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Chapter 1

Introduction

Spectroscopic properties of rare earth ions in III-V semiconductors are

one of the subjects of the absorbing interests for understanding elec-

tronic states of strongly correlated systems and opto-electronic device

applications. In 1980, V. A. Kasatkin succeeded for the �rst time in ob-

serving the photoluminescence spectra of the doped rare earth ion, Yb,

in GaP [1]. Since then, many researchers have devoted themselves pro-

ducing a variety of rare-earth-doped semiconductors which show sharp

luminescence spectra.

Rare earth ions as impurities are ionized to trivalent ions in semi-

conductors. Parts of the rare earth ions are considered to be the centers

of the photoemissions. The photoemission spectra due to 4f -4f intra

atomic transition are observed by many techniques, that is, photolu-

minescence (PL) [2, 3, 4, 5, 6, 7], cathode-ray luminescence [8], and

electroluminescence (EL) experiments [9, 10, 11]. In luminescence ex-

periments, rare earth ions in semiconductors provide deep impurity

levels in the energy gap of the host materials. The electronic structure

of rare earth ions in semiconductors is one of the attractive problems in
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4 CHAPTER 1. INTRODUCTION

semiconductor physics. It is necessary to develop a theoretical approach

for systematic analysis the luminescence spectra.

The 4f orbitals of a rare earth atom are screened by the outer

occupied orbitals, 5s and 5p. Even when a rare earth atom is ionized

to a trivalent ion in III-V semiconductors, the 4f orbitals are very

weakly a�ected by the crystal �eld. Thus the shape of the 4f related

photoluminescence spectrum is very sharp, re
ecting the atomic nature.

In fact, the wavelength of the peak intensity does not depend much on

the kinds of host semiconductors [12].

Since the 4f orbitals are of partially occupied open-shell structure,

the complicated multiplet terms of 4f electrons are formed. That is,

strong Coulomb interactions (� 10 eV) between 4f electrons produce

the multiplet terms denoted by 2S+1
L, as is known Russell-Saunders

coupling. Here L and S are the total orbital and spin angular momenta,

respectively. Further, spin-orbit (SO) interactions ( �1 eV) split the

multiplet terms into some levels denoted by 2S+1
LJ , in which only the

total angular momentum J preserves in the presence of SO interaction.

Furthermore, the multiplet terms denoted with 2S+1
LJ are splitted into

�ne structures by the crystal �eld due to ligand semiconductor atoms

(� 0.1 eV). Thus the hierarchic interactions are working on the 4f

electrons in the system.

In order to explain the electronic structure of 4f electrons, some the-

oretical approaches have been proposed for a rare earth atom and a clus-

ter. Among them, the DV-X� is one of the useful theoretical method for

the analysis of one-electronic structures of clusters[13]. The calculated

results can be applied to x-ray photoemission spectra (XPS) [14, 15].

The XPS spectra corresponding to the transitions of 4f electrons are
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assigned to the energy gaps between the one-electron orbital energies

[14, 15]. But the picture of one-electron states cannot be applied to the

present problem of the photoluminescence spectra of rare earth ions

because the sharp PL spectra comes from the intra-excitations in the

multi-electronic structures of 4f electrons. The essential character of

luminescence spectra is relevant to the existence of the multiplet struc-

tures which result from the open-shell con�gurations of 4f electrons.

Since the 4f orbitals are localized in semiconductors, the multiplet

structures are e�ective even in the semiconductors.

The purpose of the present thesis is (1) to develop an ab initio

calculation of the multiplet terms for 4f electrons, (2) to investigate

hierarchic interactions of Coulomb repulsion, SO interaction and crystal

�eld e�ect for rare earth ions in semiconductors and (3) to clarify the

mechanism of luminescence.

Experimentally, four rare earth ions, Yb3+, Er3+, Nd3+ and Tm3+

in semiconductors have been intensively investigated. Among these

ions, the Er3+ ion in III-V semiconductors is known to show a strong

and sharp photoluminescence whose peak wavelength (1.54�m) corre-

sponds to that of the minimum energy loss in optical �ber cables. As

for host III-V semiconductors, InP, GaAs and GaP are commonly used

by many researchers. Trivalent atoms in the III-V semiconductors are

substituted with trivalent lanthanide ions. There are some methods

to produce rare-earth-ion-doped semiconductors, i.e. di�usion [16, 17],

liquid phase epitaxy (LPE) [2, 4, 18], ion implantation [3, 7, 19, 20],

metal organic chemical vapor deposition (MOCVD) [2, 21, 22, 23] and

molecular beam epitaxy (MBE) [6, 24]. Among a variety of combina-

tions of rare earth ions and host semiconductors, Yb incorporated in
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InP has been extensively investigated because the multiplet structure of

Yb is simple and the intensity of the luminescence is relatively strong.

The ESR experiments shows that the position of Yb3+ doped in the

crystal InP is in place of In3+ [5, 20].

In order to explain the photoemission spectra of 4f electrons, a the-

oretical approach by perturbation approximation has been successfully

performed by Judd and Ofelt in 1960's [25, 26]. Since SO interaction

and crystal �eld e�ects are relatively small compared with Coulomb in-

teractions, these e�ects can be treated as a perturbation in an e�ective

Hamiltonian with use of adjustable parameters. The calculated results

are �tted to the optical spectra. The Judd-Ofelt theory has extensively

been applied to spectrum analyses of optical measurements for chemi-

cal trends of rare earth ions in ionic crystal LaCl3. In their theory the

multi-con�gurations for 4f electrons include the excitations to 5d and

6s orbitals. Further, the intermediate coupling of spin-orbit interac-

tions is much e�ective for multiplets of rare earth ions. This e�ect is

included in the second order perturbation. The enormously large num-

ber of observed multiplet terms could be �tted to the multi-electronic

excited states in the region � 50,000 cm�1 by considering these excita-

tions. However, the various parameters are empirically determined so

as to reproduce the multiplet energies, i.e. spin-orbit constants, coef-

�cients of perturbed wave functions between 4f and its outer orbitals,

crystal �eld parameters and so on. Thus it is di�cult to explain the

physical meaning of the obtained parameters from the microscopic the-

ory for the electronic structure, and this method can not be applied to

unknown materials.

With a rapid progress on computational and theoretical methods,
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non-empirical approaches of computational physics and chemistry have

been developed. Hemstreet calculated the one-electron energy levels of

Yb3+ in InP by the relativistic DV-X� cluster calculation [27]. The

paper discussed the relationship between the charge distribution and

the 4f energy levels of Yb3+. The calculated results show that the

ionicity of an Yb ion in InP is between Yb2+ (4f14) and Yb3+ (4f 13)

in the ground state. Although the total amount of charge in the 4f -

shell increases from 13.60 to 13.80 upon ionization, the total electronic

charge of Yb impurity changes only 68.90 to 68.93. (It is noted here that

the atomic number of Yb is 70.) This fact indicates that the valence

electrons of the host redistribute themselves away from the impurity

so as to retain local charge \neutrality" of the impurity Yb. In this

way, the DV-X� method has shown that the interactions between the

4f electrons and the valence electrons are not negligible.

So far the ab initio calculation for obtaining the multiplets of the

4f electron systems have not been performed until recently [28]. Espe-

cially, spin-orbit (SO) interactions for 4f electrons and the crystal �eld

e�ects have not been taken into account simultaneously in ab initio

calculations of clusters. As for atomic calculations, SO splitting can

be obtained by numerical Hartree-Fock equations and the calculated

results are tabulated in the literatures [29]. But it is di�cult to apply

this method to clusters containing heavy atoms since it is beyond the

limitations of computations with the numerical basis sets. In an ab

initio calculation, Gaussian basis sets are widely used for the practi-

cal reason that the integrations of electron-electron interactions can be

obtained analytically.

In the present thesis, we calculated multiplet terms of the strongly
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correlated 4f electrons of trivalent lanthanide ions taking into consid-

eration SO interaction and weak covalent crystal �eld e�ect. We es-

pecially investigate the role of the contracted Gaussian basis functions

of 4f orbitals on a �rst principle calculation. In order to calculate the

multiplet terms of rare earth ions doped in crystals semiconductors, SO

con�guration interaction (SOCI) calculations have been performed for

the six lanthanide ions, Pr3+, Pm3+, Eu3+, Tb3+, Ho3+, Tm3+ and a

(TmP4)
3+ cluster. In the SCF and CI calculations for the six ions, we

investigate the relationship between the contractions of the Gaussian

basis sets and the obtained multiplet energies. And we present suitable

contractions of the 4f basis functions. Since a selection of Gaussian ba-

sis sets is one of the most important problem in a ab initio method, the

present picture of the contractions of the 4f radial functions is mean-

ingful. We will show that the results of the SOCI calculations with use

of our Gaussian basis sets reproduce the multiplet energies observed in

the experiments.

Recently the 4f -related PL spectra of Tm3+ ions in InP have been

observed [12]. The wavelength of the peak of 4f -4f transition is 1.23

�m (� 8100 cm�1) which is assigned to the transition of the multiplets,

3
H5 !

3
H6. The shape of the spectrum is sharp, showing that the

Tm3+ portion has a su�ciently atomic nature even in InP. However,

the crystal �eld e�ect can not be neglected as it lowers the spatial

symmetries of the 4f electrons. Tm3+ is located at the tetrahedral site

surrounded by four P atoms, assuming that Tm3+ is substituted for

In3+. The spatial symmetry of the 4f electrons is the tetrahedral point

group, Td. We include the crystal �eld in a (TmP4)
3+ cluster. Main

results of the tetrahedral crystal �eld e�ect on the SO multiplet levels
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of 4f electrons is presented in this thesis.

Finally, let us discuss the relativistic e�ect of rare earth ions. The

relativistic e�ect is important for the inner core electrons of heavy rare

earth ions since the kinetic energy of a core electron is close to the rest

energy of an electron. The relativistic e�ect is included in so-called

e�ective nuclear charge in the spin-orbit Hamiltonian for 4f electrons

of the trivalent lanthanide ions. The e�ective nuclear charges were used

as adjustable parameters for reproducing experimentally observed spin-

orbit splittings. In the present thesis, we propose the non-empirical

method for calculating e�ective nuclear charges for the �rst time by

solving atomic Dirac-Slater equations. We will show that the present

method for obtaining the e�ective nuclear charges is consistent with

the spin-orbit CI calculations for the 4f electrons.

In the computations, we use library programs `COLMBS' at Com-

puter Center, Institute for Molecular Science, Japan. The original

COLUMBUS [30] are modi�ed to introduce the SO interactions in

the spin-dependent unitary group direct CI algorithm [31]. Further

we incorporate open-shell energy coe�cients which are suitable for the

present purpose. In the ab initio method we can perform CI calcula-

tions with considering SO and crystal �eld e�ects simultaneously. It is

stressed that the library, COLMBS, is applied for the �rst time to the

SOCI calculations of 4f electrons in the present thesis and that many

modi�cations of COLMBS have been done for the application to 4f

electrons in the collaboration with Satoshi Yabushita.

The organization of the thesis is as follows. In chapter 2, we review

the backgrounds for the present thesis. In chapter 3, the methods of

calculation are presented. The procedures of SCF and SOCI calculation



10 CHAPTER 1. INTRODUCTION

are explained. In order to investigate the SO formula adopted in ab ini-

tio calculations more precisely, we calculate the e�ective nuclear charge

for 4f electrons of rare earth ions by solving Dirac-Slater equation. In

chapter 4, the calculated results for the multiplets of some trivalent ions

and a cluster are shown. We discuss the relationship between e�ective

nuclear charge and multiplet energies. Finally, in chapter 5, conclusions

for the present thesis are given.



Chapter 2

Backgrounds

In this chapter, we brie
y review the history of work on the lumines-

cence of rare earth ions. The basic terminology and main results of

experiments are reviewed in 2.1. Reviews of other work on ab initio

calculations for f electrons are given in 2.2.

2.1 Luminescence spectra of rare earth

ions

2.1.1 Basic theory of multiplet terms

In this section, we summarize the basic theory of calculating multi-

plet structures of rare earth ions. Further we explain the luminescence

spectra quantitatively with use of the terminology.

The 4f orbitals have the angular momentum l = 3 in the spherical

symmetric potentials and they are degenerated without any other in-

teractions on the 4f electrons. The 4f orbitals consist of seven orbitals

which can be speci�ed by the z-components of the angular momentum

from lz = �3 to 3. Thus 14 electrons can occupy the 4f spin-orbitals.

11
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If n electrons are occupied in the 4f sub-shell, the number of possible

con�gurations is given by nC14 =
14!

n!(14� n)!
. These con�gurations can

not be equivalent in the existence of Coulomb interactions between 4f

electrons, and depend on L and S. Here the norm of the total orbital-

angular momentum, L, and of the total spin-angular momentum, S,

for the 4f electrons are de�ned as

L = jLj and S = jSj;

L =
nX
i

li and S =
nX
i

si;

(2:1)

where li and si are the angular and spin-angular momentum for i-th

electron, respectively. We write the Hamiltonian for a free ion,

H = �
�h2

2m

nX
i

�i �

nX
i

Ze
2

ri

+
nX
i>j

e
2

jri � rj j
+ �L � S; (2:2)

where � is a spin-orbit constant. The �rst and the second terms of (2.2)

represent kinetic and potential energies for the i-th electron, respec-

tively. The third and the forth terms represent Coulomb and spin-orbit

interactions, respectively. L and S are preserved here if we neglect

the spin-orbit interaction. The multiplet terms split by Coulomb in-

teraction can be denoted by 2S+1
L, which is called Russell-Saunders

coupling. Each of the multiplets denoted by 2S+1
L are degenerate in

(2S + 1)(2L + 1) -fold. In Table 2.1, the appearances of the multiplet

terms for the 4fn con�gurations are listed.

When we consider spin-orbit interactions, the total angular momen-

tum J = L+ S only commutes with the above Hamiltonian. Thus, the

total angular momentum J preserves in a free atom and the multiplet

terms can be represented by 2S+1
LJ . The degeneracy of

2S+1
LJ is 2J+1.
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The multi-electron wavefunctions under the spin-orbit coupling are no

longer pure Russell-Saunders wavefunctions speci�ed by S and L, but

a linear combination of the wavefunctions with the same total angular

momentum J . For example, the many-electron wavefunction for the

multiplets of Er3+ ion (n=11), �(J = 15

2
), is expressed as follows [32],

�(J =
15

2
) = C1�(

4
I 15

2
) + C2�(

2
K 15

2
) + C3�(

2
L 15

2
); (2:3)

where �(2S+1L 15
2
) is the wavefunction of a pure Russell-Saunders state

with L = L; S = S; J = 15

2
. The coe�cients C1; C2; C3 are deter-

mined by diagonalization of Hamiltonian with the basis functions of

�
�(2S+1LJ) which corresponds to each con�guration speci�ed by �.

This diagonalization is called con�guration interaction (CI) calculation

when we calculated the energy matrix elements not only those of one-

electron energies but also within two-electron interactions. Especially,

the coupling of con�gurations with the same J by spin-orbit interaction

is called intermediate coupling.

The ground state 2S+1
LJ for an atom is characterized by Hund's

rule as follows, (1) the maximum value of the total spin S allowed by

the exclusion principle, (2) the maximum value of the orbital angular

momentum L consistent with S, (3) the value of J is jL� Sj when the

shell is less than half �lled and to L + S when more than half �lled.

According to Hund's rule, the multiplet terms for the ground state of

rare earth neutral atoms and trivalent ions are listed in Table 2.2 as

well as their con�gurations.

The crystal �eld splittings are observed when rare earth atoms are

in solids. In Fig. 2.1, the multiplet terms observed in LaCl3 are shown

[33]. The observed energy levels are measured in the unit of cm�1 from
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Table 2.1: The multiplet terms for the con�gurations 4fn. The char-

acters S; P;D; F;G;H; I;K;L;M;N;O; P;Q denote L=0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14 states, respectively.

f
1,f 13 2

F

f
2,f 12 1

SDGI
3
PFH

f
3,f 11 2

PDFGHIKL
4
SDFGI

f
4,f 10 1

SDFGHIKLN
3
PDFGHIKLM

5
SDFGI

f
5,f 9 2

PDFGHIKLMNO
4
SPDFGHIKLM

6
PFH

f
6,f 8 1

SPDFGHIKLMNQ
3
PDFGHIKLMNO

5
SPDFGHIKL

7
F

f
7 2

SPDFGHIKLMNOQ
4
SPDFGHIKLMN

6
PDFGHI

8
S

Table 2.2: The multiplet terms for the ground states of rare earth ions

and atoms.
Ion Con�guration Ground state Atom Con�guration Ground state

Ce3+ 4f15s2p6 2
F 5

2
Ce 4f 25s2p66s2 3

H4

Pr3+ 4f25s2p6 3
H4 Pr 4f 35s2p66s2 4

I 9
2

Nd3+ 4f35s2p6 4
I 9
2

Nd 4f 45s2p66s2 5
I4

Pm3+ 4f45s2p6 5
I4 Pm 4f55s2p66s2 6

H 5
2

Sm3+ 4f55s2p6 6
H 5

2
Sm 4f 65s2p66s2 7

F0

Eu3+ 4f65s2p6 7
F0 Eu 4f75s2p66s2 8

S 7
2

Gd3+ 4f75s2p6 8
S 7

2
Gd 4f 75s2p6d16s2 9

D

Tb3+ 4f85s2p6 7
F6 Tb 4f85s2p6d16s2 8

H

Dy3+ 4f95s2p6 6
H 15

2
Dy 4f105s2p66s2 5

I8

Ho3+ 4f 105s2p6 5
I8 Ho 4f115s2p66s2 4

I 15
2

Er3+ 4f 115s2p6 4
I 15

2
Er 4f 125s2p66s2 3

H6

Tm3+ 4f 125s2p6 3
H6 Tm 4f135s2p66s2 2

F 7
2

Yb3+ 4f 135s2p6 2
F 7

2
Yb 4f 145s2p66s2 1

S0
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Figure 2.1: Observed energy levels of the trivalent rare earth ions [33].
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the ground states of the multiplets.

2.1.2 EL and PL experiments

The excitation mechanism of 4f electrons is discussed by compar-

ing electroluminescence with photoluminescence experiments. The ob-

served electroluminescence (EL) and photoluminescence (PL) spectra

of Er doped InP are shown in Fig. 2.2 and Fig. 2.3, respectively

[9, 10, 11]. The luminescence at 1.54 �m corresponds to the transi-

tion from the �rst excited state 4
I 13

2
to the ground state 4

I 15
2
of Er3+

ions. The 0.9 �m luminescence, which can be observed only in EL ex-

periments, is assigned to the transition from the second excited state

4
I 11

2
to the ground state 4

I 15
2
. A schematic view of the luminescence

transitions for Er3+ is shown in Fig. 2.4.

The EL spectra depend on the applied voltage. In Fig. 2.2, we

compare EL spectra at 77 K (a) with that at 300 K (b). The broad

peak near 1.2 �m, which is observed at 77 K, disappears at 300 K.

It is because non-radiative transitions accompanied with phonons are

dominant at high temperature. The broad peak comes from transitions

in the host semiconductor. On the other hand, the sharp spectra at 0.9

and 1.54 �m can be observed even at 300 K, though the intensities are

reduced by about a half. The luminescence spectra at 0.9 and 1.54 �m

do not depend on temperature compared with the broad peak. Thus,

the sharp spectra are considered to correspond to the intra-transitions

of 4f electrons.

As for the PL spectra, the sharp luminescence lines are observed

with the broad line of semiconductor, too, at low temperature of 77 K

as is shown in Fig 2.3. On the other hand, at room
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Figure 2.2: EL spectra at 77 K (a) and 300 K (b) [9].
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Figure 2.3: PL spectra at 77 K [9].
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Figure 2.4: Schematic multiplet structures of Er3+.
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temperature 300 K, both of the sharp and broad peak spectra dis-

appear simultaneously. This shows that the sharp spectra are consid-

ered to be occurred by the energy transitions from the host InP to

4f electrons due to the recombinations of electron-hole pairs in the

semiconductor.

Figure 2.5: The L-V spectra [9].

Further, the relation between the electro-luminescence intensity and

the applied voltage (L-V) in the EL experiment is shown in Fig. 2.5.
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The 1.54 �m luminescence of 4I 13
2
!

4
I 15

2
begins rapidly at 7 V and the

0.9 �m luminescence begins at 10 V. The ratio of the two thresholds

voltage is nearly equal to the ratio of the peak energies of the two mul-

tiplet terms. From the results of Fig. 2.2 and Fig. 2.5, they concluded

that the electroluminescence spectra are caused by the direct excita-

tion of 4f electrons by free electrons. Thus, the excitation mechanisms

of PL and EL are considered to be di�erent, though 4f electrons are

excited in both experiments.

2.2 Review of ab initio calculations for f-

electrons

Next, we survey ab initio calculations especially for f -electrons which

have been developed in the history of quantum chemistry. Ab initio

calculations are useful to analyze electronic structure because of the

excellent reliability of the calculations without any arti�cial parame-

ters. They have been applied to the calculations of multiplets for many

clusters or molecules. However, reports for 4f electrons by ab initio

methods are not so many since ab initio calculations for 4f electrons

exceeds the allowance of facility of computations. In recent years, a

rapid progress of computations and theoretical methods has enabled us

to perform ab initio calculations for a cluster containing a heavy rare

earth atom [28].
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2.2.1 Quasi-relativistic DV-X� andMS-X�meth-

ods

At an early stage, theoretical investigations for the electronic struc-

ture of f -electrons were performed by the one-component relativistic

discrete variational (DV) X�method [34] and the non-relativistic multi-

ple scattering (MS) X� method with relativistic corrections [35]. These

methods have been applied to the molecule of UF6.

The formulation of the relativistic DVX� method is based on the

Dirac equation with a X� potential within local density approximation

(LDA). The Dirac's Hamiltonian to be solved is,

H = c�p+ �mc
2 + V (r); (2:4)

where, c is the velocity of light and p is the momentum operator. The

4 � 4 dimensional matrices �k and � are de�ned by,

�k =

 
0 �k

�k 0

!
; � =

 
I 0

0 �I

!
; (k = x; y; z) (2:5)

where �k is the Pauli's matrices and I is the two-dimensional unit ma-

trix. The potential V(r) is a sum of the Coulomb direct and exchange-

correlation potentials, in which a X� potential is adopted as the exchange-

correlation potential.

For cluster calculations, the wavefunctions have a form of an linear

combination atomic orbital (LCAO). The relativistic wavefunctions for

the Dirac's Hamiltonian have four components corresponding to the

matrix elements in eq. (2.4). The atomic orbitals (AO's) are obtained

by solving the atomic Dirac-Slater equation for each atom. Since the

fully relativistic DVX�method is not easy to solve the four components
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of eigenfunctions for clusters, a quasi-relativistic DVX� method is pre-

sented [34], in which non-relativistic wavefunctions are used and the

quasi-relativistic one-electron energies are obtained by adding the rela-

tivistic corrections of mass-velocity, Darwin and SO interaction terms.

In the scattered wave MSX� method, the molecular orbitals (MO's)

can be roughly regarded as having an LCAO form but the component

AO's are truncated at the respective mu�n-tin sphere boundaries. The

AO's are joined together by approximate free-electron type solutions be-

tween the sphere [35]. The relativistic corrections (mass-velocity and

Darwin terms) are added to the non-relativistic Hamiltonian. Level

shifts of the one-electron orbitals due to the relativistic corrections are

showed. As a result, the one-electron energy gap between the highest

occupied molecular orbital (HOMO) and the lowest occupied molec-

ular orbital (LUMO) became wider by the SO e�ect. The calculated

one-electron binding energies agree well with the photo-ionization spec-

trum which corresponds to the excitations from 2p orbitals of 
uorine

atoms to unoccupied 5f orbitals of uranium. There is an overall agree-

ment between the calculated one-electron transitions and the absorp-

tion spectrum and this shows that the relativistic e�ects are important

for clusters containing heavy atoms.

The fully relativistic self-consistent Dirac-Slater (DS) model, in

which an exchange-correlation interaction is considered in the X� po-

tential within the local density approximation (LDA), has been used

to calculate one-electron energy levels and charge distributions for UF6

[34]. In the paper, the ionicity of 
uorine was calculated by Mulliken's

gross population analysis for the ground state of UF6. From the cal-

culated results of the one-electron energy and charge distribution, they
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concluded that a free ion basis was not so good as an atomic basis

in representing the ground state MO's [34]. Further they performed

self-consistent \transition-state" calculations of the intermediate con-

�gurations to determine the transition type of the component (f; p; d)

for the charge transfer transitions of UF6. Experimental observed opti-

cal and ionization values are interpreted in the theoretical predictions

of electronic spectra with a reasonable success.

When we discuss the hybridized chemical bonding structures of 4f

orbitals with other atoms, the relativistic e�ect is not always important.

The methods based on non-relativistic formula have been successful as

follows. A non-relativistic discrete variational X� (DV-X�) method is

applied to rare earth oxides [14, 15]. Calculated one-electron MO's for

chemical trends of rare earth oxides well explain XPS spectra which

are in the order of several tenths of eV, corresponding to the excitation

from 4f to other orbitals of oxygen. The application of non-relativistic

DVX� cluster method to rare earth ions (Er3+ and Yb3+) in semicon-

ductors (InP, GaP and GaAs) was performed [36] by R. Saito and T.

Kimura. They showed the rare earth impurity acceptor levels in the

energy gaps of host semiconductors.

2.2.2 E�ective core potential method

The ab initio calculations for f electrons employing Gaussian basis

sets, relativistic e�ective core potentials and an e�ective spin-orbit op-

erator have been carried out to characterize the valence charge transfer

electronic excitations in UF6 [37].

In the ab initio Hartree-Fock method the exchange non-local inte-

gral is explicitly evaluated and the self-energy of an electron is auto-
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matically excluded in the exchange term. Thus the exchange potential

has a correct form of N � 1 body operator. On the other hand, X�

approach employs the local density (�
1
3 (r) ) exchange approximation,

where �(r) is the charge density at the position r for N electron system,

and the self-energy for an electron can not be excluded in the exchange

term. Thus, the local density potential has a form of N body operator.

In the case of electronic structure of crystals, the di�erence between

N � 1 and N is not so important since the wavefunction is delocal-

ized. On the other hand, in the case of the localized 4f electrons, the

self-energy correction may be large.

In the paper [37], the dipole-allowed or dipole-forbidden states are

calculated using many-electrons CI wave-functions in the presence of

spin-orbit coupling in order to explain the mechanism of charge trans-

fer electronic transition. The observed spectra are assigned to the cal-

culated dipole-allowed or dipole-forbidden excitations between many-

electrons orbitals.

A Hartree-Fock (HF) equation for all electrons is theoretically de-

rived from a Hamiltonian for many electrons by variation principle. HF

equation has been developed in quantum chemistry and has given suc-

cessfully reasonable results. However, the SCF calculations for a large

number of electrons take too much computational time. In order to

solve the time problem, a useful method using a e�ective core potential

(or pseudo potentials) is proposed and is described bellow.

The e�ective core potential plays an important role for both the

economical and reliable calculations. The concept of a e�ective core

potential is to introduce the e�ects of core electrons in the potential

formula. The aim of this method is to reduce computations without
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considering the core electrons explicitly in SCF calculations. In the

study of the electronic structures, valence electrons mainly contribute

to the chemical bonding of system. Thus, the valence electrons should

be considered as explicitly as possible in �rst principle method. While,

core electrons do not have a large in
uence on chemical properties. The

various types of e�ective core potentials have been developed by some

researchers [38, 39].

In the e�ective core method, the core electrons of atoms are substi-

tuted for the e�ective core potentials, ue� . The Coulomb interactions

between core-core and core-valence electrons are e�ectively included in

the potentials. The pseudo-valence Hamiltonian Hpv, includes explic-

itly the Coulomb interactions between valence electrons. The interac-

tions between valence and core electrons are included in the e�ective

core potential as well as in the Coulomb interactions between core elec-

trons. The valence Hamiltonian is given as follows,

Hpv � �

nvX
i

1

2
�i + ue�(ri) +

nvX
i>j

1

ri;j

; (2:6)

where nv is the number of valence electrons. The e�ective core potential

ue� re
ects the orthogonality of valence electrons to core ones. The

e�ective core potentials are developed in various methods [40, 41] in

which the potential is calculated so as to obtain the nodeless pseudo-

valence orbitals. The e�ective core potentials for rare earth atoms were

presented by Dolg et al: [39]. The e�ective core potential used in their

work has a semi-local pseudopotential in the following form,

ue�(ri) = �
Q

ri

+
X
l

Alexp(�alr
2

i )Pl: (2:7)

The quantity Q denotes the e�ective charge of core, i is an electron
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index. The notation Pl is the projection operator onto the Hilbert

subspace with angular symmetry l,

Pl =
X
m

l

jlml >< lmlj: (2:8)

The parameters Al and al (l=0,1,2,3) have been adjusted in numerical

HF calculations so as to reproduce the total energies of 10 valence states

denoted by LS with use of least squares method. The relativistic e�ects

are included in these parameters by adjusting them to quasi-relativistic

HF results.

A convenient form of a spin-orbit operator to be applied in molecular

calculations has been proposed [42] as follows.

HSO =
3X
l=1

[2�Vl(r)(2l + 1)]Pl l � s Pl; (2:9)

with

�Vl(r) = Vl;l+ 1
2
(r)� Vl;l� 1

2
: (2:10)

The di�erence �Vl(r) of the relativistic potentials between Vl;l+ 1
2
and

Vl;l� 1
2
was parametrized in the form,

�Vl(r) = Bl exp(�alr
2): (2:11)

The exponents al have been set equal to the exponents of the pseu-

dopotentials. The coe�cients Bl have been adjusted in numerical pseu-

dopotential calculations for the one-valence-electron ions to reproduce

the SO splittings derived from corresponding all electron Dirac-Fock

(DF) calculations. In Table 2.3, we show these Al; Bl; al parameters

for neutral lanthanide atoms [39]. Excitation and ionization energies

calculated with the pseudopotentials agree with the corresponding all
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electron values to better than 0.1 eV for all reference states. In order to

test the reliability of the method, the multiplet energies for a Ce3+ ion

were calculated with the derived SO and quasi-relativistic pseudopo-

tentials. The pseudopotential results are compared with experimental

data [43], numerical all-electron values from relativistic DF calculation

[44], quasi-relativistic Wood-Boring (WB) [35, 45] and non-relativistic

Hartree-Fock (HF) calculations [39, 46] and are shown in Table 2.4.

The atomic parameters both in pseudopotentials and in SO splittings

are in satisfactory agreement with corresponding all-electron values.

2.2.3 Hartree-Fock and SOCI

A Hartree-Fock equation is derived with the variation principle ap-

plied to the Schr�odinger equation for many electrons. The one-electron

orbitals are determined by self-consistent �eld Hartree-Fock (SCF-HF)

approach. The obtained one-electron orbitals do not include completely

the electronic correlation which is known as the correlation e�ect of

electrons. In the con�guration interaction (CI) method, the correla-

tion e�ect is included in the multi-con�guration wavefunctions in which

electronic excitations from the SCF ground state to unoccupied or-

bitals are considered. The multi-con�guration states are expressed by a

liner combination of various con�guration state functions and the coef-

�cients of linear combinations are determined by the variation method.

Spin-orbit splitting energies for many-electrons are calculated using the

multi-con�guration state functions as basis sets. Since we use this ap-

proach in the present thesis, details of Hartree-Fock and SOCI will be

discussed in the next chapter.
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Table 2.3: Parameters (in atomic unit) of the quasirelativistic Wood-

Boring (WB) pseudopotentials and corresponding spin-orbit (SO) op-

erators.
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Table 2.4: Energy levels (cm�1) of the Ce3+ ion from experimental re-

sults and numerical relativistic (DF), quasirelativistic (WB) and nonrel-

ativistic (HF) all-electron calculations in comparison to pseudopotential

(PP) results applying the spin-orbit operator in �rst order perturbation

theory.

2.2.4 Dirac-Fock method

In 1992, a fully relativistic all electron Dirac-Fock calculation was per-

formed by Visser et al:[28]. In their work, the Dirac-Fock equations are

solved for four component spinors of Gaussian basis functions. In the

step of CI method, the complete excitations of valence electrons in the

open-shell to a small set of the open-shell spin-orbitals is considered as
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the Complete Open-Shell CI (COSCI). This method has been applied

to an EuO6
9� cluster, in which Eu3+ ion occupies a strict center of Oh,

embedded in the Madelung potential of the rest crystals. The calcu-

lated multiplets for (1) a free Eu3+ ion, (2) an Eu3+ ion embedded in

the Madelung potential (MP) and (3) an EuO6
9� cluster and (4) an

EuO6
9� cluster embedded in the MP are shown in Table 2.5. The dom-

inant luminescence transitions occurring in this system are basically

the atomic 5
D0 !

7
F1 and 5

D0 !
7
F2 transitions. In these multi-

plets, the crystal �eld splitting energies are somewhat overestimated

(251 cm�1) by the Madelung potential. Inclusion of the neighboring

O2� ions reduce the splitting to 110 cm�1. On the other hand, the

calculated splitting between 5
D and 7

F levels is too much large in all

calculations compering the experimental values. For the 5
D0 !

7
F1

transition, the theoretical results have a discrepancy with experimental

result of � 3000 cm�1. They explained that the large error could not

be attributed to defects of the basis set or COSCI approach but might

be caused by the insu�cient correlation e�ects in the theory.

In summary of this chapter, we review the experimental and theo-

retical backgrounds relevant to the �eld of rare earth ions. Especially,

we have developed a �rst principle calculation which considers many

interactions without any assumptions. As we can see in this chapter,

the many past attempts to calculate the electronic structures of 4f elec-

trons have still ambiguities in basis sets and shape of the potentials.

In order to remove the ambiguity, many investigation is necessary from

di�erent points of view.

The method that we adopt in the present thesis is one of the most

sophisticated methods for a large scale computation. In the next chap-
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ter, we will describe the details of the present method.

Table 2.5: The Multiplet energies by Fock-Dirac (FD) complete open-

shell CI (COSCI) in atomic unit of the lowest states of the f 6-manifold

with their degeneracies.



Chapter 3

Method of Calculation

3.1 Introduction

In this chapter, we present the method of the ab initio calculation with

spin-orbit (SO) interaction. In this thesis, we calculate the multiplet

terms of trivalent lanthanide ions and of a cluster containing of a Tm3+

ion and neighboring tetrahedral four P atoms. The application of the

ab initio method based on quantum chemistry to the solid state physics

is valid only for the calculation of the localized electronic structures

of impurity states. There are some points to be investigated in the

computational calculation of the electronic structures of 4f electrons

systematically, as is discussed in the previous chapter. Especially, we

consider the problems of the spatial symmetry of open-shell 4f molec-

ular orbitals and relativistic e�ect on the multiplet terms of rare earth

ions, which will be explained in the following.

In section 3-2, we describe the spin-orbit interactions and the method

to obtain the e�ective nuclear charge. The SO interaction is essential

for determining the multiplet structures of rare earth ions. In the case

33
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of an atom, a quantum mechanical treatment based on the relativistic

Dirac equation leads to the SO interaction automatically. Though the

present ab initio calculation is not available for the relativistic formula

in a Hartree-Fock-Roothaan SCF equation, a special treatment is pro-

posed in order to include relativistic e�ect in SOCI calculation with

use of the e�ective nuclear charge of rare earth ions for 4f electrons. A

simple method is adopted for obtaining the relativistic e�ective nuclear

charge with use of an atomic Dirac-Slater equation.

In section 3-3, we explain the Gaussian basis sets which are adopted

as basis functions of atomic orbitals. We use the Gaussian basis sets

obtained by Huzinaga [62] in the thesis. The contraction of the basis set

for 4f orbitals is the most important concept in the present calculations.

The physical meaning of the contraction for 4f radial function is also

described in this section. In the present calculations, a new mean of

contractions for the 4f radial function is proposed. Finally, we tabulate

the Gaussian basis sets obtained by Huzinaga in the appendix.

In section 3-4, the SCFmethod for one-electron orbitals is presented.

In the case of free ions, the one-electron energies of spherical symmetric

4f orbitals are equivalent. Thus, the two electron interactions for the

4f electrons are also equivalent with each other. An \open-shell energy

coe�cient" is used in Coulomb and exchange integrals in Fock operator

for the open-shell molecular orbitals in order to satisfy the spatial sym-

metry especially for the open-shell 4f orbitals. We have calculated the

open-shell energy coe�cient for 4f electrons and applied to the present

calculations.

In section 3-5, basis sets for con�guration interaction are explained.

Terminology of CI basis function is also given. Selection of excited levels
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in CI expansions is important in order to investigate the mechanism

of multiplet structures of 4f electrons, which is given in this section.

Among possible con�gurations, the interactions between 4f electrons

are the strongest. Other interactions included in the CI calculation are

single and double excitations of valence electrons to unoccupied states.

Finally, in section 3-5, the 
ow chart of this ab initio and the rele-

vant calculations is shown.

3.2 Spin-orbit interaction

Dirac has developed a theory of the electron in the electromagnetic �eld

which satis�es the relativistic requirement of invariance under Lorenz

transformation. In the theory, the spin is not introduced ad hoc but

is given as a consequence of the relativity requirement. The total an-

gular momentum J = L + S commutes with Dirac's Hamiltonian. It is

known that the SO interaction, which is speci�ed by J , is important

as a relativistic e�ect for heavy atoms. The relativistic e�ect becomes

negligible when the large kinetic energy cp approaches to the order of

the electronic rest energy mc
2
� 500,000 eV. For example, the 1s elec-

trons in Tm3+ have a kinetic energy of 67,000 eV, which is 13 % to the

rest energy. Thus the relativistic treatment can not be avoided for the

electrons in rare earth ions.

3.2.1 General expressions of the spin-orbit inter-

action

A microscopic Breit-Pauli form of SO Hamiltonian for an atom, which

can be derived from more rigorous Dirac-Breit Hamiltonian, consists
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of \spin-own-orbit" and \spin-other-orbit" terms [47, 48, 49]. We use

atomic unit unless otherwise noted. The \spin-own-orbit" term is given

by,

H
so(I) =

�
2

2

X
i

(Ei�pi)�si =
�
2

2

X
i

8<
:(Z

r
3

i

ri �
X
j 6=i

rij

r
3

ij

)� pi)

9=
;�si; (3:1)

where

Ei = Z

ri

r
3
i

�

X
j 6=i

rij

r
3
ij

; (3:2)

is the nuclear electric �eld for the i-th electron partially shielded by

the other electrons. Ei can be expressed as Ei = riv(ri), with the

potential v(ri) being

v(ri) = �
Z

ri

+
X
j 6=i

1

rij

; (3:3)

and rij = jrij j = jri � rjj, and ri = jrij. The quantity � is a �ne

structure constant, and pi, si and li are the linear momentum, spin

and orbital angular momenta for the i-th electron, respectively. Z

denotes the nuclear charge of the atom. It should be noted that, if

the central-�eld model is applied to the electric �eld in eq.(3.1), then

the potential v(ri) depends only on the radial coordinate ri and the

following simpli�cation can be achieved with the central �eld potential

u(ri).

H
so(I) =

�
2

2

X
i

(riv(ri)� pi) � si =
�
2

2

X
i

(
1

ri

du(ri)

dri

)li � si: (3:4)

The \spin-other-orbit" term is given by,

H
so(II) = ��

2
X
i6=j

1

r
3
ij

(rij � pi) � sj ; (3:5)
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which represents a magnetic interaction between the spin motion of an

electron and the orbital motion of the other electrons, and originates

from the Breit correction term [47]. Of the two terms, the relative

importance of the latter in the total SO splitting is known to decrease as

the atom becomes heavier [50, 51] and we neglect this term completely

in the present study. Recognizing that the two-electron part of Hso(I)

represents the screening of the nuclear charge Z, an approximate one-

body SO Hamiltonian was suggested,

H
so(approx) =

�
2

2

X
i

Ze�

r
3
i

li � si; (3:6)

which can be obtained using the simple Coulombic potential u(ri) =

�
Ze�
ri

in eq. (3.4). Here, Ze� is called e�ective nuclear charge for spin-

orbit interaction. This approximate form has been widely used because

of the simplicity of the calculations [48, 52].

As is well known [53, 54], relativistic e�ects, mostly mass-velocity

e�ect, cause the contractions of inner s and p orbitals. Because of the

more e�ective nuclear shielding by the contracted inner s and p orbitals

with relativistic e�ects, we expect Ze� would becomes smaller relative

to that obtained non-relativistically and the 4f orbitals would expand

outwards. Thus we expect a smaller value of the SO splitting of the

multiplet. In the present method, we calculate the changes of orbital

sizes by adopting atomic Dirac-Slater (DS) method [55, 34] and inves-

tigate the relativistic e�ects on the SO multiplet energies for trivalent

rare earth ions.
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3.2.2 E�ective nuclear charge

As far as we found in the literature, most of the calculations with the ap-

proximate one-body spin-orbit Hamiltonian H
so(approx) have treated

Ze� as an adjustable parameter so determined as to reproduce the ex-

perimental SO splitting energies [37, 56, 57, 58]. However, we have

shown that the multiplet terms constructed by SO interactions for rare

earth ions are sensitive to the Ze� value [59]. Moreover, especially for

rare earth ions, lots of multiplet terms are experimentally observed due

to the complexity of the 4f splitting pattern. It is therefore worth-

while to obtain Ze� without any assumptions. For heavy rare earth

atoms, it is important to compare Ze� determined by relativistic and

non-relativistic method, as described above. For this purpose, we adopt

both atomic Dirac-Slater equation and non-relativistic X� Schr�odinger

equation in the present thesis.

The Dirac's equation to be solved is ;

H'n��(r) = (c�p+ �mc
2 + u0(r))'n��(r)

= En�'n��(r):
(3:7)

The notations in the Hamiltonian are the same as those explained in

section 2.2. The X� atomic core potential u0(r) is adopted in the

present Dirac-Slater and X� Schr�odinger equations and is mentioned in

the following. In eq. (3.7), 'n��(r) is the relativistic atomic orbital and

contains large- (f �
n� (r)) and small- (g �

n� (r)) relativistic components

with the spin-angular components � �
� (r̂) and �

�
�� (r̂), respectively, as

following.

'n��(r) =

"
fn�

�(r)��
�(r̂)

ign�
�(r)���

�(r̂)

#
: (3:8)

The subscripts n; � denote the principal quantum number and magnetic
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quantum number, respectively. The relativistic quantum number � is

de�ned by

� =

(
�(l + 1) = �(j + 1

2
); (j = l + 1

2
)

l = j + 1

2
; (j = l �

1

2
)

(3:9)

for up- and down- spins, respectively.

In order to obtain a suitable numerical value for Ze� , we compare

eqs. (3.4) and (3.6) and obtain the following formula,

Ze� =

R
1

0
�(r)R4f(r)

2
r
2
drR

1

0

�2

2

1

r
R4f (r)

2
dr

; �(r) =
�
2

2

1

r

du0(r)

dr

: (3:10)

where the radial wavefunction of the 4f orbital R4f(r) (R4f(r) cor-

responds to f
�

n� (r)) and spherical symmetrized screened atomic po-

tential u0(r) are obtained by solving both Dirac-Slater (DS) atomic

equation and spin-dependent numerical X� Schr�odinger (XS) equation

for comparison. In the DS and XS atomic equations, the radial wave-

function R4f(r) and the atomic potential u0(r) are numerically solved

self-consistently within a local density approximation [60]. In the DS

method, an atomic potential u0(r) is adopted in the Dirac's Hamilto-

nian of eq. (2.4) as follows,

u0(r) = �
Z

r

+

Z
�(rj)

jr � rjj
drj � 3�0(

3

4�
�(r))

1
3

; (3:11)

where the quantity Z denotes the bare nuclear charge of rare earth. The

last term of eq. (3.11) is a X� potential [61] which is widely used as

an exchange-correlation potential in the local density functional theory

[60]. We used the X� parameter �0=0.7. Though the selection of

�0=0.7 is not justi�ed for f electrons, it is in the right range [36]. The

relative energy between the valence and 4f orbitals does not change
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for �0 between 0.6 and 0.8. Using atomic solutions and eq. (3.10),

we obtain Ze� for each trivalent rare earth ion. In addition to the DS

calculation, we have also performed a nonrelativistic X� calculation and

these formulas are identical to the c = 1 limit of the DS code. The

obtained Ze� values are used in one-electron spin-orbit Hamiltonian. In

the two methods, the 4f electrons are set to be put by the Hund's rule.

3.3 Gaussian basis sets

Gaussian-type orbitals (GTO's) are taken as atomic basis sets in COLMBS.

We adopt the Gaussian basis sets obtained by Huzinaga [62] in the

present calculation. The GTO's for normalized atomic orbitals in the

spherical polar coordinate are de�ned as

Xnlm(r; �; �) = Rnl(r)Ylm(�; �); (3:12)

where

Rnl(r) = N(n; �)rn�1exp(��r2);

with

N(n; �) = 2n+1[(2n� 1)!!]�
1
2 (2�)�

1
4�

(2n+1)

2 ; n = l + 1; l + 2; l + 3; :::

(3:13)

and Ylm(�; �) are spherical harmonic functions. In COLMBS, the Carte-

sian coordinate expression for a normalized GTO is used;

Xabc(x; y; z) = N(a; b; c;�)xaybzcexp(��r2);

with

N(a; b; c;�) = ( 2
�
)
3
4 [(2a� 1)!!(2b� 1)!!(2c� 1)!!]�

1
2�

[a+b+c+ 3
2
]=2
:

(3:14)
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It is noted that the power of r in eq. (3.13) is restricted to the

lowest for each symmetry, n = l+ 1, in eq. (3.14). The GTO's both of

Xabc(x; y; z) andXnlm(r; �; �) are equivalent in the sense that each of the

two GTO's are converted to the other one by unitary transformations.

The normalization constant N(a; b; c;�) for the Gaussian basis sets

Xabc(x; y; z) in eq. (3.14) is de�ned by the integration over both the

radial and angular parts. It is noted that the normalization constants

for Gaussian basis sets are often de�ned only for the radial part. For

example, the integration about the angular part of s-type functions

give the value 4�. Thus, the normalization constant Cs for the s-type

primitive Gaussian is de�ned by

Cs
2

Z
1

0

r
2
e
�2�r2

dr =
1

4�
; (3:15)

thus, the constant Cs is given by

Cs = (
2�

�

)

3
4

: (3:16)

Thus, the Cs is uniquely determined by the exponent. Hereafter we de-

note the radial part ofXabc(x; y; z) with the exponent �i as the primitive

Gaussian, g�
i
(r). The j-th subshell (or j-th atomic orbital), 'j(r), are

expressed by the sum of the primitive sets g�i
(r),

'j(r) =
d0X
i

Cji
0
g�i

(r); (3:17)

where d0 is the number of primitive sets and �i is the exponent of the i-

th primitive sets. In this representation, the j-th subshell consists of d0

basis functions. Since molecular orbitals consist of linear combinations

of atomic orbitals, as described bellow, it is required that the number
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of atomic basis functions is reduced without the precision being kept

as well as possible. For that purpose, it is �xed that an atomic basis

function consists of plural primitive Gaussians.

'j(r) =
d1X
i=1

Cji
(1)
g�i

(r) +
d2X

i=d1+1

Cji
(2)
g�i

(r) + ::+
d0X

i=d0�1+1

Cji
(c)
g�i

(r);

(d1 < d2 < :: < d0)

(3:18)

where c (< d0) is the number of contracted Gaussian basis sets and

the basis functions of the subshell are reduced by d0 � c. The co-

e�cients Cji
(1)
; Cji

(2)
; :::; Cji

(c) are renormalized in each of the con-

tracted basis functions with the ratios of the coe�cients of the primitive

sets Cj1
0
=Cj2

0
; Cj2

0
=Cj3

0
; :::; Cjd0�1

0
=Cjd0

0 being unchangeable. In the

present calculations, we use the contracted GTO's and a molecular or-

bital 	k is expressed by a linear combination of contracted Gaussian

type orbitals 'j,

	k =
X
j

Cjk'j (3:19)

in which the coe�cients Cjk are determined by solving SCF Hatree-

Fock equations. When atomic orbitals 'j are represented by only one

contracted basis set or by two ones, the basis sets are called single-zeta

or double-zeta, respectively.

We adopt the Gaussian basis sets proposed by Huzinaga [62] for

trivalent rare earth ions and ligand P atoms. In Appendix, the expo-

nents and coe�cients for rare earth and phosphorus atoms are listed.

It should be mentioned that these basis sets are optimized for for the

neutral atoms but for ions. Each of the one-electron orbitals are the con-

tracted single-zeta. More suitable basis sets for ions could be obtained

through dividing the contracted one-electron orbitals into double-zeta
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Table 3.1: The selection of the contractions.

atomic orbital 4f 4d 6s RE

number of primitive sets 4 3 3

Base I 31 (DZ) 3 (SZ) 3 (SZ) free ions

Base II 4 (SZ) 21 (DZ) 3 (SZ) free ions

Base III 31 (DZ) 3 (SZ) not included (TmP4)
3+

� DZ = double zeta, SZ = single zeta

or more primitives and increasing the 
exibility of the basis sets. How-

ever, there are some ambiguities in selecting the contraction patterns.

We tried several selections of the contractions. For realizing ionic states,

�rst, the 4f GTO is split to double-zeta and remain the other orbitals

as atomic single-zeta, which we hereafter call Base I. Second, the 4d

GTO is split to double-zeta and the others are single-zeta (Base II).

The 6s orbital is included in SCF and CI calculations for free ions but

removed from the basis sets in the case of (TmP4)
3+ cluster (Base III)

because no convergence is obtained by the existence of unoccupied 6s

related MO. For ligand P atoms, three-s type, two-p type and one-d

type contracted single-zeta GTO's are used. The selection of the con-

tractions is listed in Table 3.1.

3.4 SCF calculation for one-electron molec-

ular orbitals

Two di�erent physical models of, a cluster containing impurity Tm3+

ion and single ions, are calculated by all-electron SCF and SOCI meth-

ods.
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A cluster of (TmP4)
3+ is adopted as a physical model of Tm3+ in

InP. The atomic distance between Tm3+ and P is taken 2.54�A which

is the same as that of the InP lattice. As for rare earth ions, six ions

with even number electrons, Pr3+, Pm3+, Eu3+, Tb3+, Ho3+ and Tm3+,

the SOCI calculations are performed. The SOCI calculations for free

ions are necessary to show a chemical trend of results obtained by the

present ab initio method. The relationship between relativistic e�ect

and Gaussian basis sets is also considered from the calculated results

of free ions.

3.4.1 Hamiltonian

The Hamiltonian to be solved is ;

H = H0 +H1

=
X
i

(
�
�h2

2m
ri

2
�

X
a

Zae
2

jRa � rij
+
�
2

2

Ze�; RE

jRRE � rij
3
li � si

)

+
X
<i;j>

e
2

jri � rj j

(3:20)

where � is the �ne structure constant. Za and Ra denote the nu-

clear charge and the position of the a-th atom, respectively. The one-

body SO interaction is introduced in the third term of the one-electron

Hamiltonian, H0. The last term, H1, represents electron-electron inter-

actions. The e�ective nuclear charge Ze�; RE is determined by solving

atomic Dirac-Slater and X� Schr�odinger equations, as was discussed in

the previous section. In the present study, the subscript RE of Ze� ; RE

denotes only the trivalent rare earth ion. In the SCF-HF calculation,

the third term of eq. (3.20) is not included, which is considered in SOCI

calculation.
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3.4.2 Hartree-Fock procedure

In this section, we brie
y describe the formulation of Hartree-Fock-

Roothaan equation. The MO's are obtained by solving the restricted

Roothaan Hartree-Fock equations in which the spin-functions of up-

and down- spins are not distinguished in many electrons wave functions.

A MO 	i consists of a linear combination of atomic orbitals ' of various

quantum numbers on the various atoms.

	i =
MX
k=1

Cki'k: (3:21)

The number of atomic basis functions is at least equal to that of total

atomic orbitals M and this basis sets are called minimum sets. The

same thing is said in an another way, in minimum sets all the atomic

orbitals are represented by single-zeta GTO's. In order to increase the


exibilities of the MO's, the contracted GTO's should be splitted into

double-zeta's or more than those. Then, the basis sets become larger

than the atomic orbitals. In fact, these operations for the contracted

GTO's, especially for 4f GTO's, occurs a serious problem. That is to

say, there is a relationship between the contractions and the relativistic

e�ect on 4f radial functions as is described in the latter chapter. The

atomic orbitals 'k on the di�erent atoms are not orthogonal each other.

The overlap integral between two AO's is written by

Snk =

Z
'n

�(1)'k(1)dr1: (3:22)

The total wavefunction for many electrons is represented by the de-

terminantal function in terms of the MO's. A Hatree-Fock-Roothaan
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equation for i-th MO is,

f(1)
MX
k=1

Cki'k(1) = �i

MX
k=1

Cki'k(1); (3:23)

where the Fock operator for a electron 1, f(1), is written by

f(1) = h(1) +
MX
k0=1

Z
dr2'k0

�(2)r�1
12
(1� P12)'k0(2); (3:24)

and here h(1) is a one-electron Hamiltonian and P12 is a operator which

permutes the positions of the two electrons each other (1 $ 2). The

matrix elements of the secular equations for Hartree-Fock-Roothaan

equations can be derived from the di�erential equation of eq. (3.23) by

multiplying n-th atomic orbital 'n and by integrate over the coordinate,

then,

MX
k=1

Cki

Z
dr1'n

�(1)f(1)'k(1) = �i

MX
k=1

Cki

Z
dr1'n

�(1)'k(1): (3:25)

The matrix component of Fock operator is written by

F�� =

Z
dr1'�

�(1)f(1)'�(1); (3:26)

and the matrix F is Hermitian.

The consecutive Hartree-Fock-Roothaan equations for M MO's can

be written by the matrix formula, as follows,

MX
k=1

FnkCki = �i

MX
k=1

SnkCki (i = 1; � � � ;M); (3:27)

where S, �i and Ci are the overlap matrix, eigenvalue and coe�cient

vector of the i-th MO, respectively. The degree M is the number of
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MO's and F is Fock matrix which is the sum of the one-electron (F1)

and two-electron (F2) operators,

F = F1 + F2: (3:28)

The matrix elements of the Fock operators are given by

Fnk = 2[njk] + 2
NX
j=1

MX
p;q=1

C
�

pjC
�

qjf[nkjpq]� [nqjpk]g; (3:29)

in which,

[njk] =

Z
dr1'

�

n(1)[�
1

2
r1

2
�

X
a

Za

r1a

]'k(1) (3:30)

[nkjpq] =

Z
dr1dr2'

�

n(1)'k(1)
1

r12

'
�

p(2)'q(2): (3:31)

The number of MO's is 66 for a (TmP4)
3+ cluster. Since the 4f atomic

orbital (AO) is partially occupied, special treatment is needed to re-

produce the symmetrized 4f related MO's in the crystal �eld. Group

III atoms are surrounded by V atoms in the tetrahedral point group,

Td. A trivalent lanthanide is assumed to be at a substitutional site of

a group III atom in III-V semiconductors. Although we say InP as a

host material, the e�ect of In atoms at next nearest-neighbor sites is

not considered in the ab initio calculation because of the capacity. In

fact, the previous DV-X� cluster calculation in which nearest neighbor

sites are considered shows that the mixing of the valence orbitals of In

atoms on 4f orbitals is small [36]. By the same reason, the Madelung

potential of the second nearest points may be neglected in the present

thesis. Furthermore, the three valence electrons of trivalent ions are

removed from the cluster. It was shown by the DVX� calculation [36]

that the three valence electrons existed in shallow donor levels and the



48 CHAPTER 3. METHOD OF CALCULATION

wavefunction of the donor level was delocalized in larger volume in

semiconductors than the size of a cluster which we adopt in the present

calculation. In fact, they showed that if the three electrons were put

in the cluster, the kinetic energies of the electrons would become much

higher than the donor levels. Thus, since the trivalent outer donor elec-

trons do not a�ect inner 4f electrons, we can neglect the existence of

the three electrons in the cluster.

Table 3.2: Decomposition irreducible representations of Td to C2v.

Td C2v

A1 =) A1

A2 =) A2

E =) A1 + A2

T1 =) A2 + B1 +B2

T2 =) A1 + B1 +B2

We use the symmetry adapted MO's in the SOCI calculations for

the open-shell 4f orbitals in order to have the symmetry satis�ed multi-

plet energy levels. Otherwise the use of symmetry-broken orbitals leads

to energy splitting lower symmetry than the original Td symmetry, and

makes it impossible to analyze the additional energy splittings caused

by the crystal �eld. In crystal �eld with a T d symmetry, the 4f orbitals

are decomposed into the subspace A1 + T1 + T2, where A1; T1; T2 are

irreducible representations of Td. Furthermore, each of the irreducible

representations of Td is decomposed into those of C2v symmetry which

we use in the present calculation as shown in Table 3.2, since the com-

putational library COLMBS does not support the point group Td in



3.4. SCF CALCULATION FORONE-ELECTRONMOLECULAR ORBITALS49

SCF calculations.

3.4.3 Open-shell energy coe�cients

Since the valence orbitals are closed-shells in rare earth ions, only the

4f orbitals require a special care of open-shell structures. In the case of

single rare earth ion, 4f AO's should be all degenerate in the spherical

symmetric potential. In this case, the Coulomb interactions between 4f

electrons are equivalent. The \open-shell energy coe�cient" is de�ned

for obtaining equivalent electron-electron interactions in the open-shell

orbitals.

Open-shell SCF energies in which open-shell Coulomb and exchange

energies are given, can be written as follows [63, 64],

Eopen�shell =
openX
i

NiHi +
1

2

openX
i;j

NiNj(ai;jJi;j �
1

2
bi;jKi;j); (3:32)

where

�i;j = 1� ai;j; �i;j = 1� bi;j : (3:33)

Here Hi, Ji;j and Ki;j are the one-electron, Coulomb and exchange

energies, respectively. The summation of Eq.(3.32) is taken only for

the open-shell MO's. The coe�cients �i;j and �i;j are the open-shell

energy coe�cients [65, 66] which represent the modi�cation of two elec-

tron interactions between the open-shells. Ni is the average occupation

number of th i-th orbital given by

Ni =
n

n2

; (3:34)

where n and n2 are the number of electrons and the number of orbitals

in the open-shell, respectively. In the case of 4f electrons of rare earth

ions, n2=7 and n = 1 � 13.
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There are two ways to calculate kinds of open shell energy coe�-

cients. One is a set of coe�cients for the average-state and the other

is for a speci�ed multiplet. The latter is generally determined for the

multiplet state named as 2S+1
L. On the other hand, the averaged state

over all possible multiplets is convenient and adopted in many cases

[28].

Here, we use mainly the average-state SCF method. The average-

state open-shell energy coe�cients is de�ned as a weighted average of

the coe�cients on possible multiplets. Furthermore, in order to satisfy

the spherical symmetry, each of the open-shell 4f orbitals should be

equally occupied by n
7
electrons, where n is the number of open-shell

4f electrons. For a single Tm3+ ion, we also calculate the multiplet

energies with use of the speci�ed open-shell energy coe�cients of 3
H

state, for comparison.

3.5.1 Average state open-shell energy coe�cients

In the average-state approximation, the two-electron interaction energy

is
P

i;j (2Ji;j�Ki;j) divided by the number of di�erent pairs of 2n2 spin-

orbitals, i.e. 2n2(2n2�1)=2, while there are n(n�1)=2 pairs of electrons.

The average total interaction energy Eav is therefore given by

E =
n(n� 1)

n2(2n2 � 1)

openX
i;j

(Ji;j �
Ki;j

2
): (3:35)

Comparing Eq. (3.35) with Eq. (3.32) and Eq. (3.34), we have

ai;j = bi;j =
2n2(n� 1)

n(2n2 � 1)
: (3:36)

Putting n2 = 7 and n = 12 in Eq. (3.33) and Eq. (3.36), we get � =

� = 1

78
. These are the open-shell energy coe�cients for the average-
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Table 3.3: The open-shell energy coe�cients for average-state of triva-

lent lanthanide ions. In the case of average states, the two coe�cients

� and � are equal.

ions Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+

n 1 2 3 4 5 6 7

� = � 1
6

13

11

39

5

26

9

65

4

39

1

13

Ions Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+

n 8 9 10 11 12 13

� = �

3

52

5

117

2

65

3

143

1

78

1

169

state de�ned by 12 electrons in 4f orbitals. We use these values for the

average-state of both a single Tm3+ ion and a (TmP4)
3+ cluster. In

Table 3.3 the open-shell energy coe�cients of trivalent lanthanide ions

for the average states are listed.

3.5.2 3
H state open-shell energy coe�cients

As for the open-shell energy coe�cients for the ground state, 3H state

of a Tm3+ ion for example, we have the following open-shell energy

expression for the two-electron part of the 3
H state for the con�guration

f
2 [67] p.207,

E 3H; f2 = F
0
�

1

9
F
2
�

17

363
F
4
�

25

14157
F

6
: (3:37)

With Eq. (14) of the reference [68], we can convert the expression of f2

to that of f12 as follows,

E 3H; f12 = 66F 0
�
13

9
F

2
�

347

363
F

4
�

16525

14157
F
6
: (3:38)
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Here F k is Slater's direct integral, which is given by

F
k =

Z
1

0

Z
1

0

r<
k

r
k+1
>

R4f
2(r1)

2
R4f

2(r2)dr1dr2 (3:39)

Then we use the relationship between J , K and F k. From the discussion

in p.177-187 of the reference [67], we know that

X
i;j

Ji;j = n
2

2
F

0
;

X
i;j

Ki;j = n2F
0 + n

2

2

X
k>0

 
3 3 k

0 0 0

!2

F
k
: (3:40)

Here the summation for Ji;j and Ki;j is taken over spatial orbitals and 
3 3 k

0 0 0

!
is the Wigner's 3j symbol. Putting n2=7 in eq. (3.40), we

get

X
i;j

Ji;j = 49F 0
;

X
i;j

Ki;j = 7F 0 +
28

15
F

2 +
14

11
F

4 +
700

429
F
6
: (3:41)

Then Eq. (3.32) is expanded by F k,

Eopen�shell = (72a�
36

7
b)F 0

�
36

49
b(
28

15
F

2 +
14

11
F

4 +
700

429
F
6): (3:42)

Here the subscripts of a and b appeared in eq. (3.32) are not necessary

because of the equivalent treatment of the 4f orbitals. Finally, com-

paring Eq. (3.42) with Eq. (3.38), we get the following simultaneous

equations; 8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

72a�
36

7
b = 66

36 � 28

49 � 15
b =

13

9

36 � 14

49 � 11
b =

347

363

36 � 700

49 � 429
b =

16525

14157

(3:43)
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It is generally impossible for two variables to satisfy four independent

equations. Since F 4 and F
6 are generally smaller than F

0 and F
2, we

obtain approximately a = 857

864
and b = 455

432
from the �rst two equations

of Eq. (3.43). The corresponding values of � and � are � = 7

864
and � =

�
23

432
. These are the open-shell energy coe�cients for the approximate

3
H state used for a single Tm3+ ion. We observe, however, that these

approximate 3
H parameters can not lead to the SCF convergence of

a (TmP4)
3+ cluster as described above and will give numerical results

only for a Tm3+ ion for the approximated 3
H state. We con�rm that

the obtained multiplet energies in a Tm3+ ion cause no di�erence with

the both open-shell energy coe�cient for the 3
H ground state and for

the average state as will be discussed in section 4.3.

3.5 Con�guration interaction method

Con�guration Interaction (CI) method is a calculation including (1) all

the con�gurations generated in the manifold for the 4f electrons (4f full

CI or so called Complete Active Space CI (CASCI)) as reference func-

tions and (2) single and double excitations to unoccupied MO's. The

CASCI for a partially occupied 4f manifold generates a large amount

of the reference space and can adopt the spherical symmetry. The

many-electron wavefunction, 	CI, is given by a linear combination of

con�guration state functions (CSF's) as follows,

	CI =
NX
i

Ci�i: (3:44)

Here N is the number of the CSF's. The i-th CSF's, �i, is a Slater's

determinant for the i-th con�guration. The CSF's include singly and
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doubly excited con�gurations as well as the reference ones, all of which

are bound to have singlet or triplet characters in the present study.

The coe�cient Ci is determined by the linear variational method in the

diagonalizations of Hamiltonian.

In order to construct CSF's, we classify all the MO's into �ve

kinds, i.e. (1)doubly occupied, (2)active, (3)external, (4)frozen core

and (5)frozen virtual orbitals. A doubly occupied orbital contains two

electrons in any reference CSF, and up to two-electron excitations are

allowed from the set of whole doubly occupied orbitals. The active

orbital can have zero, one or two electrons. The external orbital is un-

occupied in any reference CSF, but up to two-electron excitations to

the set of whole external orbitals are allowed. The frozen core orbital is

always doubly occupied and the frozen virtual orbital is always empty

in a CSF.

In the case of Tm3+, the number of reference functions is 14C12=91.

All the CSF's generated from these reference functions consist of about

200,000 CSF's in the case of a (TmP4)
3+ cluster. A matrix of 200,000

� 200,000 are e�ectively diagonalized by decomposing the matrix into

the irreducible representations of the point group.

For the present purpose, 4f -like orbitals are selected as active ones,

and the unoccupied virtual f or d orbitals (f� or d
�) are taken as

external ones. We also take the unoccupied 3p orbitals of P atoms

as external orbitals in the present calculation. All the occupied MO's

having lower energies than those of 4f orbitals are chosen as frozen core

to reduce the number of CSF's. The CI speci�cation of the MO's for

the three GTO's given in Table 3.1 is listed in Table 3.5.
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Table 3.4: CI basis for RE ions and (TmP4)
3+ cluster.

RE3+ with Base I

frozen core 1s; 2s; 3s; 4s; 5s; 2p; 3p; 4p; 5p; 3d; 4d

active 4f

external 4f�, 6s

frozen virtual none

RE3+ with Base II

frozen core 1s; 2s; 3s; 4s; 5s; 2p; 3p; 4p; 5p; 3d; 4d

active 4f

external 4d�, 6s

frozen virtual none

(TmP4)
3+ cluster with Base III.

Tm3+ P

frozen core 1s; 2s; 3s; 4s; 5s; 2p; 3p; 4p; 5p; 3d; 4d 1s; 2s; 3s; 2p; 3p

active 4f none

external 4f� 3p

frozen virtual none none
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3.6 Flow chart of the present calculations

We show the 
ow chart of the present calculations.

1. Specify rare earth ions. (Ce3+, Pr3+, Nd3+, Pm3+, Sm3+, Eu3+,

Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+ )

2. Solve the Dirac-Slater equation for a speci�ed ion using the Hamil-

tonian of eq. (2.4) with the X� potential of eq. (3.11) and obtain

R4f (r) and u0(r).

3. Calculate Ze� using eq. (3.10).

4. Get the open-shell energy coe�cient for the average-state or 3
H

state.

5. Select Basis sets (see section 3.4).

6. Calculate SCF-HF and obtain MO's.

7. Select CI basis functions (see section 3.5).

8. Diagonalize Hamiltonian with the multi-con�guration single and

double excited con�guration state functions (SOCI).

9. Obtain multiplets and corresponding eigenvectors with optimized

coe�cients for con�guration state functions.

In the next chapter, we present the calculated results.



Chapter 4

Calculated Results

4.1 Introduction

In this chapter, the calculated multiplet energy levels of six lanthanide

ions, Pr3+, Pm3+, Eu3+, Tb3+, Ho3+, Tm3+ and a (TmP4)
3+ cluster

are presented. The relativistic e�ect on the multiplet structures is dis-

cussed with the use of the e�ective nuclear charge. For the purpose,

the e�ective nuclear charges for rare earth ions are calculated by Dirac-

Slater method. The e�ective nuclear charge is relevant to a spin-orbit

constant as shown in eq. (3.6). The relationship between the obtained

Ze� and one-electron energy gap by solving Dirac-Slater equation is

examined. Further, we show a suitable contraction of 4f basis func-

tions of the trivalent ions. The suitable contracted 4f basis function

gives the lowest energy and the obtained multiplet energy levels using

them are more close to experimental results than the previous numeri-

cal calculations. Then SOCI calculation for (TmP4)
3+ cluster is given

in which the quantitative evaluation of the crystal �eld e�ect is done.

Finally, we estimate the luminescent optical process by comparing op-

57
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tical experiments with CI results.

4.2 Free trivalent ions

Here, we show calculated results of the e�ective nuclear charge, Ze� ,

by the two numerical methods as is explained in 3.2. The calculated

multiplet terms of the trivalent lanthanide ions with two di�erent Ze�

are compared with each other.

4.2.1 Numerical relativistic and non-relativistic

calculations of e�ective nuclear charge Ze�

In order to compare Ze� 's derived by relativistic and non-relativistic

equations, we solve Dirac-Slater (DS) and X� Schr�odinger (XS) equa-

tions for all the trivalent lanthanide group ions. We will show SOCI

results only for the trivalent ions with even number electrons. It is

di�cult to perform CI calculations of odd number electrons because

the total spin-quantum number is a half integer and the double point

group theory is need to describe the formulation.

In Table 4.1 Ze� values obtained by two methods are compared. The

DS values are always smaller than the XS ones by about unity. This

implies a shrinkage of the inner core orbitals due to the relativistic

e�ect as explained in 3.2. In contrast, the 4f orbital expands from the

inner space to outside. In Figs. 4.1 and 4.2 , the wavefunction rR1s(r)

and rR4f (r) are plotted as functions of r for Tm3+. It is clear that the

DS (solid line) 4f wavefunction expands more outwards than the XS

(dashed line) 4f wavefunction, while the DS 1s wavefunction is more

localized than the X� 1s wavefunction. The expectation values of r for
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Table 4.1: E�ective nuclear charge Ze� for 4f orbitals of RE3+ ions ob-

tained by numerical X� Schr�odinger(XS) and Dirac-Slater (DS) equa-

tions and with the use of eq. (3.7).

RE3+
Ze� (XS) Ze� (DS)

Ce3+ 31.56 30.82

Pr3+ 32.60 31.86

Nd3+ 33.61 32.87

Pm3+ 34.61 33.87

Sm3+ 35.59 34.85

Eu3+ 36.56 35.81

Gd3+ 37.52 36.77

Tb3+ 38.49 37.72

Dy3+ 39.45 38.66

Ho3+ 40.40 39.58

Er3+ 41.34 40.51

Tm3+ 42.25 41.42

Yb3+ 43.21 42.33

Tm3+ with the 4f radial wavefunctions are 0.744 and 0.721 for DS and

XS methods, respectively.

Here we de�ne the screened nuclear charge at the distance r by

ZSC(r) = r
2
du0(r)

dr

: (4:1)

The Zsc(r) presents the nuclear charge screened by the core electrons

which exist in the inner space of the distance of r. On the other hand,

the e�ective nuclear charge Ze� is the expectation values of the screened

nuclear charge Zsc weighted by 4f radial functions. According to the

classical Slater's rule, the e�ective nuclear charge for the 4f electron

of a Tm3+ ion is given by 69 - 1 � 46 - 0.35 � 11 = 19.15 which is

much smaller than the present value because the overlaps between 4f
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Figure 4.1: rR1s(r) calculated by DS (solid line) and XS (dashed line)

equations in atomic unit, where R1s(r) is radial part of 1s orbital of

Tm3+.
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Figure 4.2: rR4f(r) calculated by DS (solid line) and XS (dashed line)

equations in atomic unit, where R4f (r) is radial part of 4f orbitals of

Tm3+.
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and the inner wavefunctions are not well considered in the Slater's rule.

In Fig.4.3 the screened nuclear charge ZSC(r) is plotted as a function

of r (solid line) and also plotted the relativistic radial function R4f (r)

(dashed line) for the 4f orbital of Tm3+. The screened nuclear charge

ZSC(r) decreases from the bare nuclear charge of Tm3+ (69.00) to the

ionic charge (3.00). The e�ective nuclear charge Ze� in eq. (3.10) can

be interpreted as a weighted average of ZSC(r) with R4f(r). The value

of ZSC(r) at the maximum value of R4f(r) is almost 40 � 45 which

corresponds to Ze� in Table 4.8.

We try to clarify the relativistic e�ect on the numerical basis sets

obtained by the two methods. In Table 4.2 the expectation values of

hr
n
i (n = 1;�1;�3) for the 4f orbitals obtained by DS and XS equa-

tions are listed and the reference data for neutral lanthanide atoms

obtained by Dirac-Fock (DF) calculation [69] is also given for compar-

ison. We can see hr1i that the expansion of 4f orbitals are within 0.03

� 0.05 (a.u.) between DS and XS methods. It is not meaningful to

compare DS and DF directly, since both results are given for the di�er-

ent charges of atoms and the di�erent methods. However, we can see

the expansion of 4f wavefunctions of neutral atoms relative to those of

trivalent ions both by DS and DF methods. The ratios of expansion of

(1) XS to DS and (2) DS to DF are in the same order. Thus, in order

to include the relativistic e�ect in the Gaussian Basis sets for ions in

the non-relativistic SCF-HF calculation, it is a good approximation to

use the basis sets for non-relativistic neutral atoms. Here, it should

be noted that the Gaussian Basis sets used in the present thesis are

obtained by non-relativistic optimizations [62].

It is useful to show hr
�1
i and hr�3i in the table since these values
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Figure 4.3: Screened nuclear charge ZSC(r) (solid line) and the radial

part of 4f orbital R4f(r) ( magni�ed by ten times to the vertical axis,

dashed line ) by DS for Tm3+ are plotted. The value of ZSC(r) at the

maximum R(r) corresponds to 40 � 45. The nuclear charge Ze� listed

in Table 4.1 are obtained by a weighted average of ZSC(r) with R4f (r).
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are relevant to the matrix elements of physical properties. As is shown

in Table 4.2, the expectation values hr�1i by XS calculation are larger

than by DS and DF calculations. It is because that hr�1i emphasizes

the behavior of wavefunctions near the origin and the expectation val-

ues become smaller due to the expansion of 4f orbitals. For all of the

rare earth ions, the maximum expectation value hri is 1.002 (XS), 1.053

(DS) in Ce3+ (Z = 58) and the minimum expectation value is 0.7029

(XS), 0.7345 (DS) in Yb3+ (Z = 70), respectively. On increasing the

atomic number from Ce3+ up to Yb3+, the expectation value hri de-

creases monotonically, showing the well-known lanthanide contraction

[53, 54]. As for hr�3i, SO operator has a form of r�3 and hr�3i approx-

imately represents the expectation value of the SO interactions. The

expectation value hr�3i of Yb3+ is about four times as large as that

of Ce3+ by the three methods. This is consistent with the fact that

spin-orbit separation in Yb3+ calculated using Dirac-Slater equation is

about four times as large as that in Ce3+ (See Table 4.3).

One-electron 4f orbital energies obtained by the two numerical

methods are listed in Table 4.3 in atomic unit. Since the X�-Shr�odinger

equation is spin-dependent, one-electron energies split into two levels.

The occupation of 4f electrons is �xed putting by them �rst for up-

spins and then for down-spins according to Hund's rule. The energy

splitting re
ects the exchange-energy of 4f electrons.

The relativistic one-electron energy levels of the 4f orbital are split

into �=3 and �=�4 due to spin-orbit interaction, where � is the index of

angular momentum. The spin-orbit splitting energy, denoted by ��so,

increases from 0.35 (in Ce3+) to 1.41 (in Yb3+) eV over the lanthanide

ions. The increase in the splittings is consistent with the behavior of
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Table 4.2: The expectation values for rn with 4f orbitals of RE3+ ions.

In addition to XS and DS, Dirac-Fock (DF) results for neutral RE

atoms are listed for comparison.

r
n XS DS DF �)

up-spin down-spin � = �4 �=3 � = �4 �=3
Ce3+ 1 0.995 1.002 1.053 1.044 1.044 1.036

�1 1.294 1.289 1.238 1.248 1.239 1.248
�3 4.882 4.849 4.415 4.518 4.329 4.435

Pr3+ 1 0.952 0.966 1.007 0.998 1.100 1.088
�1 1.350 1.339 1.293 1.304 1.216 1.228
�3 5.491 5.418 4.984 5.106 4.348 4.478

Nd3+ 1 0.915 0.934 0.968 0.958 1.045 1.032
�1 1.402 1.386 1.345 1.357 1.275 1.288
�3 6.123 6.003 5.573 5.717 4.943 5.098

Pm3+ 1 0.882 0.906 0.933 0.923 0.999 0.986
�1 1.453 1.431 1.394 1.407 1.330 1.345
�3 6.781 6.607 6.185 6.353 5.552 5.736

Sm3+ 1 0.853 0.881 0.902 0.892 0.960 0.946
�1 1.503 1.474 1.442 1.457 1.382 1.398
�3 7.465 7.230 6.821 7.016 6.180 6.397

Eu3+ 1 0.826 0.859 0.874 0.864 0.925 0.912
�1 1.551 1.516 1.489 1.505 1.431 1.449
�3 8.179 7.874 7.484 7.708 6.830 7.083

Gd3+ 1 0.802 0.838 0.849 0.838 0.839 0.829
�1 1.598 1.557 1.534 1.551 1.538 1.555
�3 8.924 8.541 8.173 8.431 8.076 8.360

Tb3+ 1 0.781 0.810 0.825 0.814 0.868 0.853
�1 1.643 1.608 1.579 1.597 1.525 1.547
�3 9.695 9.347 8.892 9.187 8.204 8.545

Dy3+ 1 0.762 0.785 0.805 0.793 0.843 0.828
�1 1.687 1.657 1.622 1.642 1.570 1.594
�3 10.491 10.183 9.629 9.964 8.932 9.324

Ho3+ 1 0.744 0.762 0.785 0.773 0.820 0.804
�1 1.729 1.706 1.664 1.686 1.614 1.640
�3 11.312 11.051 10.394 10.774 9.688 10.137

Er3+ 1 0.728 0.741 0.767 0.755 0.800 0.783
�1 1.771 1.753 1.705 1.729 1.658 1.686
�3 12.157 11.950 11.190 11.619 10.473 10.986

Tm3+ 1 0.717 0.725 0.750 0.737 0.780 0.763
�1 1.804 1.792 1.746 1.771 1.700 1.731
�3 12.933 12.783 12.015 12.498 11.288 11.872

Yb3+ 1 0.699 0.703 0.734 0.721 0.762 0.744
�1 1.851 1.845 1.786 1.813 1.742 1.775
�3 13.940 13.863 12.871 13.414 12.134 12.797

�) Reference [69].
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Table 4.3: 4f orbital one-electron energies by XS and DS equations (in

atomic unit). The occupation number of 4f electrons is taken to follow

the Hund's rule and the order of putting electrons is from up- to down-

(XS) and from �=�4 to 3 (DS).

RE3+
XS DS

up spin down spin �=�4 �=3
Ce3+ �1.177 �1.146 �1.039 �1.052
Pr3+ �1.235 �1.173 �1.081 �1.096
Nd3+ �1.289 �1.193 �1.117 �1.134
Pm3+

�1.337 �1.208 �1.149 �1.169
Sm3+

�1.382 �1.219 �1.177 �1.200
Eu3+ �1.423 �1.225 �1.202 �1.227
Gd3+ �1.461 �1.228 �1.224 �1.252
Tb3+ �1.480 �1.278 �1.243 �1.275
Dy3+ �1.494 �1.325 �1.258 �1.293
Ho3+ �1.504 �1.367 �1.270 �1.309
Er3+ �1.509 �1.406 �1.280 �1.323
Tm3+

�1.486 �1.417 �1.288 �1.336
Yb3+ �1.513 �1.479 �1.294 �1.346

the expectation values of hr�3i.

In order to check the consistency, we calculate the following ratio,

2

7

2

�
2

��so

Ze�hr
�3i

; (4:2)

for each ion. The factor 2

7
comes from the following formula [70],

��so =
7

2

Z
1

0

�(r)R4f (r)
2
r
2
dr; �(r) =

�
2

2

1

r

du0(r)

dr

: (4:3)

Here, one-electron spin-orbit splitting energies of 4f orbitals are de-

noted by ��so. By the approximation of the core potential as is used

in eq. (3.6), the one-electron spin-orbit splitting energy is given by

7

2

�
2

2

Ze�

r
3
: (4:4)

Thus, the ratio of eq. (4.2) should be unity. In Fig. 4.4 the plotted data

show the values calculated with eq. (4.2) over the rare earth ions. The
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ratios are always near unity, which shows that the method to derive an

e�ective nuclear charge Ze� is appropriate.
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Figure 4.4: The ratios of 4f orbital energy gap ��so by DS eq. to 7

2
Ze�

hr
�3
i for lanthanide ions.

4.3 SOCI calculation for trivalent ions

In this section, we will show the calculated multiplet terms for free ions.

First, we show the multiplets for lanthanide ions with use of the two

Ze� values in 4.3.1. Next, we will propose the basis sets appropriate

for the trivalent lanthanide ions in 4.3.2. The energy tolelances of all

the calculated multiplets in this and text sections are in 10�4 a.u. '

22 cm�1 at most.
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4.3.1 Multiplet terms calculated with Base I

The multiplet energy levels calculated by SOCI with the use of the two

di�erent e�ective nuclear charge Ze� are tabulated in Table 4.4. As for

basis sets, the Base I in Table 3.1 are adopted in this subsection. The

values from the photoluminescence spectra for trivalent lanthanide ions

in LaCl3 compound and Dirac-Brait-Pauli-Hartree-Fock (DBPHF) val-

ues [29] are also shown in Table 4.4 for comparison. The total energies

of SCF and CI calculations are listed in the table, too. Since Ze� does

not appear in the SCF calculation, the SCF total energy does not de-

pend on the value of Ze� . We can see that the relativistic Ze� yields the

multiplet energy levels more closely to the experimental results and the

DBPHF results that contain all the relativistic corrections. The e�ect

of Ze� to the multiplet terms by the DS method is up to 300 cm�1.

The overall agreement is reasonably good despite a simple treatment

for Ze� .

There still exists descrepancy in the multiplet energies between the

present results and the experimental data. As is shown in the next

section, the remaining disappearement in the DBPHF method is mainly

due to an unoptimized selection of the basis functions.

The con�guration interactions are dominant within 4f electrons for

the lower lying multiplets. In Table 4.5, the largest coe�cients for a

given spin S in the CI eigenvectors are listed . In the case of Pr3+,

the ground state 3
H4 is coupled with S = 0 of 1

G4. The ratio of the

coe�cients is 3 : 1 in the same order. As for 3
H5, there is no multiplet

with S = 0 in J = 5. Thus, there is no coupling between S = 1 and

S = 0.



4.3. SOCI CALCULATION FOR TRIVALENT IONS 69

Table 4.4: Multiplet terms of RE3+ (in cm�1) with the two Ze� 's. SCF

and CI are in atomic unit.

RE Terms
Multiplet energy

SOCI(XS) SOCI(DS) DBPHF [29] Experiment [33]
3
H6 5961.7 5822.9 5286. 4330.9 - 4230.9 a)

Pr3+ 3
H5 2920.7 2849.4 2579. 2117.4 a)

3
H4 0.0 0.0 0.0 0 - 96.05 a)

SCF �8893.163625
CI �8892.228710 �8892.228330
5
I8 8779.2 8590.3 7979. 6525 - 6752 b)

5
I7 6408.8 6261.6 5813. 4893 - 4933 b)

Pm3+ 5
I6 4126.2 4022.7 3729. 3170 - 3211 b)

5
I5 1975.3 1914.6 1772. 1537 - 1620 b)

5
I4 0.0 0.0 0.0 0.0 b)

SCF �9623.975524
CI �9624.225823 �9624.225239
7
F6 6672.1 6539.1 6016. 4978 c)

7
F5 5223.6 5103.1 4692. 3909.0 c)

7
F4 3818.9 3726.6 3421. 2877.2 c)

Eu3+ 7
F3 2524.0 2452.7 2246. 1882.0 c)

7
F2 1382.7 1342.9 1225. 1044.8 c)

7
F1 485.0 485.9 441. 380.16 c)

7
F0 0.0 0.0 0.0 0.0 c)

SCF �10389.742459
CI �10390.168586 �10390.165707
7
F0 6820.0 6689.3 6578. 5615.93 d)

7
F1 6553.6 6427.3 6316. 5386.90 d)

7
F2 6007.1 5892.2 5783. 4939.24 d)

Tb3+ 7
F3 5179.7 5078.5 4974. 4263.27 d)

7
F4 4001.1 3922.4 3831. 3270.63 d)

7
F5 2475.7 2418.9 2350. 2018.79 d)

7
F6 0.0 0.0 0.0 0.0 d)

SCF �11191.222656
CI �11191.636744 �11191.636172
5
I4 15916.1 15619.8 15226. 13344. e)

5
I5 13446.8 13191.2 12883. 11255. e)

Ho3+ 5
I6 10316.5 10103.7 9854. 8647. e)

5
I7 6058.4 5919.6 5761. 5087. e)

5
I8 0.0 0.0 0.0 0.0 e)

SCF �12027.866088
CI �12028.162259 �12028.161230
3
H6 9667.4 9472.5 9308. 8285. f)

Tm3+ 3
H5 7133.9 7146.5 7085. 5795. f)

3
H4 0.0 0.0 0.0 0.0 f)

SCF �12900.619363
CI �12900.868144 �12900.867239

a) Reference [71, 72]. b) Reference [73, 74]. c) Reference [75]. d) Refer-

ence [76]. e) Reference [77]. f) Reference [78].
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Although we use the symbol 2S+1LJ for each multiplet, di�erent S

are mixed in the state because of spin-orbit interaction, in which only

J is the same in the coupled multiplets. For the other lanthanide ions,

the spin coupling between S and S + 1 are not so large as is shown

in Table 4.5. The only exceptions are the ground state of Pr3+ and

the �rst excited state (3H4) of Tm
3+. The reason why we get a large

mixing is that the excited multiplets with the same J is lying near the

ground state.

In Table 4.6, we show the splitting of 2S+1L multiplet terms without

considering SO interactions to see the magnitude of Coulomb splitting.

These result can be easily obtained by putting Ze�=0. As shown in Ta-

ble 4.6, the Coulomb interaction between 3
H and 3

F is � 8300 cm�1,

(� 1 eV) and that between 3
F and 3

P is � 30000 cm�1, (� 3.7 eV).

Since the energy di�erence between 3
H and 3

F states is in the same

order as that of SO interaction between 3
H4 or

3
H5 and

3
H6 as shown

in Table 4.7, the SO coupling between 3
H and 3

F is signi�cantly im-

portant for the present case. In Table 4.7, it is obvious that the CI

expansions using the MO's obtained for the average-state give reason-

able multiplet energies. The multiplets of a Tm3+ ion are illustrated

in Fig. 4.5 (a) and (b). In Fig. 4.5 (a) we show the multiplets of a

Tm3+ ion neglecting SO interaction and in Fig. 4.5 (b) SO splittings

for 3
H state. In order to obtain SO splitting of 3

F and 3
G states it is

necessary to calculate much higher multiplets though SO splittings of

those states are not shown in the Fig. 4.5 (b).

The main excitation, which is taken into account in SOCI, consists

of con�guration interactions between 4f electrons within 4f orbitals.

In the eigenvector of the multiplet terms, the coe�cients for the single
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or double excitations are less than 0.02. The observed luminescence

spectra are caused by excitations within 4f orbitals, that is, a 4fn !

4fn type transition and thus, the CI results are in good agreement with

the experiences.

In Table 4.7, the SO splittings for the 3
H state of a Tm3+ ion are

shown with di�erent open-shell energy coe�cients for 3
H and averaged-

state. It is noted that Ze� for Tm3+ is set to 41 in Table 4.7 and Fig.

4.5. Though the di�erence of the total energies between the two states

can be distinguished in the SCF calculation, it would be neglegible in

the CI calculation. This shows that the ground state of rare earth ions

can be represented by the many electronic state and the one-electron

orbital is not su�cient for coupled states by the spin-orbit interaction.

The multiplet energies of Tm3+ for various Ze� are listed in Table

4.8. As Ze� value decreases from 69 to 41 in Eq.(3.20), the second

excited state decreases, too, while the �rst excited state does not change

much. The reason why the �rst excited state 3
H4 is less sensitive to Ze�

value is that the second-order perturbation of SO interactions between

3
H4 and

3
F4 states cancels the �rst-order perturbation. On the other

hand there is no `J = 5' multiplet state near the 3
H state and the energy

position of the 3
H5 state is sensitive to a change of SO interaction.

4.3.2 Multiplet terms calculated with Base II

In this section, we present the results with use of Base II in which we

use contracted 4f and uncontracted 4d orbitals.

The present SOCI results with use of Ze� by DS are tabulated in
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Table 4.5: The largest coe�cients of the CSF's for di�erent spins in CI

eigenvectors of the multiplet terms.

RE3+ Terms Spin mixing in CI eigen vector
S = 1 S = 0

3
H6 0.410057 0.035855

Pr3+ 3
H5 0.564157 0

3
H4 �0.459193 �0.155313

S = 2 S = 1
5
I8 �0.357333 �0.041700

5
I7 �0.387926 0.037991

Pm3+ 5
I6 0.422967 �0.029802

5
I5 0.332879 0.029156

5
I4 0.337902 �0.031615

S = 3 S = 2
7
F6 �0.482572 0.048929

7
F5 0.497103 0.038334

7
F4 �0.681388 �0.033980

Eu3+ 7
F3 0.382865 0.043014

7
F2 0.509054 0.041907

7
F1 �0.535154 0.049068

7
F0 �0.36479 0.041414

S = 3 S = 2
7
F0 0.367708 0.044912

7
F1 0.450542 0.053138

7
F2 �0.483669 0.044848

Tb3+ 7
F3 �0.398412 �0.050864

7
F4 �0.617470 0.041511

7
F5 �0.559836 �0.044971

7
F6 0.627055 0.053683

S = 2 S = 1
5
I4 �0.337356 0.061197

5
I5 �0.405431 �0.082786

Ho3+ 5
I6 �0.396009 0.070155

5
I7 0.408792 0.050804

5
I8 0.424957 �0.062322

S = 1 S = 0
3
H5 �0.470327 0

Tm3+ 3
H4 �0.372906 �0.444223

3
H6 �0.558192 0.068145
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Table 4.6: Multiplet terms of Tm3+ ion without SO coupling. (in cm�1

unit).

multiplet terms energy
3
P 38711.

3
F 8362.

3
H 0.

Table 4.7: The multiplet energy, SCF and CI total energies of Tm3+

ion using the di�erent open-shell energy coe�cients for 3
H and average

state. Multiplet energies are in cm�1 and total energies are in atomic

unit.
3
H state average state

3
H5 9373. 9372.

3
H4 7153. 7153.

3
H6 0. 0.

SCF (a.u.) �12900.7265 �12900.6193

CI (a.u.) �12900.8670 �12900.8668

Table 4.8: Multiplet energies of Tm3+ for various Ze� (in cm�1 unit).

Ze� 69 60 50 41 experiment[12] DBPHF[29]
3
H5 16051. 13877. 11496. 9373. 8100. 9308.

3
H4 6639. 6809. 6998. 7153. none 7085.

3
H6 0. 0. 0. 0. 0. 0.
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Figure 4.5: Multiplet energy levels of (a)a Tm3+ ion without SO inter-

action, (b)Tm3+ with SO interaction and (c)a (TmP4)
3+ cluster
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Table 4.9. The values from Dirac-Breit-Pauli-Hartree-Fock (DBPHF)

calculations [29] and the photoluminescence spectra for trivalent lan-

thanide ions doped in LaCl3 compounds [33] are also shown in Table

4.9 for comparison. We can see that the present SOCI method can

yield multiplet energy levels closer to the experimental results than the

DBPHF values relative to the result of Base I. These results show that

the expansions of 4f orbitals, which are not included in the previous

calculations [59], are important in the SOCI calculations. A di�erence

of 4f orbitals between Base I and Base II is the contraction of 4f or-

bitals. In Base I, the outermost 4f orbital is not contracted, while all

of the primitive sets of 4f orbitals are completely contracted in Base

II. Thus, the 4f orbitals of Base I are more 
exible than Base II which

may be useful for ions. In fact, the ionic 4f orbitals are more localized

than the neutral ones in SCF calculations. In this sense, the Base II

can be considered as \expanded 4f orbitals".

In the present SCF and SOCI calculations, however, the single-

zeta basis function for 4f orbitals (SZ-4f) yield lower CI total energies

because the Coulomb energies between the 4f electrons are reduced in

the expanded orbitals. (ECI(SZ�4f) = �12901:0476 and ECI(DZ�4f) =

�12900:8672) The obtained multiplet energies with the SZ-4f orbitals

go down by 40 � 630 (cm�1) for ions. The reason why we get better

results than the previous ones with use of double-zeta 4f basis functions

is that the contracted 4f GTO's, which expand to outwards for ions,

lead to less SO splittings of the multiplet energies. The expanded 4f

orbitals will become better by including the relativistic term in the

SCF-CI method. This situation is already realized by DS calculation

as shown in Fig. 4.2.
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Table 4.9: Multiplet terms of RE3+ (in cm�1) with use of Base II the

Ze� obtained by DS.

RE3+ Ions. 2S+1
LJ

Multiplet Energy (cm�1)

Present Results DBPHF [29] Experiment [33]
3
H6 5188.9 5286. 4330.9 - 4230.9 a)

Pr3+ 3
H5 2538.7 2579. 2117.4 a)

3
H4 0.0 0. 0 - 96.05 a)

5
I8 7775.5 7979. 6525 - 6752 b)

5
I7 5675.1 5813. 4893 - 4933 b)

Pm3+ 5
I6 3647.3 3729. 3170 - 3211 b)

5
I5 1736.3 1772. 1537 - 1620 b)

5
I4 0.0 0. 0.0 b)

7
F6 5971.2 6016. 4978 c)

7
F5 4674.5 4692. 3909.0 c)

7
F4 3422.6 3421. 2877.2 c)

Eu3+ 7
F3 2257.3 2246. 1882.0 c)

7
F2 1238.1 1225. 1044.8 c)

7
F1 448.4 441. 380.16 c)

7
F0 0.0 0. 0.0 c)

7
F4 3738.6 3831. 3270.63 d)

Tb3+ 7
F5 2297.5 2350. 2018.79 d)

7
F6 0.0 0. 0.0 d)

Ho3+ 5
I7 5557.8 5761. 5087. e)

5
I8 0.0 0. 0.0 e)

3
H5 8958.5 9308. 8285. f)

Tm3+ 3
H4 6851.3 7085. 5795. f)

3
H6 0.0 0. 0.0 f)

Experimental observations are summarized in a �gure of ref. [33].

Listed numerical data of experiments are referred to the following pa-

pers, respectively. a) Reference [71, 72]. b) Reference [73, 74]. c) Refer-

ence [75]. d) Reference [76]. e) Reference [77]. f) Reference [78].
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The contribution of the excitations of 4f electrons to 5d and 6s

orbitals to CI expansions are small. The absolute values of the coef-

�cients of the con�guration state functions for the excitations are less

than 1 %. Thus, we can say that the photoluminescent excitations of

the 4f electrons are due to the intra-transitions in the 4f orbitals.

Let us explain the comparison between the present result and the

other ab initio calculation [28]. In that paper, Visser et al: calculated

the multiplet terms of a free Eu3+ ion and a cluster containing the ion by

Dirac-Fock complete open-shell CI (COSCI) method. The calculated

multiplets are listed in Table 2.5. The obtained values of the multiplet

terms for a free Eu3+ ion, from the ground state 7
F0 up to 7

F6, are of 0,

375, 1058, 1962, 3022, 4129, 5430 cm�1. They show better agreement

with the experimental results than the present results. The reason why

they got better results in CI calculations may come from that (1) the

relativistic ab initio (Fock-Dirac) is adopted in a SCF calculation and

that (2) the obtained Gaussian basis sets are well optimized. As for (1),

it is reasonable to get better SCF vectors by the fully relativistic calcu-

lations. Since the dimensions of CI expansions by their method is in the

same order as our calculation, we suppose that the reason of (1) is im-

portant.. In fact, the total energy by the Fock-Dirac CI is -10421.64489

a.u. which is lower than that of the present result -10390.434745 a.u.

Though this large di�erence of the CI total energy clearly comes from

the di�erence of the Hamiltonian, the obtained multiplet energies in

the present method make no large di�erence. It is because that the

multiplet energy is less sensitive to the di�erence of the total energy.

Thus, the present method is reasonable in the sense that the relative

energy gives a good agreement with experimental results.
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4.4 (TmP4)
3+ cluster

4.4.1 Introduction

In section 4.3 , we con�rmed that a single lanthanide ion was a reason-

able model for the present system because the multiplet energy levels

caused by SO interaction come mainly from 4f -4f interactions. On

the other hand, we also have interests in the lanthanide ions in semi-

conductors as impurities and the split multiplet terms by surrounding

semiconductor atoms in order to clarify the structure multiplets of 4f

electrons. The nature of chemical bonding is signi�cant as fundamen-

tal information of compounds. In this section, we describe one-electron

energy levels and the dependence of chemical bonding on the host semi-

conductor atoms for a (TmP4)
3+ clusters with Base III in Table 3.1.

Next, we show the multiplet structures of Tm3+ ion surrounded by four

P atoms. Finally, we suggest the type of transitions for 4f electrons.

4.4.2 SCF calculations

First, we discuss the character of one-electron MO's of a cluster. The

SCF one-electron orbital energy of a (TmP4)
3+ cluster is shown in Fig.

4.6 in which 5s, 5p and 4f MO's of Tm3+ and 3s, 3p MO's of P are

shown. 3p MO's of P atoms are the highest occupied molecular orbital

(HOMO) and Tm3+ 4f MO's are speci�ed to be partially occupied. It

is noted that the occupation number of 4f electron is �xed to be 12

7
.

Because of weak covalent bonding between Tm3+ and P, the atomic

nature of a Tm3+ ion remains in the molecular orbitals (MO's). In fact,

the components of P atoms are no more than 1 % in the valence MO's

for a Tm3+ ion. We show the valence MO's as bellow,
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�
4f

Tm MO
= 0:4'

4f
Tm

� 0:037' 5s
Tm

+ 0:035' 3s
P

+ 0:046'
3p
P
; (4:5)

and

�
3p

P MO
= �0:15' 4s

Tm
�0:33' 5s

Tm
�0:06'

4f
Tm

+0:14' 3s
P

�0:10'
2p

P
+0:38'

3p
P

;

(4:6)

where, ''s represent the component of the atomic orbitals of Tm3+

or P.

Figure 4.6: One-electron energy levels of a (TmP4)
3+ cluster. Speci�ed

atomic characters are mainly included in the MO's.

SCF ENERGY(a.u.)

0.0

�1.0

�2.0

�3.0

�4.0

5s

4f

3s

3p

Tm3+ P

5p

In eq. (4.5), we can say that 4f orbitals keep the atomic nature

in the cluster. The components of other atomic orbitals are bellow 10
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% of the 4f component. In eq. (4.6), the valence MO's for ligand P

atoms have weak covalency with 4f orbitals. We may call Tm3+ MO

or P MO even for a (TmP4)
3+ cluster.

4.4.3 Multiplet terms

In Fig 4.5, the basic view of hierarchic interactions of the multiplets of

(a) Coulomb interaction, (b) spin-orbit interaction and (c) crystal �eld

e�ects are shown for Tm3+ ion. The detail of the crystal �eld splitting

is shown in Fig. 4.7. From Fig. 4.5 the contribution of the ligand atoms

to 4f -multiplet energies is shown to be very small relative to Coulomb

and SO interactions. The magnitude of the splitting for 4f MO's by

ligand atoms is � 0.29 eV.

The multiplet energy levels of Tm3+ are splitted by the crystal �eld

into the irreducible representations of Td symmetry. For the ground

state 3
H6 ,

3
H6 ! A1 + A2 + E + T1 + 2T2.

The decompositions of the lowest three multiplet terms 4f 12 into Td

irreducible representations are listed in Table 4.10.

Table 4.10: Decompositions of the multiplet terms of 4f 12 into Td sym-

metry.

multiplet terms Td
3
H5 =) E + 2T1 + T2

3
H4 =) A1 + E + T1 + T2

3
H6 =) A1 + A2 + E + T1 + 2T2

To our knowledge only one paper was reported [12] about the op-

tical measurement of luminescence of Tm3+ in InP and the observed
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spectrum at 8100 cm�1 corresponds to the transition 3
H5 !

3
H6 .

The present results of multiplet energy splitting in (TmP4)
3+ cluster

are shown in Fig. 4.7 and Table 4.11. The results in Table 4.11 do not

follow the irreducible representations of Td. This arti�cial structures

are caused by the 3p MO's of P atoms which are open-shell structures.

The localized 4f orbitals does not hybridize with the ligand MO's as

is seen in eq. (4.6). Especially, the bonding 3p MO's are unstable

in the present SCF iterations. In order to obtain convergence in SCF

calculation, we adopted the bonding 3p MO's as unoccupied virtual

orbitals. This caused the arti�cial crystal �eld splitting patterns. We

should improve the one-electron atomic orbitals of the 4f and the 3p

orbitals.

In the present case, the crystal �eld e�ects are � 0.05 eV (� 417.

cm�1) for 3
H6 and � 0.036 eV (� 287. cm�1) for 3

H4 and � 0.032 eV

(� 276. cm�1) for 3
H5.

The mixture of spin multiplicities between S = 1 and S = 0 for a

(TmP4)
3+ cluster are similar to the case of a Tm3+ ion. Actually, the

coe�cients are (1) � 0.5 (S = 1) and � 0.06 (S = 0) for 3
H6, (2) �

0.4 (S = 1) and � 0.4 (S = 0) for 3
H4 and (3) � 0.5 (S = 1) and 0

(S = 0) for 3
H5.

The dominant CSF's coe�cients (0.1 � 0.6) are those for con�gu-

rations consisting of only 4f MO's. On the other hand the magnitudes

of CI coe�cients of single and double excitations to external MO's are

very small (less than 0.02). This shows that the excitation to outer or-

bitals from 4f is not so important and the main CSF's of a (TmP4)
3+

cluster consist of the con�guration interactions between 4f electrons.

This situation is already seen in the case of ions.
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Figure 4.7: Crystal �eld splitting of 3
H of a (TmP4)

3+ cluster.

multiplet energy (cm�1)

10000.

5000.

0. 3
H6

3
H4

3
H5
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Table 4.11: Multiplet energies for 3
H6 , 3

H4 and 3
H5 of (TmP4)

3+

cluster.
multiplet terms energy (cm�1)

9625
9625
9438
9416
94163

H5
9394
9394
9372
9372
9372
9350
7353
7243
7243
72213

H4
7221
7133
7133
7111
7067
417.0
417.0
175.6
153.6
153.6
87.83

H6
65.8
65.8
43.9
43.9
21.9
21.9
0.0
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The dominant con�gurations for 3
H5 are the high spin state of S = 1

and are the same as 3
H6. Thus, although the transition is exactly

determined by the selection rule of �J=1 in the case of a free ion,

the spin multiplicity of these two multiplets endures the electric dipole

transition corresponding to 3
H5!

3
H6 even in the case of a cluster, that

is consistent with the experimental observation. On the other hand, 3H4

states contain a low spin (S = 0) state as is mentioned above. Thus,

the transitions of 3H5 !
3
H6 are supposed. This low spin state is mixed

with the high spin state of 1G4 by the large intermediate coupling. The

singlet S = 0 spin states also exist in 3
H6 but the coe�cients of S = 0

CSF's are much smaller than those of S = 1 CSF's (� 10%). It is

because the possible intermediate coupling of 3
H6 with S = 0 is 1

I6,

but the multiplet energy of 1I6 is much higher. As for
3
H5 state, because

there is no J = 5 multiplet terms with S = 0, the spin states are only

those of S = 1 in the CSF's. These spin multiplicities of CSF's are

similar to those of single Tm3+ ion in the present calculation. In this

way, the intermediate coupling that can be obtained by ab initio SOCI

calculation is essential to know the transition probability between the

excited states and the ground states.
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Conclusion

In summary, we performed spin-orbit ab initio calculations for trivalent

lanthanide ions with even number electrons and for a (TmP4)
3+ cluster.

The multiplet energy levels for six lanthanide ions, Pr3+, Pm3+,

Eu3+, Tb3+, Ho3+ and Tm3+, and for a (TmP4)
3+ cluster were calcu-

lated by the non-relativistic SCF-HF calculations and the consequent

SOCI method in which the one-body spin-orbit interaction Hamiltonian

is taken into account.

In order to consider the open-shell structures of 4f electrons, open-

shell energy coe�cients are calculated using averaged state wavefunc-

tions.

A relativistic e�ect for the inner core is included in the spin-orbit

Hamiltonian with the use of e�ective nuclear charges which are obtained

by solving the atomic Dirac-Slater equation. The relativistic e�ect on

the expansions of 4f wavefunctions is well described by reducing of the

e�ective nuclear charges and adopting the basis functions for neutral

lanthanide atoms. We �nd that the relativistic corrections for the 4f

orbitals are important for the multiplet energies.

85
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The crystal �eld e�ect is included in a calculation for a (TmP4)
3+

cluster. The one-electron molecular orbitals keep the atomic nature for

a Tm3+ ion. The multiplet terms are splitted by the crystal �eld e�ect

much more weakly than by the Coulomb and spin-orbit e�ects.
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Appendix

Gaussian Basis sets for rare earth atoms obtained by S. Huzinaga.

This appendix is taken from the \Handbook of Gaussian Basis Sets

for Molecular Calculations" by S. Huzinaga, (Elsevier, 1984) pp. 92 �

93, 305 � 341.

The table for Gaussian basis sets for phosphorus and rare earth

atoms consists of (in atomic unit)

1. element (ground state for neutral atom), con�guration, contrac-

tion patterns.

2. total energy (TE), potential energy (PE), kinetic energy (KE).

3. one-electron orbital energy (ORB E).

4. expectation values (hrni) and the position of the maximum am-

plitude of the radial function (rmax).

5. expansion coe�cient (c) for obtaining the radial function for sub-

shell by linear combination of appropriate basis functions.

6. exponent (e) of the Gaussian basis set.

7. contraction coe�cient (d) of the contracted Gaussian basis sets.
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It is useful for the future calculation to show the basis sets that we

used in the present calculation. All basis sets are for neutral atom. In

future, the optimization of the basis sets trivalent ions with relativistic

e�ect should be taken intensively.

Since there are some contraction patterns for a atom, the contrac-

tion sets that we used in this thesis are speci�ed by the symbol * at

the atomic characters.


