

H =
1

2

∫
dr
(
ε0|E|2 +

1

µ0
|B|2

)
. (2.105)
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By inserting Eq. (2.103) to each term of Eq. (2.105), we obtain,

1

2

∫
drε0|E|2 =

ε0

2V

∫
dr
∑
k,k′

ωkωk′

(
Ak(t)eik·r −A∗k(t)e−ik·r

)(
A∗k′(t)e

−ik′·r

−Ak′(t)eik
′·r
)

=
ε0

2V

∫
dr
∑
k,k′

ωkωk′

(
Ak(t)A∗k′(t)e

i(k−k′)·r −Ak(t)Ak′(t)e
i(k+k′)·r

−A∗k(t)A∗k′(t)e
−i(k+k′)·r +A∗k(t)Ak′(t)e

−i(k−k′)·r
)

=
ε0

2

∑
k,k′

ωkωk′

(
Ak(t)A∗k′(t)δk,k′ −Ak(t)Ak′(t)δk,−k′ −A∗k(t)A∗k′(t)δk,−k′

+A∗k(t)Ak′(t)δk,k′

)
=
ε0

2

∑
k

ω2
k

(
Ak(t)A∗k(t)−Ak(t)A−k(t)−A∗k(t)A∗−k(t) +A∗k(t)Ak(t)

)
=
ε0

2

∑
k

ω2
k

(
2|Ak(t)|2 −Ak(t)A−k(t)−A∗k(t)A∗−k(t)

)
, (2.106)

and

1

2µ0

∫
dr|B|2 =

1

2µ0V

∫
dr
∑
k,k′

uk · uk′

(
Ak(t)eik·r −A∗k(t)e−ik·r

)

×
(
A∗k′(t)e

−ik′·r −Ak′(t)eik
′·r
)

=
1

2µ0

∑
k

(
2k2|Ak(t)|2 + k2Ak(t)A−k(t) + k2A∗k(t)A∗−k(t)

)
=
ε0

2

∑
k

ω2
k

(
2|Ak(t)|2 +Ak(t)A−k(t) +A∗k(t)A∗−k(t)

)
. (2.107)

Therefore, the total Hamiltonian of Eq. (2.105) can be written as

H =
1

2

∫
dr
(
ε0|E|2 +

1

µ0
|B|2

)
=2ε0

∑
k

ω2
k|Ak|2

=ε0

∑
k

ω2
k

(
AkA

∗
k +A∗kAk

)
. (2.108)

Equation (2.108) is similar to the Hamiltonian of quantum harmonic oscillator. There-
fore we can think that the electromagnetic wave can be considered as a collection of
harmonic oscillators. Then, the Hamiltonian can be expressed in terms of creation
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and annihilation operator of photon as follows,

H =ε0

∑
k

ω2
k

(
AkA

∗
k +A∗kAk

)
=
∑
k

~ωk
2

(
bkb
†
k + b†kbk

)
, (2.109)

with the definition of creation b†k and annihilation bk operator of photon to be,

bk =

√
2ωkε0

~
Ak and b†k =

√
2ωkε0

~
A∗k. (2.110)

A photon follows the Bose-Einstein statistics, therefore we can define the following
creation and annihilation operations,

b†k |nk〉 =
√
nk + 1 |nk + 1〉 , (2.111)

bk |nk〉 =
√
nk |nk − 1〉 , (2.112)

where nk is number of photon with wave vector k.
Finally, the vector potential A(r, t) can be written in terms of creation and anni-

hilation operators by substituting Eq. (2.119) to Eq. (2.102) as follows,

A(r, t) =
∑
k

√
~

2V ωkε0
ε̂

(
bke

i(k·r−ωkt) + b†ke
−i(k·r−ωkt)

)
. (2.113)

2.5.2 Quantization of surface plasmon of graphene

Suppose that we have graphene between two dielectric media as shown in Fig. 2.9.
The quantization of surface plasmon is similar to the quantization of free EM wave.
However, since the surface plasmon is the TM surface wave, therefore the EM wave
propagates on the surface and the EM fields should be confined to the surface. There-
fore, the the vector potential of Eq. (2.102) is modified into

A(r, t) =
1√
S

∑
q

(
Aqνq(z)e

i(q·r−ωqt) +A∗qνq(z)
∗e−i(q·r−ωqt)

)
, (2.114)

where S is the area of quantization on the surface of graphene, q = (qx, qy) is the
surface plasmon wave vector, νq(z) is the polarization vector of surface plasmon, which
is given by

νq(z) = αe−sκjz
(
q̂− q

isκj
ẑ
)

(j = 1, 2), (2.115)

where α is the normalization constant so that the dimension of A(r,t) for photon and
surface plasmon are the same, which will be defined later. The polarization vector of
Eq. (2.115) has two directions, the parallel q̂ and perpendicular ẑ to the surface, since
surface plasmon is the TM surface wave and it decays in the z direction with a decay
constant κj . j = 1, 2 denotes the surrounding media and s = 1(−1) for medium 1(2).
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Figure 2.9 Graphene surrounded by two dilectric media 1 and 2. The surface plasmon
propagates on the surface of graphene in the direction of x with wave vector q.

The quantization method is similar to that for the photon, in which we express
the Hamiltonian of Eq. (2.105) in terms of vector potential of Eq. (2.114). However,
for the integration with respect to z should be done separately. Hence, the result of
integration in Eq. (2.108) is only for the integration with respect to x and y, since the
q = (qx, qy) is two dimensional wave vector for surface plasmon. Therefore, we have
the following equation,

H =

∫
dz
∑
q

(
ε0εjω

2
k|νq(z)|2 +

1

µ0
|ηq(z)|2

)
|Aq|2, (2.116)

where ηq(z) = q× νq(z). The integration with respect to z gives,

H =
∑
q
ω2
qε0|Aq|2 × α2 1

2

[
1

κ1

(
ε1

(
1 +

q2

κ2
1

)
+
ω2
q

c2
ε2

1

κ2
1

)

+
1

κ2

(
ε2

(
1 +

q2

κ2
2

)
+
ω2
q

c2
ε2

2

κ2
2

)]
=2ε0

∑
q
ω2
q |Aq|2, (2.117)

where we set α to be,

α =

{
1

4

[
1

κ1

(
ε1

(
1 +

q2

κ2
1

)
+
ω2
q

c2
ε2

1

κ2
1

)
+

1

κ2

(
ε2

(
1 +

q2

κ2
2

)
+
ω2
q

c2
ε2

2

κ2
2

)]}−1/2

. (2.118)

The relation between ε1/κ1 and ε2/κ2 can be obtained from the dispersion relation
of surface plasmon of graphene, given in Eq. (2.96). Equation (2.117) has the same
form of Eq. (2.108), which is the form of quantum harmonic oscillator. Hence, we can
define the similar creation and annihilation creation for surface plasmon,

aq =

√
2ωqε0

~
Aq and a†q =

√
2ωqε0

~
A∗q . (2.119)

A surface plasmon follows the Bose-Einstein statistics, therefore we can define the
following creation and annihilation operations,

a†q |nq〉 =
√
nq + 1 |nq + 1〉 , (2.120)

aq |nq〉 =
√
nq |nq − 1〉 , (2.121)

Fig. 2.9: Fig/figspgr.eps
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where nq is number of photon with wave vector q.
Finally, the vector potential A(r, t) of surface plasmon can be written in terms of

creation and annihilation operators as follows,

A(r, t) =
∑
q

√
~

2Sωqε0

(
aqνq(z)e

i(q·r−ωqt) + a†qνq(z)
∗e−i(q·r−ωqt)

)
. (2.122)

In the next chapter, we will derive the optical conductivity of silicene and discuss
the possibility to have TE surface wave in silicene. In the Chapter 4, we will use
the quantization of photon and surface plasmon to describe the excitation of surface
plasmon by light in graphene.



Chapter 3

Broadband transverse electric (TE)
surface wave in silicene

In this chapter, by using the energy dispersion of silicene in Eq. (2.71), we can calculate
the optical conductivity of silicene by using Eq. (2.32). The optical conductivity will
be used to show that the silicene might be a better material to support the TE surface
wave than graphene. This chapter has been published in Applied Physics Letter [84].

Let us remind the problem of the TE surface wave. The TE surface wave cannot
exist on the surface of bulk metal due to the lack of surface current density. Some
efforts have been made for designing artificial materials so that the TE surface wave
can be generated, such as metamaterials and a cluster of nanoparticles, which are
generally complicated [39, 14, 40, 85], hence making them less viable and accessible.
The difficulties of generating the TE surface wave can be alleviated by using two-
dimensional (2D) materials such like graphene, which is a monolayer of carbon atoms
arranged in honeycomb lattice. Mikhailov and Ziegler have shown that, when the
imaginary part of optical conductivity of 2D material is negative (positive), the TE
(TM) surface wave can propagate on the surface of the 2D materials [9]. Due to the
presence of the Dirac cone in the electronic structure, the imaginary part of optical
conductivity of graphene can be negative at a certain range of frequency. This is in
contrast to usual 2D electron gas systems, which have a positive imaginary part of
optical conductivity. This unusual property has also enabled graphene to have the TE
surface wave.

However, it was predicted that the TE surface wave in doped graphene may exist
only for a narrow frequency range of 1.667EF < ~ω < 2EF, where EF is the Fermi
energy [9]. Moreover, the TE surface wave in graphene is less confined in the direction
perpendicular to the surface in comparison with the TM surface wave [9, 43]. To solve
this problem, we may use other 2D material which is similar in its electronic structure
to graphene, such as silicene. Different to graphene, silicene is single layer of silicon
atom and is known to have a band gap that can be controlled by external electric
field, which might affects the properties of the TE surface waves. Therefore, the more
detailed study of TE surface wave in silicene must be important to investigate, which
is the subject of this chapter.

47
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3.1 The optical conductivity of silicene

The Kubo formula for optical conductivity is given by Eq. (2.32), and is shown be-
low [60],

σ(ω) =
ie2~
(2π)2

∫
d2k
(
− (v11)2

~ω
df0(ε1(k))

dε1
− (v22)2

~ω
df0(ε2(k))

dε2

+v12v21 f0(ε1(k))− f0(ε2(k))

(ε2(k)− ε1(k))(~ω + ε1(k)− ε2(k))

+v21v12 f0(ε2(k))− f0(ε1(k))

(ε1(k)− ε2(k))(~ω + ε2(k)− ε1(k))

)
, (3.1)

where the energy dispersion is obtained by diagonalizing the Hamiltonian given by,

Hςη =

(
− 1

2 ςη∆SO + 1
2∆z ~vF(kx − iηky)

~vF(kx + iηky) ςη∆SO
2 − 1

2∆z

)
, (3.2)

The energy dispersion of electron is given by εsςη(k) = (−1)s+1εςη(k), with s is 1 and
2 for the conduction and valence band, respectively. εςη(k) is the energy dispersion

for electron with ς spin and at η valley, which is given by εςη(k) =
√

(~vFk)2 + 1
4∆2

ςη,

where k =
√
k2
x + k2

y and ∆ςη(∆z) = |∆z − ςη∆SO| denotes the energy gap which is
tunable by applying the Ez. In Fig. 3.1, we plot εsςη(k) for one spin and near one
valley. εsςη(0) = +(−) 1

2∆ςη at the bottom (top) of conduction (valence) band. The
vss

′
in Eq. (3.1) is the matrix element of velocity matrix v̂(k) = U−1 (∂Hςη(k)/~∂k) U

in the x direction, where U is the unitary matrix which diagonalizeHςη. Therefore, the
vss

′
is the velocity in the representation of energy band. The v̂(k) matrix is explicitly

given as follows:

v̂(k) =
~v2

Fk
εςη

[
x̂ cos θ + ŷη sin θ −Z−{x̂(−Γ− + A−)− ŷiη(B− − I−)}

Z+{x̂(Γ+ + A+)− ŷiη(B+ + I+)} −x̂ cos θ − ŷη sin θ

]
,

(3.3)

where we define β± = εςη ± 1/2∆ςη, Z± = (β±/β∓)
1/2, Γ± = ∆ςη cos θ/β±, A± =

i2εςη sin θ/β±, B± = 2εςη cos θ/β±, and I± = i2∆ςη sin θ/β±. Here θ is the angle
between k and kx, while vnm denotes the x-component of the n − m element of v̂
matrix. Eq. (3.3) is derived in the Appendix B.

3.1.1 Intraband conductivity

The first two terms of Eq. (3.1) are called the intraband conductivity [60, 59]. Let us
calculate the intraband conductivity for each spin and valley σA

ςη(ω). We consider the
case of T ≈ 0 K and therefore the derivatives of Fermi distribution function are given
by,

df0(ε1(k))

dε1
=

d

dε1
Θ(EF − ε1)Θ(2EF −∆ςη)

= −δ(EF − ε1(k))Θ(2EF −∆ςη),

df0(ε2(k))

dε2
=

d

dε2
1 = 0, (3.4)
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Figure 3.1 The energy band of silicene for one spin and valley εςη showing the Fermi energy
EF in the conduction band as dashed line.

where Θ(x) is the Heaviside step function and we assume that the EF is located in the
conduction band (ε1) or EF >

∆ςη

2 . Then, the intraband conductivity is given by,

σA
ςη(ω) =

ie2

4ωπ2

∫
dk

~2v4k3

ε2ςη

2π∫
0

dθ cos2 θδ(EF − εςη)Θ(2EF −∆ςη)

=
ie2

4~2ωπ

∫
dεςη

ε2ςη − 1
4∆2

ςη

εςη
δ(EF − εςη)Θ(2EF −∆ςη) (3.5)

=
ie2

4~2ωπ

E2
F − 1

4∆2
ςη

EF
Θ(2EF −∆ςη). (3.6)

It can be seen from Eq. (3.6) that the σA
ςη(ω) has ω−1 dependence, which implies the

Drude conductivity.

3.1.2 Interband conductivity

The remaining terms in Eq. (3.1) correspond to the interband conductivity per each
spin and valley σE

ςη(ω). The difference of the Fermi distribution function of conduction
and valence band is given as follows,

f0(ε1(k))− f0(ε2(k)) =−Θ(ε1(k)− EF)Θ(2EF −∆ςη)

−Θ(ε1(k)−∆ςη/2)Θ(∆ςη − 2EF). (3.7)

Fig. 3.1: Fig/Figsildis2.eps
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The interband conductivity is given by,

σE
ςη(ω) =

i~2ωe2

2π2

∫
kdk

2π∫
0

dθv12v21 f0(ε1(k))− f0(ε2(k))

(ε2(k)− ε1(k))(~2ω2 − (ε2(k)− ε1(k))2)

=
i~4v4

Fωe
2

4π2

∫
k3dk

2π∫
0

dθ
− cos2 θ∆2

ςη − 4ε2ςη sin2 θ

ε2ςη −
∆2
ςη

4

f0(ε1(k))− f0(ε2(k))

4ε3ςη(~2ω2 − 4ε2ςη)

=− iωe2

4π

∞∫
max(EF,∆ςη/2)

dεςη
∆2
ςη + 4ε2ςη

4ε2ςη(4ε2ςη − ~2ω2)
. (3.8)

By substituting p2 = 4ε2ςη − ~2ω2 and dεςη = pdp/(4εςη), we obtain,

σE
ςη(ω) =− iωe2

8π

∞∫
√

4max(EF,∆ςη/2)2−~2ω2

dp
∆2
ςη + ~2ω2 + p2

p(p2 + ~2ω2)3/2

=− ie2

8π~3ω2

[ −∆2
ςη~ω

2max(EF,∆ςη/2)
+ (∆2

ςη + ~2ω2)ln
∣∣∣∣
√

~ω + 2max(EF,∆ςη/2)√
2max(EF,∆ςη/2)− ~ω

∣∣∣∣]
=− ie2

16π~3ω2

[ −∆2
ςη~ω

2max(EF,∆ςη/2)
+ 2(∆2

ςη + ~2ω2)ln
∣∣∣∣
√

~ω + 2max(EF,∆ςη/2)√
~ω − 2max(EF,∆ςη/2)

∣∣∣∣]
+

e2

16~3ω2

[
(∆2

ςη + ~2ω2)

]
Θ(~ω − 2max(EF,∆ςη/2)), (3.9)

where we use ln i = iπ/2. The function of max(a, b) selects a larger value for a or
b. The first two terms of Eq. (3.9) are the imaginary part of intraband conductivity,
while the last term of Eq. (3.9) is the real part of intraband conductivity. The real part
and imaginary part of intraband conductivity are related each other through Kramers-
Kronig relation. If we set the ∆ςη = 0 in the real part of interband conductivity, we
return to the universal conductivity of graphene Re σ(ω) = 4× e2

16~ .
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3.2 The tunable TE surface wave in silicene

The total optical conductivity is obtained by adding the intraband and interband
conductivity for all spin and valley. The total optical conductivity is given by [84],

σ(ω,∆z) =
∑
ςη

{
σA
ςη(ω,∆z) + σE

ςη(ω,∆z)
}
, (3.10)

σA
ςη(ω,∆z) =i

e2

16~π
4E2

F − [∆ςη(∆z)]
2

EF~ω
Θ [2EF −∆ςη(∆z)] (3.11)

σE
ςη(ω,∆z) =

e2

16~

1 +

(
∆ςη(∆z)

~ω

)2
Θ [~ω − g(∆z)]

− i e2

16~π

1 +

(
∆ςη(∆z)

~ω

)2
× ln

∣∣∣∣~ω + g(∆z)

~ω − g(∆z)

∣∣∣∣+ i
e2 [∆ςη(∆z)]

2

8~2πωg(∆z)
,

(3.12)

where g(∆z) = max[2EF,∆ςη(∆z)]. If we set ∆ςη = 0, we get the optical conductivity
of graphene given in Eq. (1.26). It noted that we obtain the similar result as in
Ref. [54] by Stille et al. However, there is a sign error in the second term of interband
conductivity [Eq. (3.12)] in their work, which makes the TE surface wave cannot occur
even in graphene and we cannot obtain the optical conductivity of graphene, if we set
∆ςη = 0. In the subsequent discussion, for simplicity, we fix the EF = 2∆SO =
7.8 meV, and vary the ∆z = 2∆SO, 4∆SO, and 8∆SO, therefore the energy gap is a
function of ∆z (∆ςη(∆z)).

In Fig. 3.2, we plot the electron energy dispersions for K and K’ valleys for several
∆z’s. In varying ∆z, we choose three cases for both the K and K’ valleys depending
on the position of EF relative to the energy gap, which are shown in Fig. 3.2. The
first case is ∆z = 2∆SO , in which EF is higher than bottoms of the two conduction
bands for spin up and spin down (EF > ∆++/−− and ∆−+/+−) [Figs. 3.2(a) and
2(d)]. The second case is ∆z = 4∆SO, in which EF lies between two bottoms of the
conduction bands (∆++/−− < EF < ∆−+/+−) [Figs. 3.2(b) and (e)] and the third
case is ∆z = 8∆SO, in which EF exists in energy gaps [Figs. 3.2(c) and (f)].

In Fig. 3.3, we plot the optical conductivity σ of silicene as a function of frequency
where the solid and dashed lines are the imaginary and real parts of σ, respectively,
for the three ∆z. We also plot the σ of graphene in black lines for a comparison.
The logarithmic singularities in Im σ in Eq. (3.12) correspond to the lowest excitation
energies for interband transitions of electrons between energy bands having the same
spin directions and the same valleys. Im σ is logaritmichally singular ln |~ω − g(∆z)|
for any frequency which satisfies condition ~ω = g(∆z) as shown in Eq. (3.12).Since
there are two distinct values of ∆ςη(∆z), there are two possible singularity points,
ω1 = 2EF/~ and ω2 = ∆−+/~ if ∆++/2 < EF < ∆−+/2 [∆z = 4∆SO] or ω1 = ∆++/~
and ω2 = ∆−+/~ if EF < ∆++/2 and ∆−+/2 [∆z = 8∆SO]. When EF > ∆−+/2
and ∆++/2 there is only one singularity point at ω = 2EF/~. These singularities
correspond to the minimum photon energy for having interband transition of electron.

Since the σ of silicene depends on ∆z, σ of silicene can be tuned not only by
EF but also by Ez (∆z). As mentioned in Eq. (1.32), the negative value of Im σ
correspond to the condition for TE surface wave. The TE surface wave cannot exist
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Figure 3.2 Electronic energy dispersions of silicene for [(a)-(c)] K and [(d)-(f)] K’ valleys for
several ∆z’s (2∆SO,4∆SO, and 8∆SO). The solid (dash-dotted) lines correspond to spin up
(down) electron dispersion. Positions of EF = 2∆SO are indicated by the horizontal dotted
lines.

for the region that Im σ > 0. In the following discussion, we call the frequency range
of Im σ < 0 as the frequency range of TE surface wave or ∆fTE. Furthermore we
focus only on the frequency range where Re σ = 0 in which the TE surface wave
is not damped, since the wave vector of TE surface wave q, which can be obtained
from Eq. (1.32) is real quantity if Re σ = 0. For graphene (∆ςη = 0), the ∆fTE is
fixed at 1.667EF < ~ω < 2EF (3.14 < f < 3.77 THz), which reproduces the previous
results [9, 10, 59].

In general, the ∆fTE in silicene is wider than that in graphene for the same EF
and it is tunable by ∆z as shown in Fig. 3.3 [84]. For example, for ∆z = 2∆SO (Ez =

16.96 mV Å−1
), the TE frequency range lies within 1.4EF < ~ω < 2EF (2.64 < f <

3.77 THz). When we increase ∆z, ∆ςη increases, too. From Eq. (3.11)-(3.12) we know
that increasing ∆ςη not only makes Im σE

ςη more negative, but also reduces Im σA
ςη

whose value is always positive. Altogether, Im σ decreases, hence the ∆fTE becomes
wider when we increase ∆z. The Im σA

ςη can be suppressed when ∆ςη > 4∆SO, or
the Fermi level is located in ∆ςη as shown in Figs. 3.1 (b) and (c). This occurs for
∆z = 4∆SO (Ez = 33.92 mV Å−1

) and ∆z = 8∆SO (Ez = 67.84 mV Å−1
) (see

Figs. 3.2(b) and (c) respectively). For ∆z = 4∆SO, only Im σA
−+ and Im σA

+− are
suppressed, therefore we still have Im σ > 0 at certain frequency and Re σ 6= 0 for
~ω ≥ 2EF (f ≥ 3.77 THz, see Eqs. (3.11) and (3.12)). Hence, the ∆fTE becomes
1.61 < f < 3.77 THz. But in the case of ∆z = 8∆SO, all Im σA

ςη vanish and Im σ has
negative value at all frequency. Re σ 6= 0 for ~ω ≥ ∆++ (f ≥ 6.60 THz). Therefore,

Fig. 3.2: Fig/Figsildis.eps



3.2. The tunable TE surface wave in silicene 53

0 2 4 6 8 10 12

σ
f1

0
-4

S
)

Graphene

EF = z7.8zm eV

ħ
ω

=
z2

E
F

Re

Im

-3
-2
-1
0
1
2
3
4

Graphene

Silicenefa)

Δz = z2Δ SOΔz = z2Δ SO

0 2 4 6 8 10 12

σ
f1

0
-4

S
)

Graphene

EF = z7.8zm eV

ħ
ω

=
z2

E
F

Re

Im

-3
-2
-1
0
1
2
3
4

Δz = z4 Δ SO

Graphene

Silicenefb)

0 2 4 6 8 10 12

σ
f1

0
-4

S
)

Graphene

EF = z7.8zm eV
ħ
ω

=
z2

E
F

Re

Im

-3
-2
-1
0
1
2
3
4

Δz = z8 Δ SO

Graphene

Silicene

fc)

FrequencyzfTHz) FrequencyzfTHz)

FrequencyzfTHz)

Silicene Silicene

Silicene

fzfTHz)

fzfTHz)fzfTHz)

σ

σ

σ

σ

σ

σ

Figure 3.3 Optical conductivity (σ) of silicene for three different ∆z values and compared
with that of graphene. The condition that the TE surface wave exists without damping
(∆fTE) are (1) Im σ < 0 and (2) Re σ = 0. The range of frequency, in which TE surface
wave exist without damping are shown for silicene (color) and graphene (black) at the top of
each figure. The solid lines represent the imaginary part of σ and the dashed lines represent
the real part of σ. Position of ~ω = 2EF is fixed at f = 3.77 THz.

the ∆fTE becomes 0 < f < 6.60 THz. Re σ appears at higher frequency than that
for ∆z = 4∆SO, because the Fermi level exists in all of the energy gaps, in which we
need a higher excitation energy for interband transition.

Another interesting finding is that the undoped silicene (EF = 0) may also support
TE surface wave [84]. From Eqs. (3.10)-(3.12), when we put EF = 0 we get Im σ as
follows,

Im σ(ω,∆z) = − e2

16~π
∑
ςη

{[
1 +

(
∆ςη(∆z)

~ω

)2
]

× ln

∣∣∣∣~ω + ∆ςη(∆z)

~ω −∆ςη(∆z)

∣∣∣∣− 2∆ςη(∆z)

~ω

}
. (3.13)

In this case, the ∆fTE lies within 0 < ~ω < ∆++/−−. It is noted that Im σ(ω) vanishes
at EF = 0 in graphene that corresponds to ∆ςη(∆z) = 0, hence the TE surface wave
does not exist for undoped graphene. We have known that the ∆fTE in silicene

Fig. 3.3: Fig/fig3.pdf
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is tunable by the external electric field. The ∆fTE is wider by increasing the external
electric field. If the EF is located in both of or one of conduction band as shown in
the case of Figs. 3.3 (a) and (b), the ∆fTE is given by ~ω0 < ~ωTE < 2EF, where ω0

is the lowest frequency for supporting TE mode at which Im σ(ω0,∆z) = 0.
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Figure 3.4 The ω0, which is the frequency that makes Im σ(ω0,∆z) = 0, as a function of
∆z for several EF’s.

In Fig. 3.4, we show the ω0 as a function of ∆z for several EF’s. We can see that
as we increase the electric field, the ω0 gets lower, which means that the frequency
range increases with increasing electric field. For each EF, we get a kink at ~ωkink =
2EF−∆SO, which corresponds to the Fermi level located at the bottom of ε−+/+− [see
step function Θ(2EF −∆ςη) in Eq. (3.11)]. For ∆z < ~ωkink, the all the energy bands
in the conduction band contribute to the total optical conductivity Im σ [Eqs. (3.11)
and (3.12)], which is the case of Figs 3.2 (a), (d) and 3.3 (a). For ∆z > ~ωkink,
only Im σ++ and Im σ−− contribute to the total optical conductivity Im σ, which
is the case of Figs 3.2 (b), (e) and 3.3 (b). When the Fermi level is located inside
the both of energy gaps as shown in Figs 3.2 (c) and (f), the frequency range lies
within 0 < ~ω < ∆++/−−, and it is clear to say that the ∆fTE increases linearly with
increasing ∆z, since ∆++/−− = |∆z −∆SO|.

3.3 The properties of TE surface wave in silicene

3.3.1 The confinement length

From Eq. (1.32), we can define a confinement length of TE surface wave 1/κ, as follows

1

κ
=

2

iωσ(ω,∆z)µ0
. (3.14)

A smaller value of 1/κ corresponds to better confinement. In Fig. 3.5, we plot 1/κ
of the TE surface wave in graphene and silicene for comparison. The plot starts at

Fig. 3.4: Fig/figrange.eps
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ħω=2EF ħω=Δ++(Δz=8ΔSO)
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Figure 3.5 Confinement length 1/κ for silicene and graphene as a function of frequency.
Inset : ∆λ as a function of frequency for graphene and silicene.

f = 3.15 THz (~ω = 1.667EF), which is the lower bound of the frequency range
of TE surface wave in graphene. We can see that the TE surface wave in silicene
is much more confined than in graphene and tunable by ∆z [84]. For example, at
f = 3.25 THz (~ω = 1.725EF), in case of graphene, 1/κ = 13994 µm, while in case
of silicene, 1/κ = 2906.2 µm for ∆z = 2∆SO, 1/κ = 1747.7 µm for ∆z = 4∆SO, and
1/κ = 3146.7 µm for ∆z = 8∆SO.

The value of 1/κ gets smaller as the frequency approach the ~ω = 2EF, at which
the Im σ is singular for the case of ∆z = 2∆SO and ∆z = 4∆SO. In the case of
∆z = 8∆SO, we might get a larger 1/κ for ~ω < 2EF. This is because Im σ is singular
at higher frequency [at ~ω = ∆++(∆z = 8∆SO)], which makes 1/κ for ∆z = 8∆SO
slowly diverge.

3.3.2 The shrinking of wavelength

By solving Eq. (1.32) for λ = 2π/q, we can define the difference between the wavelength
of TE surface wave λ and the wavelength of freely propagating EM wave in vacuum
λ0 = 2πc/ω as ∆λ = λ − λ0. The negative value of ∆λ = λ − λ0 means that there
is shrinkage of the wavelength of TE surface wave, which is the preferable feature of
surface wave since more information can be compressed in the wave. In the Fig. 3.6, we
plot ∆λ as a function of frequency for graphene and silicene for the case of ∆z = 4∆SO.
We can see that ∆λ is sufficiently small, which means that λ is almost the same as
λ0 (3 THz corresponds to λ0 = 100µm). However, ∆λ for silicene is more negative
compared with that for graphene, which is almost zero. Although ∆λ of silicene is
negligible (∆λ/λ0 ≈ 10−4), from Fig. 3.6, we can see more shrinkage of the wavelength
in silicene compared with that in graphene [84].

Fig. 3.5: Fig/figloc.eps
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Figure 3.6 The shrinkage of wavelength of TE surface wave in silicene and graphene. Inset:
the dispersion of TE surface wave.

3.4 Temperature effect

To investigate the damping of TE surface wave, we consider the case of finite temper-
ature T 6= 0, therefore the Θ [~ω − g(∆z)] in the Re σ of Eq. (3.12) is not a step-like
function anymore, since the Fermi distribution function is a function of temperature.
Hence, within the frequency range of TE surface wave that has been discussed before,
the conductivity is not purely imaginary, but might have non-zero component of Re σ.
From Eq. (1.32), if the conductivity is complex, the wave vector of TE surface wave
q is also complex. The imaginary part of q corresponds to the damping of the TE
surface wave. We will show that TE surface wave might propagate longer compared
with TM surface wave by taking one case of ∆z = 4∆SO with EF = 2∆SO for TE
surface wave and comparing it with the case of TM surface wave in silicene.

3.4.1 The optical conductivity

Let us first calculate the optical conductivity if T 6= 0. We follow the method that is
used to calculate the optical conductivity of graphene with T 6= 0 [86]. From Eq. (3.5),
the intraband conductivity for each spin and valley can be expressed by,

σA
ςη(ω, T ) = − ie2

4π~2ω

∞∫
∆ςη

2

dε
ε2ςη −

∆2
ςη

4

εςη

(
df(εςη, T )

dεςη
− df(−εςη, T )

dεςη

)
, (3.15)

where f(εςη, T ) = (Exp[(εςη −EF)/kBT ] + 1)−1 is the Fermi distribution function. By
substituting p = kBT/(εςη−EF) and p = kBT/(εςη +EF) to the first and second term

Fig. 3.6: Fig/figsh.eps
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of Eq. (3.15), respectively, we obtain,

σA
ςη(ω, T ) =

ie2

4π~2ω

[ kBT/(∆ςη/2−EF)∫
0

dp
1

p2

(kBT/p+ EF)2 −∆2
ςη/4

kBT/p+ EF

e1/p

(e1/p + 1)2

+

kBT/(∆ςη/2+EF)∫
0

dp
1

p2

(kBT/p− EF)2 −∆2
ςη/4

kBT/p− EF

e−1/p

(e−1/p + 1)2

]
. (3.16)

The integration in Eq. (3.16) can be solved numerically. From Eq. (3.8), the interband
conductivity for each spin and valley is given by,

σE
ςη(ω) =

iωe2

4π
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∆ςη/2

dεςη
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ςη + 4ε2ςη
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∣∣∣∣), (3.18)

where G(εςη, T ) = f(−εςη, T )− f(εςη, T ) is given by,

G(εςη, T ) =

sinh

(
εςη
kT

)
cosh

(
εςη
kT

)
+ cosh

(
EF
kT

) . (3.19)

The integration of the last term of Eq. (3.17), which involves G(~ω
2 ) term, is done

analytically and given by the last two terms of Eq. (3.18). The result of remaining
integration is done numerically.

Figure 3.7 shows the optical conductivity of silicene with ∆z = 4∆SO for kBT = 0
and 0.1 EF (For EF = 7.8 meV, T = 9 K). We also add the scattering time of electron
τ to the intraband conductivity by substituting ω → ω+i/τ with ~/τ = 0.01 meV. It is
clear that by increasing the temperature, the smearing of the real part of conductivity
occurs at ~ω = 2EF. This implies that the electron in the conduction band with energy
close to but less than the Fermi level is thermally excited and leaves unoccupied state.
This unoccupied state can be filled by the electron excited from the valence band by the
EM wave with energy less than 2EF. This excitation is not possible if the temperature
is zero, since the all the state below Fermi level is occupied. The smearing in Re σ
induces the damping of the TE surface wave, since the conductivity is now complex
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Figure 3.7 The optical conductivity of silicene with ∆z = 4∆SO for kBT = 0 (dashed line)
and 0.1 EF (thick line). We also add the scattering time of electron τ to the intraband
conductivity by substituting ω → ω + i/τ with ~/τ = 0.01 meV for the case of non zero T .

within the frequency range of TE surface wave (1.61 < f < 3.77 THz [2EF]). The
wave vector of TE surface wave will be complex, too, based on the Eq. (1.32). Since
the distribution function of electron is a function of EF as shown in Eq. (3.19), the
smearing of the real part of conductivity does not occur at ~ω = ∆+−/−+, which
remains step-like function.

3.4.2 The propagation length of TE surface wave in silicene

TE TM
(a) (b)

f (THz) f (THz)

0.1

0.2(m
m

)

Figure 3.8 The propagation length of (a) TE and (b) TM surface waves in silicene for
T = 9K.

Due to the smearing of the real part of conductivity, the conductivity of silicene
within the frequency range of TE surface wave discussed previously (1.61 < f <

Fig. 3.7: Fig/figopttem.pdf
Fig. 3.8: Fig/figprop.eps
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Figure 3.9 (a) The optical conductivity of silicene at T=300K with EF = 0.26. (b) The
propagation length of TE surface wave. The position of 2EF is indicated by the dashed line
at f = 126 THz

3.77 THz [2EF]), becomes complex number. Therefore, Eq. (3.19) implies that the
wave vector of TE surface q =

√
(iωσµ0/1)2 + (ω/c)2 is complex, too. The imaginary

part of the q corresponds to the damping of TE surface wave, where 1/(Im q) is defined
as the propagation length, which is the effective length before the amplitude of surface
wave is damped out.

Figure 3.8(a) shows the propagation length of TE surface wave within 3.1 < f < 3.8
THz. The propagation length is in order of one meter and decreasing with increasing
frequency since the real part of conductivity also increases. This propagation length
of TE surface wave is significantly longer compared with that of TM surface wave.
Figure 3.8(b) gives the propagation length of TE surface wave within 0.5 < f < 1.4
THz, where the silicene support TM surface wave (Im σ > 0). The propagation length
of TM surface wave is in order of 0.1 mm, which is 104 times shorter than that of
TE surface wave. The longer propagation length of TE surface wave gives it more
advantage in application of transmission of EM signal over large distance and also
nano-circuit, compared with using TM surface wave.

For room temperature (T=300K) without changing the EF, the Re σ becomes
much smeared and Im σ becomes zero. Thus the frequency range of TE surface wave
cannot be defined anymore. Therefore, for T=300K, we increase the EF to be 0.26
eV so that the frequency range of TE surface wave can be well defined. The optical
conductivity for T=300 K with EF = 0.26 eV is given in Fig. 3.9 (a), where we get
the similar smearing of the Re σ as in Fig. 3.7, although at higher frequency, since the
2EF is located at 126 THz. In contrast to case of Fig. 3.7, where we have two step-like
functions (one of them is smeared), we have only one step-like function in the case
of room temperature. Since the ∆ςη << EF, we only have one step like function at
2EF due to the interband transition and it is smeared due to the temperature. The
lower bound of frequency range of TE surface wave is similar to graphene, which is
at ~ω ≡ 1.667EF ≈ 105 THz. In Fig. 3.9 (b), we show the propagation length of TE
surface wave at frequency 106 < f < 120 THz. The propagation length is in order of
10 cm.

Fig. 3.9: Fig/t300.eps
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In conclusion, silicene is theoretically proved to be a versatile platform for uti-
lizing TE surface wave. We have shown that silicene supports the TE surface wave
propagation and it exhibits more preferable surface wave properties compared with
those of graphene, such as the tunable broadband frequency and smaller confinement
length. The TE surface wave in silicene is tunable by the Fermi energy as well as by
the external electric field. These characteristics originate from the two-dimensional
buckled honeycomb structure.



Chapter 4

The quantum description of surface
plasmon excitation by light in
graphene

In this chapter, we will discuss quantum mechanically the coupling between photon
and surface plasmon in graphene. The surface plasmon can be seen as the transverse
magnetic (TM) surface wave. In the real experiment, to excite the surface plasmon,
we can use external TM EM wave which is incident to the surface of a material.
The excitation of surface plasmon can be monitored by observing the reflection of
the incident light. The sharp dip in the reflection indicates the excitation of surface
plasmon, which also corresponds to the peak of absorption of incident light [39, 8, 20].
Therefore, there is an exchange of energy from the incident light to the surface plasmon
due to the coupling between them.

The absorption peak appears if the resonant conditions for exciting surface plas-
mon are fulfilled, in which are the frequency and parallel component of wave vector
of light should be the same as the frequency and wave vector of the surface plasmon,
respectively [8]. In other words, the dispersion of light should intersect with the dis-
persion of surface plasmon. These conditions have guided the researchers for exciting
the surface plasmon. Fulfilling the resonant conditions means that there is coupling
between the light and surface plasmon. However, (1) the reason for the necessity to
satisfy the resonant conditions to have coupling between light and surface plasmon
and (2) the reason why the coupling makes the absorption peak cannot be explained
clearly by only the classical description of electrodynamics. To answer these questions,
in this chapter we will discuss the excitation of surface plasmon within the quantum
picture, in which the surface plasmon and light can be quantized and considered as
interacting particles.

It is noted that the results of this chapter are to be published by Physica Status
Solidi B.

4.1 Excitation of surface plasmon in graphene by light

As mentioned before, to excite surface plasmon by light, the resonant conditions or
energy - momentum conservation between light and surface plasmon must be fulfilled.
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graphene

The resonant conditions mean that the frequency and parallel component of wave
vector of light should be the same as the frequency and wave vector of plasmon,
respectively. In other words, the dispersion of light should intersect with the surface
plasmon’s dispersion. The excitation of surface plasmon can be done by shining the
light to graphene. However, by simply shining the light directly to graphene in the
non-retarded regime, the intersection cannot occur, because for a given wave vector,
the frequency of incident light is always larger than the frequency of surface plasmon,
which can be seen in Fig. 2.8 (a) [8, 66]. Therefore, some coupling mechanism to
increase the wave vector of light should be employed for non-retarded regime. One of
mechanism is attenuated total reflection (ATR) method [8, 66], where we put another
additional dielectric medium to increase the light wave vector of light as shown in
Fig. 4.1 (a) as εm, where εm > ε. This additional medium is referred as coupling
medium.

(c)

εm

ε
ε

Graphene
q

θ θ

(a)
Coupling
medium

(b)

θ (degree)

P
ro

b
a
b
ili

ty T

θspθc

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

R
A

q ( x 105 m-1)

ω
 (

x 
10

12
 r

ad
/s

)

θ = θsp 

Light in 
εm at  

Light in ε

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

Figure 4.1 (a) The Otto geometry for exciting surface plasmon in non-retarded regime. Here
εm > ε. (b) The calculated transmission (T ), reflection (R), and absorption (A) probabilities
of light.The absorption is maximum if the surface plasmon is excited. Here the θsp = 50.7◦.
(c) the dispersion of light in εm intersects with surface plasmon dispersion at θ = θsp. In the
calculation, we use EF = 0.64 eV, εm = 13.5, ε = 2.25 and ω = 15 THz.

In Fig. 4.1 (a), we show the geometry of ATR method, which is also known as
the Otto geometry [8, 66, 20, 18]. The coupling medium has a dielectric constant
larger than the media surrounding graphene εm > ε. The excitation can be observed
by monitoring the reflection spectrum of light. For a fixed frequency of light, the
excitation occurs at an angle of incident θsp larger than critical angle θc in which we
should have total internal reflection as shown in Fig. 4.1 (b). At the excitation angle
θsp, there is a sharp drop in reflection probability (R) or equivalently there is a peak on

Fig. 4.1: Fig/Fig34.eps
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Figure 4.2 The absorption probability of light when the light incident directly to graphene
in retarded regime. We adopt ω = 144.5 × 109 rad s−1, EF = 0.64 eV and Γ = 1 meV. (a)
Graphene is surrounded by medium with ε = 1. (b) Graphene is surrounded by medium with
ε1 > ε2. The excitation occurs at θ close to 90◦.

the optical absorption probability (A) of graphene. In this geometry, the light incident
to graphene does not behave as a propagating wave, but as an evanescent wave, which
means that the wave vector is determined by the wave vector in εm, not in ε as shown
in Fig. 4.1 (a). This is the reason why we can increase the wave vector of light and
we get the resonant conditions.

In Fig. 4.1 (b), we show the calculated transmission (T ), reflection (R), and
absorption (A) probabilities of light coming to the structure of Fig. 4.1 (a), which is
done by solving the Maxwell equations with transfer matrix method, which has been
discussed in the Chapter 2. In the calculation, we use ω = 15×1012 rad s−1, EF = 0.64
eV, εm = 13.5, and for simplicity we assume that graphene is surrounded by only kind
of dielectric medium ε = 2.25. We can see at θsp = 50.7◦, there is a sudden drop of
R and we have a peak on A. This peak on A corresponds to the excitation of surface
plasmon. We can verify it by calculating the parallel component of wave vector of
incident light inside the coupling medium, k‖, given by

k‖ =
ω

c

√
εm sin θ. (4.1)

For θsp = 50.7◦, where we have the peak on A, we have k‖ = 1.42 × 105m−1, which
matches with the surface plasmon wave vector q at ω = 15× 1012 rad s−1 THz shown
in Fig. 4.1 (c). The dispersion of light coming to graphene surface is now determined
by the incident light in the coupling medium and it can intersect with the surface
plasmon dispersion shown as red dashed-dot line in Fig. 4.1 (c). The incident light in
εm with other θ will intersect at other frequency. It is noted that in order to observe
optical absorption, the optical conductivity of graphene should have real component,
therefore we substitute ~ω → ~ω + iΓ in Eq. (2.97), where Γ corresponds to damping
of electron which depends on electron’s mobility. In this non-retarded calculation, we
adopt Γ = 0.07 meV. As discussed in Eq. (2.100), below the transition frequency ω∗,

Fig. 4.2: Fig/Fig44.eps
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the surface plasmon is retarded and we expect linear dispersion of surface plasmon.
In the retarded regime, we have a strong light-surface-plasmon coupling because the
surface plasmon dispersion is close to the dispersion of light for any frequencies. Hence,
we expect that we can have resonant conditions for any frequency in the retarded
regime and the surface plasmon can be excited by simply shining the light directly
to graphene. If we measure the optical absorption, we have a peak on the absorption
spectrum as the surface plasmon is excited.

In Fig. 4.2, we plot the absorption spectra of light as a function of θ for light
incident directly to graphene, which are calculated by solving the Maxwell equations,
which is discussed in Chapter 2. In Fig. 4.2 (a), graphene is surrounded by vacuum
and we have absorption peak up to 50% at θ ≈ 83◦. By modifying the surrounding
media, such as having ε1 > ε2 shown in Fig. 4.2 (b), we can increase the absorption
probability up to 100% at θ ≈ 85◦ by suppressing the light transmission through the
structure [61]. In both case of Fig. 4.2, the peak of absorption appears close to θ = 90◦.

From this discussion, we see that when we get the resonant conditions, the optical
absorption will reach maximum where we excite the surface plasmon. In the next
section, we will discuss the reason why the resonant conditions are needed to excite
surface plasmon and why we have an absorption peak, quantum mechanically.

4.2 The quantum description of surface plasmon excitation
by light

To understand excitation process of the surface plasmon, we have to consider both
the surface plasmon and light as interacting quasiparticles. The interaction might
annihilate photon and create surface plasmon. The quantization of light is expressed as
a photon. The surface plasmon can be seen as the quantization of collective oscillation
of electron on the surface of material, which is in form of harmonic oscillator. The
quantization allows us to use the Fermi golden rule for calculating the transition rate
between photon and surface plasmon. The interaction Hamiltonian is given by [76, 87]

Hsp-op =

∫
dr j(r, t) ·A(r, t), (4.2)

where j(r, t) is the surface current density of surface plasmon and A(r, t) is the "total"
vector potential of the photon. Here "total" means as follows: we include the reflected
vector potential, since the interaction occurs on the surface of a material, the A(r, t)
includes not only the field of incident photon, but also the reflected one (See Fig. 2.6).
By using Eq. (4.2), we can calculate the excitation probability by using the Fermi’s
golden rule, which will be shown as below.

The j(r, t) and A(r, t) can be written in terms of creation and annihilation oper-
ator of the quasiparticles, which is discussed in Chapter 2. Here, we briefly give the
expression of A(r, t) and j(r, t) in second quantization, as follows,

A(r, t) =
∑
k

(1 + rp) cos θ

√
~

2V ωkε0
ε̂‖

(
bke

i(k·r−ωkt) + b†ke
−i(k·r−ωkt)

)

+
∑
k

(1− rp) sin θ

√
~

2V ωkε0
ε̂⊥

(
bke

i(k·r−ωkt) + b†ke
−i(k·r−ωkt)

)
, (4.3)
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where ε̂‖(ε̂⊥),k, ωk, V are, respectively the unit vector of polarization of the pho-
ton in the direction parallel (perpendicular) to graphene, wave vector of the photon,
frequency of the photon and volume occupied by the photon. b†k(bk) is the creation
(annihilation) operator of photon. The reflection coefficient for TM polarized light rp
is given by

rp =
Z2 cosφ− Z1 cos θ − Z1Z2σD(ω) cosφ cos θ

Z2 cosφ+ Z1 cos θ + Z1Z2σD(ω) cosφ cos θ
, (4.4)

where Zi = Z0/
√
εi is the impedance of medium εi, with vacuum impedance Z0 =

377 Ω and φ is the angle of refraction.
The j(r, t) is given by j(r, t) = σD(ω)E‖(r, t)δ(z), where E‖(r, t) is the electric field

of surface plasmon in the direction parallel to graphene surface and graphene is located
at z = 0. The detailed formulation of quantization of surface plasmon is discussed in
Chapter 2, in which the electromagnetic energy of surface plasmon is quantized and
can be casted into energy of quantum harmonic oscillator. The electric field of surface
plasmon can be written as

E(r, t) =i
∑
q

√
~ωq
2ε0S

(
νq(z)eiq·re−iωqtaq + ν∗q (z)e−iq·reiωqta†q

)
,

=E‖(r, t)q̂ + E⊥(r, t)ẑ (4.5)

where ωq is frequency of the surface plasmon, S is the area of quantized surface plas-
mon, q is wave vector of the surface plasmon and a†q(aq) is the creation (annihilation)
operator of the surface plasmon. The vector νq(z) is given by Eq. (2.115). By us-
ing Eq. (4.2) and Fermi’s golden rule, we can calculate the excitation rate of surface
plasmon γk for photon wave vector k, given by

γk =
2π

~
∑
q

|〈1q, 0k |Hsp-op| 0q, 1k〉|2 δ(~ωk − ~ωq). (4.6)

It is clear from the delta function in Eq. (4.6) that the excitation peak appears if
the light frequency matches the surface plasmon frequency (resonant condition). In
Eq. (4.6), we consider a joint states consisting of nk photon and nq surface plasmon,
denoted by |nq, nk〉. 〈1q, 0k |Hsp-ph| 0q, 1k〉 is called the matrix element of surface
plasmon-photon coupling in which a surface plasmon is created by annihilating a
photon. Eq. (4.6) gives the generating rate of surface plasmon.
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By using Eqs. (4.2) - (4.5), we can write the matrix element Msp-op as follows,

Msp-op = 〈1q, 0k |Hsp-op| 0q, 1k〉

=i
∑
k,q

(1 + rp)σD(ωq) cos θ

√
~

2V ωkε0

√
~ωq
2ε0S

×
∫
dr ν‖q (z)q̂ · ε̂‖δ(z)e−i(q−k)·r

× ei(ωq−ωk)t
〈
1q, 0k

∣∣a†qbk∣∣ 0q, 1k〉
=i
∑
k,q

(1 + rp)σD(ωq) cos θ

√
~

2V ωkε0

√
~ωq
2ε0S

ei(ωq−ωk)t ×
∫
dxdye−i(q−k‖)·r

×
∫
dzν‖q (z)q̂ · ε̂‖δ(z)eikzz

=i
∑
k,q

(1 + rp)σD(ωq) cos θ

√
~

2V ωkε0

√
~ωq
2ε0S

ν‖q (0)q̂ · ε̂‖ei(ωq−ωk)tSδq,k‖ , (4.7)

where ν‖q (z) is the in-plane component of vector νq(z). Eq. (4.7) shows us that the
parallel wave vector of light should match with the surface plasmon wave vector (k‖ =
q) in order to have non zero matrix element. In other words, the transition between
states with (k‖ 6= q) cannot occur due to the vanishing Msp-op. Hence, Eq. (4.6)
can now be calculated by using Eq. (4.7). It is noted from Eq. (4.7) that, if the
photon polarization is exactly perpendicular to the surface, the Msp-op = 0, because
cos 90◦ = 0. The Msp-op also vanishes if we have s polarized incident wave, since the
q̂ · ε̂‖=0.

In the next section we will use Eq. (4.6) to calculate the excitation probability and
relate it with optical absorption spectrum. We will see that if we have the resonant
conditions (k‖ = q and ~ωk = ~ωq), we will have a peak on absorption spectrum.

4.3 Quantum description of optical absorption

The absorption probability of light that is incident to graphene can be obtained by
solving the Maxwell equations on the graphene surface, whose solution is given by
Eq. (2.76). However, the physical process related to the transition of electron cannot be
understood well. Physically, the optical absorption in graphene is due to the excitation
of electron. To show this excitation probability, we may use the Fermi’s golden rule for
the interaction between photon and electron. The interaction Hamiltonian for electron
near the K point of graphene’s Brillouin zone can be written as,

He-op =
∑
j

evFσ ·A(rj , t)

=
∑
ll′pp′

〈l′p′ |evFσ ·A| lp〉 c†l′p′clp, (4.8)

where σ are the Pauli matrices, A(rj , t) is vector potential of light for the j-th electron
and vF ≈ 106 m/s is the Fermi velocity of graphene. In Eq. (4.8), we use the second
quantization picture and introduce the creation and annihilation operators of electron
in state |lp〉, the c†lp and clp, respectively. l = +(−) denotes the conduction (valence)
band and p denotes the wave vector of electron measured from the K point. It is noted
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again that A(rj , t) is the total vector potential on the graphene surface which consist
of, not only the incident one, but also reflected or transmitted one. By using Eq. (4.3)
for TM polarized light and ε = (cos θ, 0, sin θ), 〈l′p′ |evF−→σ ·A| lp〉 in Eq. (4.8) can be
calculated as follows,

〈l′p′ |evFσ ·A| lp〉 =
∑
k

evF
2

√
~

2V ωkε0

[
leiθp + l′e−iθp′

]
(1 + rp) cos θbkδp′,p+k‖

× e−iωkt, (4.9)

where the wave function of electron near the K point is given by |lp〉 = 1√
2
(1 leiθk)t

and we only consider the annihilation of photon (bk). Here k denotes the wave vector of
photon and p is the wave vector of an electron. By substituting Eq. (4.9) to Eq. (4.8),
we have

He-op =
∑
ll′pk

(1 + rp)
evF
2

√
~

2V ωkε0
cos θ

[
leiθp + l′e

−iθp+k‖

]
c†l′p+k‖clpbk

× e−iωkt. (4.10)

Eq. (4.10) gives us the electron-photon interaction Hamiltonian in second quantization
form. Hence, we are able to calculate the transition rate between the joint states
|nl′p′ , nlp nk〉, which contains nk photon with wave vector k and nlp(nl′p′) electron
with wave vector p(p′) in l(l′) band, by using Fermi’s golden rule. The absorption rate
for light with wave vector k due to the electron transition γek is given by,

γek =
2π

~
∑
ll′p

∣∣〈1l′p+k‖ , 0lp, 0k |He-op| 0l′p+k‖ , 1lp, 1k
〉∣∣2 δ(~ωk −∆E), (4.11)

where ∆E is the energy difference between electronic states. For ~ωk � EF, we have
only intraband transition of electron, therefore the transition is between conduction
band and ∆E = ~vFk‖. By substituting Eq. (4.10) to Eq. (4.11), the absorption rate
for intraband transition is given by,

γe,intra
k =

π

V ωkε0
|1 + rp|2 cos2 θ

(vFe)
2

2

∑
p

(
1 + cos(θp + θp+k)

)
δ(~ωk − ~vFk‖)

=
S

V ωkε0
|1 + rp|2 cos2 θ(vFe)

2δ(~ωk − ~vFk‖)
pF∫

pF−
ωk
vF

pdp

=
S

V ωkε0
|1 + rp|2 cos2 θ(vFe)

2pF
ωk
vF
δ(~ωk − ~vFk‖), (4.12)

where pF is the Fermi wave vector of graphene. The ~ωk−~vFk‖ in the delta function
of Eq. (4.12) cannot be zero for k 6= 0, because ~ωk − ~vFk‖ = ~k(c− vF sin θ), where
c ≈ 102vF. However, if k → 0, the ~ωk − ~vFk‖ approaches zero, thus we can neglect
~vFk‖ and δ(~ωk−~vFk‖) ≈ δ(~ωk). Therefore, we can further calculate the Eq. (4.12),

γe,intra
k =

S

V ωkε0
|1 + rp|2 cos2 θ(vFe)

2pF
ωk
vF
δ(~ωk)

=
S

V ε0
cos2 θ |1 + rp|2

e2EF

~
δ(~ωk) (4.13)
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Eq. (4.13) tells us that the γe,intra
k vanishes if ~ωk 6= 0, or in other words, the intraband

optical excitation of electron is not possible. However, if we introduce the broadening
of δ(~ωk), we will have value of γe,intra

k for ~ωk 6= 0. The δ(~ωk) is expressed as
Lorentzian function, with broadening factor Γ, as follows,

γe,intra
k =

S

V ωkε0
|1 + rp|2 cos2 θ(vFe)

2pF
ωk
vF

1

π

Γ

(~ωk)2 + Γ2

=
S

V ε0
cos2 θ |1 + rp|2

e2EF

π~
Γ

(~ωk)2 + Γ2

=
S

V ε0
cos2 θ |1 + rp|2 Re[σD(ωk + i

Γ

~
)], (4.14)

where EF = ~vFpF and e2EF
π~

Γ
(~ωk)2+Γ2 is nothing but real part of the intraband con-

ductivity in Eq. (2.97) if we substitute ~ω → ~ω + iΓ. The intraband excitation of
electron can only occur if we consider the scattering of electron by impurity or with
phonon, which is represented by Γ. Otherwise, we return to Eq. (4.13) with vanishing
value of γe,intra

k if ~ωk 6= 0.
Here we consider the case where graphene is surrounded by vacuum as shown in

Fig. 3.5(a), the optical absorption probability by electron Ae,intra can be obtained by
dividing γe,intra

k with photon flux,

Ae,intra =
γe,intra
k

c SV cos θ
(4.15)

=
|1 + rp|2

cε0
Re[σD(ωk + i

Γ

~
)] cos θ

=
4Z0 cos θ Re[σD(ωk + iΓ

~ )]∣∣2 + Z0 cos θσD(ωk + iΓ
~ )
∣∣2 , (4.16)

where Z0 ≡ (cε0)−1 = 377 Ω is the impedance of vacuum. Therefore, the optical
absorption by electron is proportional to the real part of conductivity, which conforms
with the common understanding. Equation (4.16) is nothing but the absorption prob-
ability solved by the Maxwell equation that is given by Eq. (2.76), which is plotted
in Fig. 4.2 (a), though the physical process involving electron excitation cannot be
explained if only the electrodynamics description is employed. The peak in Fig. 4.2
(a) can be understood as the excitation of surface plasmon, where the electrons are
excited collectively, which is discussed in the following section.

4.3.1 Absorption due to the surface plasmon

The presence of surface plasmon in graphene is given by the pole of Im 1/εg(ω, q),
where εg(ω, q) is the dielectric function of graphene. The Im 1/εg(ω, q) is given by,

Im
1

εg(ω, q)
= − Im εg(ω, q)

(Re εg(ω, q))2 + (Im εg(ω, q))2
. (4.17)

When we apply the EM wave with the frequency ω and parallel wave vector q to
graphene, if Im εg(ω, q) → 0, then Im 1

εg(ω,q) → δ(Re εg(ω, q)), where we have a
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Figure 4.3 The Im 1/εg(ω, q), Re εg(ω, q), Im εg(ω, q) as a function of (a) wave vector q,
(b) incidence angle θ, (c) frequency ω. For (a) we fix the ω = 0.1445 THz, while for (b) we
fix the q = 0.0477× 104 m−1.

peak if Re εg(ω, q) = 0. Therefore, surface plasmon exists if Re εg(ω, q) = 0 and
Im εg(ω, q)→ 0. These conditions can be understood from Eq. (1.28). The dielectric
function of graphene can be obtained by dividing the left hand side term of Eq. (1.28)
with κ1κ2

κ1ε2+κ2ε1
,

εg(ω, q) = 1 +
iκσD(ω + iΓ

~ )

2ωε0
, (4.18)

where we assume that graphene is surrounded by vacuum and κ =
√
q2 − ω2/c2.

Let us use the case of Fig. 4.2 (a). Figure 4.3 (a) shows that there is a peak of the
Im 1

εg(ω,q) at q ≈ 0.0477 × 104 m−1, where the Re εg(ω, q) = 0 and Im εg(ω, q) ≈ 0.
By using Eq. (4.1), we can convert the parallel wave vector q to incidence angle θ,
which is given in Fig. 4.3 (b). The peak in Fig. 4.3 (a) corresponds to the excitation
of retarded surface plasmon by light incident to graphene with θ ≈ 82.7◦. Therefore,
we can safely say that the absorption peak in Fig. 4.2 (a) comes from the excitation
of retarded surface plasmon. In Fig. 4.3 (c), we plot Im 1

εg(ω,q) as a function of ω
for q = 0.0477 × 104 m−1, where we can see the peak at ω ≈ 0.1445 × 1012 rad s−1.

Fig. 4.3: Fig/epsg.eps
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Since we have scattering of electron Γ = 1 meV, the surface plasmon is damped, which
causes the broadening of Im 1

εg(ω,q) as shown in Figs. 4.3 (a)-(c).
We now turn our discussion to the absorption of light due to the excitation of

surface plasmon. Eq. (4.6) enables us to calculate the excitation rate of surface plasmon
by light. As an example for the theory, we take the case of retarded regime as shown in
Fig (4.2). We assume that graphene is surrounded by vacuum and that light propagates
to graphene at incident angle θ, as shown in Fig. 4.2 (a). We fixed ωk = 144.5 ×
109 rad s−1, which corresponds to the retarded regime. The absorption probability of
light due to the excitation of surface plasmon Asp can be obtained by dividing the γk
of Eq. (4.11) by the photon flux,

Asp =
γk

c SVR cos θ

=
∑
q

|1 + rp|2
α2π

2cε2
0

∣∣∣∣σD(ω + i
Γ

~

)∣∣∣∣2 ωqωk cos θ

× η

π((ωk − ωq)2
+ η2)

δq,k‖ . (4.19)

In Eq. (4.19), we approximate the delta function δ(~ωk − ~ωq) to be a Lorentzian,
with the broadening parameter η. The δq,k‖ implies that for each θ, we have one q,
which is determined by Eq. (4.1). The ωq can be obtained from the peak position
of Im 1

εg(ω,q) . If the ωq matches the ωk, we have a peak of Asp coming from the
δ(~ωk − ~ωq) that corresponds to the surface plasmon excitation.
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Figure 4.4 The optical absorption due to the surface plasmon (Asp) and the total absorption
(Ae,intra)

Figure 4.4 shows the absorption probability of light due to the surface plasmon
Asp based on Eq. (4.19) and the total absorption probability based on Eq. (4.16).
We can see that the Asp peak coincides with the peak in absorption spectrum, which

Fig. 4.4: Fig/asp.eps
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means that the absorption peak in Fig. 4.2 corresponds to the excitation of surface
plasmon. It is noted that in Eq. (4.19), the η = 2.27 × 109 rad s−1 is chosen so that
the magnitude of the Asp peak is equal with the magnitude of Ae,intra peak.

4.3.2 Absorption due to the single particle excitation

Equation (4.16) can be rewritten as follows [76, 75],

Ae,intra =
Z0 cos θ Re[σD(ωk + iΓ

~ )]∣∣1 + Z0

2 cos θσD(ωk + iΓ
~ )
∣∣2 . (4.20)

The physical meaning of Eq. (4.20) can be compared with the polarization function
of interacting electron system Π(q, ω), which is given as follows,

Π(q, ω) =
Π0(q, ω)

1− v(q)Π0(q, ω)
=

Π0(q, ω)

εg(q, ω)
, (4.21)

where Π0(q, ω) and v(q) are polarization function of non-interacting electron system
and Coloumb interaction in q space, respectively. In interacting system, the electons
interact with each other through Coloumb interaction. The imaginary part Π(q, ω)
is the measure of energy dissipation in electron system due to the excitation of the
quasi-particle [76], while the Im Π0(q, ω) measures the dissipation of energy by the
non-interacting electron system, which is only due to the excitation of electron-hole or
we refer it as single particle excitation [76]. In the interacting electron system, there
are not only single particle excitation, but also collective excitation or plasmon, which
comes from the pole of Im 1/εg(q, ω). In interacting system, the Π0(q, ω) is normalized
by the εg(q, ω) to get the polarization function of the system. Hence, the imaginary
part Π(q, ω) gives the energy dissipation through the single particle excitation, but at
certain values of (q, ω), which give the pole of Im 1/εg(q, ω), the energy dissipation
might also comes from the plasmon excitation.
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Figure 4.5 The numerator (a) and denominator (b) of Eq. (4.20). (c) The contribution of
single particle and collective excitation to the total absorption of light.

In analogy of polarization function of interacting system, the Ae,intra is the absorp-
tion of light energy used for excitation of quasi-particle in the electron system. The
numerator of Ae,intra in Eq. (4.20) refers to the Im Π0(q, ω), which is the absorption

Fig. 4.5: Fig/asp2.eps
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graphene

of light in the non-interacting electron system due to the single particle excitation.
The numerator of Ae,intra in Eq. (4.20) is plotted in Fig. 4.5 (a) as a function θ, where
it shows a monotonically decreasing function. The magnitude of the numerator of
Ae,intra is normalized by the denominator of Ae,intra in Eq. (4.20) so that the maxi-
mum magnitude does not exceed 1. We can say that the normalization is due to the
interaction between electrons. The denominator is shown in Fig. 4.5 (b), which is a
monotonically increasing function. The surface plasmon appears if only we consider
the normalization by the denominator of Eq. (4.20), where we can find a peak of
Ae,intra.

Therefore, Ae,intra gives the absorption of light due to the single particle excita-
tion, but at certain θ, the surface plasmon appears which is shown by the pole of Im
1/εg(q, ω) and the electrons are excited collectively. In the case of Fig. 4.2 (a), the
pole appears at θ = 82.7◦ ≡ θsp as shown in Fig. 4.3 (b). At this angle, the numerator
of Ae,intra has very low value compared with other angle, therefore we can neglect the
contribution of single particle excitation to the total absorption Asingle. At θ = θsp,
the main contribution comes from the surface plasmon or Asp. Therefore, the Asingle
can be obtained by subtracting the total absorption Ae,intra with the Asp as shown in
Fig. 4.5 (c). As we see in Fig. 4.5 (c), approaching the θsp, the Asingle drops and reaches
minimum at θsp, in which we can say that the electron is not excited individually, but
collectively as surface plasmon.



Chapter 5

Negative refraction in Weyl semimetal

In this chapter, we discuss the other work done during the doctoral course, but we
do not include it into the main results since the topic is slightly different. In this
chapter, we discuss the unique propagation of TM light within a material called the
Weyl semimetal (WSM). We found that in certain frequency range of incident TM
wave, the wave is refracted negatively within the WSM [88]. This chapter has been
published by Journal of the Physical Society of Japan [88].

5.1 Introduction

In recent years, many researchers have developed artificial structures, called as meta-
materials, to realize negative refraction as was originally proposed by Veselago [89], in
which the light coming to the surface of the materials will be bent with an angle of re-
fraction negative to the normal direction of the surface. Negative refraction requires a
material having both negative electric permittivity and magnetic permeability, which
has not been found in nature so far. Materials supporting negative refraction could
give some interesting applications. For example, superlens proposed by Pendry could
have resolution smaller than the light wave length, in contrast to the normal lens whose
best resolution is the same as the light wave length [90, 91, 92]. However, fabrication
of metamaterials is usually very complicated, involving dielectric photonic crystals or
an array of split ring resonators[92, 93, 94, 95] .

To overcome the difficulties in obtaining negative refraction, in this paper, we pro-
pose that a WSM may also show negative refraction under some certain conditions,
even without having negative magnetic permeability and constructing complicated
structure [88]. The WSM is a three-dimensional material having a pair of Dirac cones
separated in the k space in its energy dispersion shown in Fig. 5.1 (a)[68, 96]. Example
of WSM is phyrochlore (Eu2Ir2O7) [68, 97]. We predict that the light can propagate
through WSM even though the frequency is smaller than plasmon frequency and this
propagation requires the refractive index of the WSM to be negative in order to con-
serve the energy.
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5.2 Model and methods

We can write the electric displacement vector of the WSM as follows [68, 70, 67],

D = ε0εb

(
1−

ω2
p

ω2

)
E +

ie2

4π2~ω
(∇θ)×E, (5.1)

where ωp is the plasmon frequency, εb is the background dielectric constant. Hereafter,
we consider a particular value of the dielectric constant, εb = 13, which was measured
in pyrochlore. The term θ is called the axion angle given by θ = 2(b · r), where
b is a wave vector separating the Weyl nodes [see Figure 5.1(a)] The first term of
Eq. (5.1) is the Drude dielectric function, which is similar to normal metals (NMs).
The appearance of Hall current without external magnetic field is known as anomalous
Hall effect [71, 68] given by the second term of Eq. (5.1). The anomalous Hall current
only depends on the structure of the electron dispersion of WSM represented by θ.
Due to the anomalous Hall effect, the dielectric tensor has non-zero off-diagonal terms,
which can be written as

ε =

 ε1 0 iε2

0 ε1 0
−iε2 0 ε1

 (5.2)

where we assume that b lies in the direction of y, b = bŷ, and that ε1 and ε2 are
expressed by

ε1 = ε0εb

(
1− 1

Ω2

)
, (5.3)

ε2 = ε0εb

(
Ωb
Ω

)
, (5.4)

with Ω = ω/ωp and Ωb = e2b/(2π2ε0εb~ωp) as dimensionless quantities. We take
Ωb = 0.5 as a fixed parameter throughout this paper, otherwise it will be mentioned.
Similar to NMs, in the WSM we have ε1 > 0 (ε1 < 0) if Ω > 1 (Ω < 1).
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Figure 5.1 (a) Schematic of energy dispersion of WSM showing a pair of Dirac cones with
two Weyl nodes represented by dots, separated by the wave vector b. (b) A TM wave coming
to xy surface of WSM at angle θi and transmitted to WSM at angle θt.

Fig. 5.1: Fig/Fig1c.pdf
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In order to calculate the reflection and transmission spectra of a bulk WSM, we
will determine the refractive index of the WSM (nw). Suppose that we have a trans-
verse magnetic (TM) wave incident at angle θi from vacuum to a WSM as shown in
Fig. 5.1(b) where Ei, Er and Et ( Hi, Hr and Ht) are the incident, reflected and
transmitted electric (magnetic) fields, respectively. The transmitted wave propagates
toward positive z direction inside WSM, while the reflected wave propagates toward
negative z direction. Due to the vanishing εxy and εzy, the direction of electric field
inside WSM does not rotate. By using Eq. (5.2), we can write down the equation
D = ε̂E for the TM wave inside the WSM as follows,Dt

x

Dt
y

Dt
z

 =

 ε1 0 iε2

0 ε1 0
−iε2 0 ε1

Etx0
Etz

 (5.5)

where Dt and Et are the displacement and electric fields inside the WSM. From
Maxwell’s equations, we get a differential equation for the EM wave as follows;

∇×∇×Et = −∇2Et +∇
(
∇ ·Et

)
= ω2µ0Dt. (5.6)

Since the solutions of Et and Dt are proportional to exp [iωnw/c (s · r)], where s =
(sin θt, 0, cos θt) is the unit wave vector, we can obtain from Eq. (5.6),

1

µ0

(nw
c

) [
Et − s

(
s ·Et

)]
= Dt. (5.7)

From Eqs. (5.5) and (5.7), we get the following relations,

Etx =
ε1D

t
x − iε2D

t
z

ε2
1 − ε2

2

, and Etz =
iε2D

t
x + ε1D

t
z

ε2
1 − ε2

2

. (5.8)

Inserting Eq. (5.8) to Eq. (5.7), we obtain simultaneous equations of Etx and Etz as
follows: [

A− B−
B+ A+

] [
Etx
Etz

]
= 0, (5.9)

where A± = (1 − s2
x)ε1xszε2 − µ0

(
c
nw

)2 (
ε2

1 − ε2
2

)
and B± =

(
1− s2

x

)
ε2 − sxszε1.

In order to have nontrivial solutions of Et, the determinant of the 2 × 2 matrix in
Eq. (5.9) should vanish:

µ0c
2
(
ε2

1 − ε2
2

)
n4
w

[
−n2

wε1 + c2µ0

(
ε2

1 − ε2
2

)]
= 0. (5.10)

from which, we obtain nw,

nw = ±c
√
µ0 (ε2

1 − ε2
2) /ε1 ≡ n±w , (5.11)

where the n+
w (n−w) solution corresponds to the positive (negative) wave vector inside

the WSM. If we put ε2 = 0 in Eq. (5.11), we can obtain the refractive index of NM.
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Figure 5.2 (a) The refractive index of WSM for TM wave (nw) as a function of Ω for the
positive solution of Eq. (5.11) (n+

w). Solid and dashed lines are the real and imaginary parts
of n+

w, respectively. We use Ωb = 0.5 for the WSM. The plot is divided into four regions.
Inset: The real part of refractive index (n) for the WSM compared with a normal metal
(NM). (b) The refractive index of WSM for TM wave (nw) as a function of Ω for the negative
solution of Eq. (5.11) (n−w). (c) Schematics of EM wave propagations to the WSM for all the
four regions of panel (a) and (b).

In Figs. 5.2(a) and (b) we plot nw as a function of Ω for the positive solution of
Eq. (5.11) [Fig. 5.2(a)] and the negative solution of Eq. (5.11) [Fig. 5.2(b)]. The solid
and the dashed lines correspond to the real and imaginary parts of nw, respectively. It
is noted that n±w at each frequency is either purely real or purely imaginary, because
we neglect the effects of the impurity and scattering of charge in Eq. (5.3). Therefore,
the wave vector ωn±w/c can be either real or imaginary depending on n±w . The real
(imaginary) wave vector represents a propagating (decaying) wave.

From Fig. 5.2(a), it is important to point out that we may have a propagating wave
even at frequencies smaller than plasmon frequency (Ω < 1), in the shaded region II,
which is in contrast with NM where an EM wave can propagate if Ω > 1 [see inset of
Fig. 5.2(a)]. As shown in the inset of Fig. 5.2(a), the refractive indices of WSM and
NM differ only near Ω ' 1. At Ω� 1, they both converge to the value of n ≈ √εb. It
is important to note that the negative solution of Eq. (5.11) (n−w) is assigned to have
propagating wave toward positive z direction in the region II, which will be shown
later. Let us calculate the reflection and transmission spectra. In NM with applied
external magnetic field, the polarization of EM wave undergoes rotation as it enters the
material if the direction of propagation is parallel to the direction of applied external
magnetic field making the wave polarization not linear. In our case of WSM, we choose
the propagation direction of the purely TM wave (Ey = 0) to be perpendicular to the
"effective applied magnetic field", which is in the direction of the b = bŷ. Therefore,
we expect no rotation of polarization and the wave polarization keeps linear as TM
wave. This fact can also be deduced from the vanishing εxy and εzy. As shown in
Fig. 5.1(b), the incident, reflected, and transmitted electric fields Ei, Er and Et can

Fig. 5.2: Fig/Fig2c.eps
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be written as

Ei(z) = (cos θi, 0,− sin θi)E
i
0 exp(ikvzz),

Er(z) = (− cos θi, 0,− sin θi)E
r
0 exp(−ikvzz),

Et(z) = (cos θt, 0,− sin θt)E
t
0 exp(ik±wzz), (5.12)

with kvz = (ω/c) cos θi and k±wz = ω(n±w/c) cos θt. The angles θi and θt are related
each other by the Snell’s law sin θi = n±w sin θt. The magnetic fields in the y direction
can be obtained from the relations Hi,r

y = iω
∫
ε0E

i,r
x dz and Ht

y = iω
∫
Dt
xdz, where

Dt
x = ε1E

t
x + iε2E

t
z is obtained from Eq. (5.5). Then, the magnetic fields can be

written as

Hi(z) =
ωε0

kvz
(0, cos θi, 0)Ei0 exp(ikvzz),

Hr(z) =
ωε0

kvz
(0, cos θi, 0)Er0 exp(−ikvzz),

Ht(z) =
ω

k±wz
(0, ε1 cos θt − iε2 sin θt, 0)Et0

× exp(ik±wzz). (5.13)

After defining the EM fields in both media, we can write down boundary conditions
of the EM wave at incidence surface (z = 0) as follows,

Ei0 cos θi − Er0 cos θi = Et0 cos θt, (5.14)

and
ωε0

kvz

(
Ei0 cos θi + Er0 cos θi

)
=

ω

k±wz

(
ε1E

t
0 cos θt − iε2E

t
0 sin θt

)
, (5.15)

where Eqs. (5.14) and (5.15) describe the continuity for the tangential components
of electric fields and magnetic fields at z = 0, respectively. Reflection coefficient
r = Er0/E

i
0 and transmission coefficient t = Et0/E

i
0 are given by

r = 1− tcos θt
cos θi

, (5.16)

and

t =
2k±wzε0 cos θi

kvz (ε1 cos θt − iε2 sin θt) + k±wzε0 cos θt
. (5.17)

5.3 Results

We are interested in frequency range, in which the EM wave is transmitted not per-
fectly reflected. The interesting frequency ranges are shown as region II (Ω− ≤ Ω ≤ 1)
and region IV ( Ω+ ≤ Ω), where Ω± are frequencies that give nw = 0 [Eqs. (5.3), (5.4),
(5.11)].

Ω± = 1/2

(
±Ωb +

√
4 + Ω2

b

)
. (5.18)
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The reflection coefficient r in Eq. (5.16) can be written as follows,

r =
A−B − iC
A+B − iC

= r1 + ir2, (5.19)

where A = ε1 cos θi cos θt, B = n±wε0 cos2 θt, C = ε2 cos θi sin θi. The reflection proba-
bility can be obtained from R = |r|2 = r2

1 + r2
2, where we define

r1 =
(A+B)(A−B) + C2

(A+B)2 + C2
, (5.20)

r2 =
2CB

(A+B)2 + C2
. (5.21)

R > 1 if either r1 > 1 or r2 > 1. Let us investigate the case of r1. From Eq. (5.20), we
can define the requirement in order to have r1 < 1 giving us physically sound R < 1,
otherwise we will have unphysical R > 1,

|A−B| < |A+B| (5.22)
or∣∣ε1 cos θi − n±wε0 cos θt
∣∣ < ∣∣ε1 cos θi + n±wε0 cos θt

∣∣ . (5.23)

To better visualize Eq. (5.23), we plot |A−B| and |A+B| as a function of Ω.
From Fig. 5.3(a), where n+

w is selected, |A−B| > |A+B| in region II, which does not
fulfill Eq. (5.23) giving the unphysical R > 1. On the other hand, from Fig. 5.3(b),
where n−w is selected, |A−B| < |A+B| in region II, which fulfills Eq. (5.23) and we
can have physically correct R < 1. This negative solution (n−w) should be selected only
for region II, because if we apply n−w to region IV, we have an unphysical R > 1, which
is shown by Fig. 5.3(b), in which |A−B| > |A+B| for region IV. We argue later that
the reason why n−w is selected in region II for having transmitted wave toward positive
z-direction, is due to the energy conservation.

The negative refractive index of WSM in region II will cause the wave refracted
negatively, which means that the refracted angle θt is negative. The refractive index
also means that the wave vector of transmitted wave (k−wz) is negative. The negative
wave vector does not mean that the transmitted wave propagates backward, which
violates the conservation of energy. The direction of propagation is better determined
by the direction of the Poynting vector. The power per unit cross section transmitted
in the direction of z can be expressed as

It = St · ẑ

=
1

2
Re
[
Et(0)×H*t(0)

]
· ẑ

=
c |t|2

∣∣Ei0∣∣2
2n±w

ε1 cos θt, (5.24)

In order to have transmitted power propagate toward positive z direction, Eq. (5.24)
should have a positive value. Since ε1 < 0 in region II [Eq. (5.3)], while |t|2,

∣∣Ei0∣∣2, and
cos θt > 0, n±w has to be negative (n−w) in order to have It > 0. On the other hand, n+

w
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Figure 5.4 The negative refraction in WSM. St is the transmitted Poynting vector. ki,kr,kt
are incident, reflected and transmitted wave vectors, respectively.

is selected in region IV, because ε1 > 0. We refer the transmitted wave as backward
wave because the transmitted wave vector points towards negative z-direction shown
by Fig. 3.6, otherwise it is forward wave. In short, the negative refraction is needed for
the propagation of the EM wave with frequency smaller than the plasmon frequency
to conserve energy. To show the negative refraction more explicitly, we
calculate the tangential component of the transmitted Poynting vector with respect
to the interface. The tangential component of Poynting vector is given by,

St · x̂ = =
1

2
Re
[
Et(0)×H*t(0)

]
· x̂

=
c |t|2

∣∣Ei0∣∣2
2(n±w)2

ε1 sin θi. (5.25)

Because at region II, ε1 < 0 and all other terms are positive, then S · x̂ < 0, which
means that we have negative refraction. Therefore, at region II, we expect the light is
transmitted as backward wave with negative refraction shown by Fig. 5.4.

Fig. 5.3: Fig/Fig4c.eps
Fig. 5.4: Fig/Fig5c.eps
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Using Eq. (5.24), the transmission probability T is given by

T =
It
Ii

=
1

n±w

ε1

ε0

cos θt
cos θi

|t|2 , (5.26)

where Ii = (c/2)
∣∣Ei0∣∣2 ε0 cos θi is the incident intensity. The reflection probability R is

given by R = |r|2. In Figs. 5.5(a) and 5.5(b) we show the R and T spectra for region
II (Ω = 0.85) and region IV (Ω = 3), where the EM wave propagation is allowed.
In the case of region II, we adopt the n−w , while in the case of region IV, we adopt
n+
w . In region IV, the WSM acts as a NM for Ω > 1. Figure 5.5(b) shows R = 0 at
θi = arctan nw, which corresponds to the Brewster angle. In both cases, we found
R + T = 1. In Fig. 5.5(c), we plot the R and T spectra as a function of Ω at a
fixed incident angle θi = 20◦. In region II, we expect that the negative refraction can
take place. In NM, all EM wave is reflected in the region II due to the imaginary
transmitted wave vector. The region II of WSM, the R gradually decreases with
increasing Ω because the transmitted wave vector acquires real value, which signifies
the transmission of the incident wave to WSM. After reaching the minimum of R at
Ω = 0.9, the reflection probability increases gradually up to R = 1 at Ω = 1, above
which the transmitted wave vector has only imaginary value that makes T = 0. It is
important to note that the negative refraction in WSM occurs only in region II, which
has frequency range close to ωp.
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Figure 5.5 The R and T spectra as a function of θi shown as solid and dashed line, respec-
tively, for (a) region II (Ω = 0.85), (b) region IV (Ω = 3). In (a) the negative solution of
nw is used, while in (b) the positive one is used. In both cases, R + T = 1. (c) The R and
T spectra as a function of Ω with fixed θi = 20◦. In shaded regions II and IV, the wave is
transmitted. However, only in region II we expect that negative refraction could occur.
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Chapter 6

Summary

In this thesis, we present the study of electromagnetic (EM) surface wave propagating
on the surface of two-dimensional materials, such as graphene and silicene. As the
first subject, we investigate the existence of transverse electrin (TE) surface wave on
silicene. We found that silicene is theoretically proved to be a versatile platform for
utilizing TE surface wave. We have shown that silicene supports the TE surface wave
propagation and it exhibits more preferable surface wave properties compared with
those of graphene, such as the tunable broadband frequency and smaller confinement
length. The TE surface wave in silicene is tunable by the Fermi energy as well as by
the external electric field. These characteristics originate from the two-dimensional
buckled honeycomb structure.

For the second subject, we study the quantum description of surface plasmon exci-
tation by light in graphene. Surface plasmon can be considered as transverse magnetic
(TM) surface wave. The excitation appears as a peak in the optical absorption spec-
trum, if the resonant conditions for frequency and wave vector are fulfilled. To explain
the necessity of satisfying resonant conditions, we quantize the surface plasmon and
calculate the excitation probability by using Fermi’s golden rule through the surface
plasmon - photon interaction. We show that the wave vector matching is needed to
obtain non zero interaction matrix element and the frequency matching is needed to
have resonant in formulation of Fermi’s golden rule. By using Fermi’s golden rule, we
show that the excitation of surface plasmon will create a peak in absorption spectrum.
We also explain that the absorption of light comes from the single particle excitation of
electron. However, when the resonant conditions are fulfilled, the electrons are excited
collectively known as surface plasmon.
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Appendix A

The electron-photon interaction

A.1 Hamiltonian of electron-photon interaction near K-point

In this section, we will derive the Hamiltonian of electron-photon interaction near K-
point. The momentum of electron can be expressed by ~p = −i~∇+ eA, where A is
the vector potential of photon. It is noted that p is the wave vector of an electron,
while ~p is the momentum. The total Hamiltonian of an electron in the presence of
A can be expressed by,

HK =
∑
j

~vFσ · pj

=
∑
j

vFσ · (−i~∇j) + vFσ · eA(rj , t), (A.1)

where j is the index of electron. The second term of Eq. (A.1) is called the perturbation
Hamiltonian of electron-photon interaction, which is given in Eq. (4.8). Since the total
Hamiltonian is linear to p, we do not have the quadratic term of H, which appears
for H = ~2(k + eA)2/2m.

A.2 Absorption probability of electron due to the interband
transition

The perturbation Hamiltonian of electron-photon interaction near the K point can be
written in second quantization form as,

He-op =
∑
ll′pp′

〈l′p′ |evFσ ·A| lp〉 c†l′p′clp, , (A.2)

where the c†lp and clp are the creation and annihilation operators of electron in state
|lp〉, respectively. l = +1(−1) denotes the conduction (valence) band and p(p′) denotes
the wave vector of electron measured from theK point. 〈l′p′ |evF−→σ ·A| lp〉 in Eq. (A.2)
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can be calculated as follows,

〈l′p′ |evFσ ·A| lp〉 =
∑
k

evF
2

√
~

2V ωkε0
(1 + rp)

[
1 l′e−iθp′

]
e−iωkt

×
[

0 bk cos θ
bk cos θ 0

] [
1

leiθp

] ∫
e−ip

′·reik·reip·rδ(z)dr

=
∑
k

evF
2

√
~

2V ωkε0

[
leiθp + l′e−iθp′

]
(1 + rp)

×
∫
ei(p+k‖−p′)·rdxdy

∫
δ(z)eikzzdze−iωkt

=
∑
k

evF
2

√
~

2V ωkε0
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where we assume that the eigen vector |lp〉 = 1√
2
(1 leiθk)t is normalized and graphene

is purely two-dimensional system (we put delta function δ(z)). Equation (A.2) can be
written as,

He-op =
∑
ll′pk

(1 + rp)
evF
2

√
~

2V ωkε0
cos θ

[
leiθp + l′e

−iθp+k‖

]
c†l′p+k‖clpbke

−iωkt.

In interband transition, we consider vertical transition of k (k‖ = 0). Therefore, the
absorption rate is given by the Fermi golden rule as follows,

γe,inter
k =

2π

~
∑
ll′p

|〈1+1p, 0−1p, 0k |He-op| 0+1p, 1−1p, 1k〉|2 δ(~ωk − 2~vFp)
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V ωkε0
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2
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2

∫
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S

V ε0
|1 + rp|2 cos2 θ

e2

4~
, (A.4)

The optical absorption probability for graphene surrounded by vacuum Ae,inter can
be obtained by dividing γe,inter

k with photon flux,

Ae,inter =
γe,inter
k

c SV cos θ
(A.5)

=
|1 + rp|2

cε0
Re[σE(ωk)] cos θ

=
4Z0 cos θ Re[σE(ωk)]

|2 + Z0 cos θσE(ωk)|2
, (A.6)
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where Z0 ≡ (cε0)−1 = 377 Ω is the impedance of vacuum and Re[σE(ωk)] = e2/4~ is
the real part of interband conductivity. For the normal incident of light, we have

Ae,inter =
4Z0 Re[σE(ωk)]

|2 + Z0σE(ωk)|2
≈ πα = 2.3%, (A.7)

where α = e2Z0/4π~ is the fine structure constant. We return to the well-known
interband absorption probability of graphene, which is 2.3%. Equation (A.6) is similar
to Eq. (4.16), with the intraband conductivity replaced by interband conductivity.





Appendix B

Velocity matrix

In this chapter, we will derive the velocity matrix given by Eq. 3.3. The velocity
matrix v̂(k) of Eq. 3.3 is the velocity of electron in band representation defined by
v̂(k) = U−1 (∂Hςη(k)/~∂k) U ,where U is the unitary matrix which diagonalize Hςη.
∂Hςη(k)/~∂k is the velocity of electron in the representation of atomic site, which is
given by,

∂Hςη(k)
~∂k = vF

[
0 x̂− ŷiη

x̂ + ŷiη 0

]
. (B.1)

The U matrix can be obtained by solving for the eigenvector of Hςη. The U matrix is
given as follows,

U =

[
~vFk

√
1

2εςη(εςη+ 1
2 ∆ςη)

~vFk
√

1
2εςη(εςη− 1

2 ∆ςη)

eiηθ
√

εςη+ 1
2 ∆ςη

2εςη
−eiηθ

√
εςη− 1

2 ∆ςη

2εςη

]
, (B.2)

where εςη =
√

(~vFk)2 + 1
4∆2

ςη. By using Eqs. (B.1) and (B.2), we obtain the v̂(k) as
follows,

v̂(k) =
~v2

Fk
εςη

[
x̂ cos θ + ŷη sin θ −Z−{x̂(−Γ− + A−)− ŷiη(B− − I−)}

Z+{x̂(Γ+ + A+)− ŷiη(B+ + I+)} −x̂ cos θ − ŷη sin θ

]
,

(B.3)

where we define β± = εςη ± 1/2∆ςη, Z± = (β±/β∓)
1/2, Γ± = ∆ςη cos θ/β±, A± =

i2εςη sin θ/β±, B± = 2εςη cos θ/β±, and I± = i2∆ςη sin θ/β±. Here θ is the angle
between k and kx. Eq. (B.3) is Eq. (3.3) of the main text.
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Appendix C

Calculation program

Most of the calculation in this thesis was done analytically and the results were plotted
using plotting software. But there are some numerical calculations, which were done by
using Mathematica, such as the calculation of optical conductivity of silicene with non-
zero temperature and the exact solution of dispersion of the surface plasmon. Here,
we give the location of the program, which can be found in the FLEX workstation.

Optical conductivity of silicene with T 6= 0

This program calculates the optical conductivty of silicene with non-zero tempera-
ture. This program uses the built in function of numerical integration in Mathematica
(NIntegrate).This program also calculates the propagation length of TE or TM sur-
face wave after calculation of optical conductivity.

Program location: ~shoufie/for/mathematica/silicenesigma.nb
Inputs:

1. EF: The Fermi energy in Joule.

2. T: The temperature in Kelvin.

3. ∆z: The energy gap due to the electric field in unit of ∆SO.

4. Γ: The scattering of electron in Joule.

Outputs:

1. opt.dat: The optical conductivity

2. prop.dat: The propagation length

The dispersion of surface plasmon

This program calculates the dispersion of surface plasmon in graphene surrounded by
a medium with dielectric constant ε. This Mathematica program solves the Eq. (2.96)
for frequency as a function of wave vector numerically using NSolve.

Program location: ~shoufie/for/mathematica/plsd.nb
Inputs:
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1. EF: The Fermi energy in Joule.

2. ε: The dielectric constant of surrounding medium.

Outputs:

1. plsd.dat: The dispersion of surface plasmon.
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