修士論文

カーボンナノチューブの二重共鳴ラマン分光

東北大学大学院理学研究科

物理学専攻

佐藤 健太郎

平成 17 年

謝辞

本研究および修士論文の作成にあたり,終始御指導頂きました指導教官である齋藤理一 郎教授に心から御礼の言葉を申し上げます.

物理学についての助言を頂きました泉田渉助手に深く感謝の意をあらわします.

電子格子行列要素をはじめとするカーボンナノチューブの物性に対する助言を頂いただけではなく,プログラムの開発にも多大な御協力を頂いた Jie Jiang 様に深く感謝申し上げます.

拡張強束縛法のプログラム開発に多大な御協力を頂きました MIT の George G. Samsonidze 様に深く感謝申し上げます. *D*-band の重要な実験結果を提供して頂いただけでは なく,貴重な議論をして頂きました UFMG の L. G. Cançado 様, Marcos A. Pimenta 様 に深く感謝申し上げます. また共同研究者の皆様に深く感謝申し上げます.

電子光子行列要素,グラファイトにおける弾性散乱行列の議論に対して多大な御協力を 頂きました小山祐司様に深く感謝申し上げます.

事務作業をおこなって頂きました隅野節子様,若生洋子様,鹿野真澄様にも感謝いたします.

また,本研究をおこなうにあたっての CREST JST からの支援を感謝いたします. 最後に,精神的,経済的に支えて頂いた私の家族に感謝申し上げます.

目 次

第1章	序論	1
1.1	背景	1
1.2	目的	3
1.3	ラマン散乱の理論的背景と実験による測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.3.1 レイリー散乱	3
	1.3.2 共鳴ラマン散乱	4
	1.3.3 二重共鳴ラマン散乱	7
	1.3.4 欠陥に起因するラマン散乱	12
1.4	本論文の構成	13
第2章	結晶構造	15
2.1	グラフェンの結晶構造	15
2.2	カーボンナノチューブの結晶構造...........................	16
第3章	電子構造とフォノン	19
3.1	·	19
-	3.1.1 グラフェンの 電子構造	19
	3.1.2 カーボンナノチューブの電子構造	21
3.2	雷子構造によるカーボンナノチューブの分類	23
0.1	3.2.1 金属 [23
	3.2.2 金属Ⅱ	24
	3.2.3 半導体	25
3.3	フォノン	26
	3.3.1 Force Constant モデル \ldots	26
		27
	3.3.2 グラフェンのフォノン分散関係	
	3.3.2 グラフェンのフォノン分散関係	29
	 3.3.2 グラフェンのフォノン分散関係 3.3.3 カーボンナノチューブのフォノン分散関係 3.3.4 カーボンナノチューブのフォノンの固有ベクトル 	29 29
	 3.3.2 グラフェンのフォノン分散関係 3.3.3 カーボンナノチューブのフォノン分散関係 3.3.4 カーボンナノチューブのフォノンの固有ベクトル 	29 29
第4章	 3.3.2 グラフェンのフォノン分散関係	29 29 35

4.2	Jiang らの計算結果との比較	42
	4.2.1 RBM	42
	4.2.2 LO	44
	4.2.3 iTO	45
	4.2.4 intra-valley と inter-valley 散乱における電子格子行列要素	46
第5章	二重共鳴ラマン強度の計算結果	49
5.1	intra-valley 散乱	49
	5.1.1 IFMs \ldots	49
	5.1.2 iTOLA	50
	5.1.3 D' -band	51
5.2	inter-valley 散乱	52
	5.2.1 $2,450$ cm ⁻¹	54
	5.2.2 G' -band	54
第6章	欠陥に起因するラマン散乱の強度の計算結果	57
第6章 6.1	欠陥に起因するラマン散乱の強度の計算結果 <i>D</i> -band	57 57
第6章 6.1	欠陥に起因するラマン散乱の強度の計算結果D-band6.1.1弾性散乱行列	57 57 57
第6章 6.1	欠陥に起因するラマン散乱の強度の計算結果D-band6.1.1弾性散乱行列6.1.2D-bandの強度	57 57 57 58
第6章 6.1 第7章	欠陥に起因するラマン散乱の強度の計算結果 D-band	 57 57 57 58 61
第6章 6.1 第7章 7.1	欠陥に起因するラマン散乱の強度の計算結果 D-band	 57 57 58 61 61
第6章 6.1 第7章 7.1	欠陥に起因するラマン散乱の強度の計算結果 D-band	 57 57 58 61 61 61
第6章 6.1 第7章 7.1	欠陥に起因するラマン散乱の強度の計算結果 D-band	 57 57 58 61 61 61 61
第6章 6.1 第7章 7.1	欠陥に起因するラマン散乱の強度の計算結果 D-band	57 57 58 61 61 61 61 62
第6章 6.1 第7章 7.1 7.2	欠陥に起因するラマン散乱の強度の計算結果 D-band 6.1.1 弾性散乱行列 6.1.2 D-band の強度 6.1.2 Million (1998) 6.1.2 Ai論と今後の課題 6.1.2 7.1.1 電子格子行列要素 7.1.2 二重共鳴ラマン散乱バンド 7.1.3 グラファイトにおける D-band の強度 今後の課題 6.1.2	57 57 58 61 61 61 61 62 62
第6章 6.1 第7章 7.1 7.2	欠陥に起因するラマン散乱の強度の計算結果D-band	57 57 58 61 61 61 61 61 62 62 62
第6章 6.1 第7章 7.1 7.2	欠陥に起因するラマン散乱の強度の計算結果 D-band 6.1.1 弾性散乱行列 6.1.2 D-bandの強度 6.1.2 Ai論と今後の課題 6.1.1 第二十二、 7.1.1 電子格子行列要素 7.1.2 「二重共鳴ラマン散乱バンド 7.1.3 グラファイトにおける D-bandの強度 7.2.1 二重共鳴ラマンバンドの強度 7.2.2 欠陥に起因するラマン散乱バンドの強度 7.2.2	57 57 58 61 61 61 61 61 62 62 62 62

発表実績

67

第1章 序論

1.1 背景

カーボンナノチューブは Iijima らによって 1991 年に発見された [1, 2] 炭素原子で構成 された円筒状の物質で,直径は数ナノメートル,長さは現在のところ肉眼でも確認可能な 数ミリメートルのものまでが作成されている [3] ナノ素材である.

カーボンナノチューブを作成する方法はいくつかあり,その中でも工業的製造法として はアーク放電法,High Pressure CO Conversion法(HiPco法),Catalytic Chemical Vapor Deposition法(CCVD法)がある[4].アーク放電法は低圧のアルゴンガスや水素ガスの 雰囲気下で,二本のグラファイト棒の間に電圧をかけてアーク放電を起こし,陽極と陰 極から炭素を蒸発させてカーボンナノチューブを生成する方法である.アーク放電法は 多層カーボンナノチューブを無触媒で生成できるが,収率,純度,コストに問題がある. HiPco法とCCVD法は高温下(600°から1,200°)で炭素含有化合物の蒸気と触媒を接触さ せて,カーボンナノチューブを生成する方法である.HiPco法は高圧の一酸化炭素を触媒 のFe(CO)5 と反応させ,単層カーボンナノチューブを高純度で生成できるが[5],生成し たカーボンナノチューブに触媒が30%程度混合することが問題である.CCVD法は高温 下でエチレンなどの炭化水素を金属微粒子触媒上に流動させ,単層カーボンナノチューブ を作成する[4].

カーボンナノチューブはグラフェンを円筒状に巻いた物質であり,その巻き方によって 金属または半導体になる[6]という他のナノ素材には見られない性質を持つ.カーボンナノ

図 1.1: 肉眼でも見られる water-assisted CVD 法によって作られた高さ 2.5mm のカーボ ンナノチューブの束 [3].7mm×7mm のシリコンウェハーの上にカーボンナノチューブが 束になって生えている.左に見えるのはマッチ棒の先端.

図 1.2: カーボンナノチューブによるラマン散乱光の例 [9]. (a) HiPco 法によって作られ たカーボンナノチューブの束 (b) 孤立した金属カーボンナノチューブと半導体カーボンナ ノチューブからのラマン散乱光.低エネルギー側から RBM, IFMs, *D*-band, *G*-band, *M*-band, *G*'-band が見られる.図中の*はカーボンナノチューブが敷かれている酸化シリ コンからの散乱光である.

チューブの電子構造は一次元であるために,電子状態密度が発散する点があり[6],結晶構造によってその発散点,つまりエネルギーも異なっている.これは van Hove Singularities (vHSs) として知られており[7],フォトルミネッセンス (PL) によって vHSs 間のエネルギーを直接観測できる[8].

vHSs の存在によりカーボンナノチューブの光学的性質は特徴付けられるので,結晶構 造の異なるカーボンナノチューブの物性を分光学から探ることは有用と考えられる.PL の他にカーボンナノチューブの物性を分光学で探る手法としてはラマン分光がある.ラマ ン分光では,物質の格子振動により入射光が変調を起こし散乱されるため,散乱光から物 質中の格子振動の状態を知ることができる.しかし,一般的には結晶のラマン分光ではブ リルアンゾーン内の中心付近の情報しか得られない.図1.2はカーボンナノチューブのラ マン散乱光の例である[9].カーボンナノチューブのフォノン分散と対称性から,本来は 図1.2 中では RBM と *G*-band と呼ばれるラマン散乱バンドのみがラマン活性モードとし て観測されるはずである[6].しかし,実験結果から明らかなように他所にもラマン散乱 バンドが観測され,その起源が研究されている.

カーボンナノチューブではその電子構造の特殊性から[6], ラマン分光によってブリル アンゾーンの端の情報も得ることができる.これは二重共鳴ラマン散乱として知られて いる[10].この理論を使うと一つのフォノンが生成・消滅する一次のラマン散乱バンドだ けではなく,二つのフォノンの組み合わせを考慮した二次のラマン散乱バンドや,一つの フォノンと弾性散乱の組み合わせを考慮した二次のラマン散乱バンドの存在を説明でき る.後者の中では*D*-bandと呼ばれる試料の欠陥に起因したラマン散乱バンド[11,12]が

2

良く知られている.

これらのラマン散乱バンドがどのような格子振動から成り立っているのかは,現在まで に調べられてきているが,ラマン散乱バンドとフォノン分散のエネルギーの対応関係から 格子振動を推測していたり,電子光子相互作用,電子格子相互作用を考慮して強度を計算 している例は少なかったが,共鳴ラマン分光実験の進歩とともにラマン散乱光の相対強度 を知ることが重要になってきた.

ラマン散乱バンドにあらわれる情報は格子振動の状態であり,その計算には電子格子相 互作用の理解が必要である.カーボンナノチューブにおける電子格子相互作用は輸送現 象,高速光学応答現象,電子の緩和現象,PLの強度を議論するうえでも必要である.

1.2 目的

本研究では二重共鳴ラマン散乱光の強度を計算することによって,実験から得られた六つの散乱バンドを作るフォノンを同定し,またラマンスペクトルの相対強度から SWNT における電子格子相互作用の立体構造依存性, *k* 異方性の基本的知見を得ることを目的とする.

1.3 ラマン散乱の理論的背景と実験による測定結果

以下では本研究の目的となる背景および原理についてまとめる.

ラマン分光では,対象物質の格子振動における状態間遷移が起こるよりも高いエネル ギーの光をあてて,入射光とは違う方向に散乱してきた光の強度をそのエネルギーに対し て分光する.カーボンナノチューブにおけるラマン散乱光の起源は,これから述べる三種 類に分類される.

1.3.1 レイリー散乱

レイリー散乱とは,物質に光を入射すると,原子をとりまく電子が入射光の振動数で強制振動を起こされ,同じ振動数の光を放出する現象である.レイリー散乱の散乱係数 k_s は式 (1.1) に従う.

$$k_s = \frac{2\pi^6}{3} n \left(\frac{m^2 - 1}{m^2 + 1}\right)^2 \frac{d^5}{\lambda^4}.$$
(1.1)

ここで *n* は粒子数, *m* は反射係数, *d* は粒子経, λ は波長である. レイリー散乱の効果として良く知られている例は,空の色である.式 (1.1)から青色の光は赤色の光よりも強く 散乱されることが分かる.日中は太陽光が大気圏を進む距離はあまり長くないので,太陽

図 1.3: ラマン散乱の例.図は液化四塩化炭素によるラマン散乱光.中央の明るく青い線 がレイリー散乱光.長波長側 ($\nu_0 - \alpha$)がストークス散乱,短波長側 ($\nu_0 + \alpha$)が反ストーク ス散乱になる.参考文献 [13] より引用.

光のうちの青色の光が多く散乱され,空が青く見える.早朝や夕方になると太陽光が大気 を斜めに通過するため距離が長くなり,青色の光は散乱されすぎて強度が小さくなる.逆 に赤色の光は余り散乱されないので青色の光よりも強度が強い.そのために朝焼けや夕焼 けが起こる.

1.3.2 共鳴ラマン散乱

散乱光を詳しく調べると,図1.3のようにエネルギーが少しずれた場所に弱い散乱光の 存在が分かる.これがラマン散乱光である.高エネルギー側を反ストークス散乱,低エネ ルギー側をストークス散乱と呼ぶ.

レイリー散乱と同様に, ラマン散乱も強制振動を受けて励起された電子が出す光である.一般的に入射光の波数は対称物質のブリルアンゾーンの大きさと比べると非常に小さいので,レイリー散乱と共鳴ラマン散乱はブリルアンゾーンの中心(Γ点)付近でしか起こらない.物質がある振動数ωで振動しているとする.そこへ振動数Ωの光を入射すると,入射光は

$$\sin \omega t \sin \Omega t \propto \cos((\Omega - \omega)t) - \cos((\Omega + \omega)t), \qquad (1.2)$$

図 1.4: カーボンナノチューブにおける共鳴ラマン散乱の例 [14].

という変調を受ける.この変調は電子のモーメントによるものである.つまりラマン散乱 で観測されるのは強制振動を受けて誘起された電子の双極子モーメントになる.このモー メント μ から分極率 α は

$$\alpha_{ij} \propto \frac{\langle m|\mu_i|n\rangle\langle n|\mu_j|g\rangle}{E_n - E_g + \hbar\omega},\tag{1.3}$$

とあらわされる.ここで $|g\rangle$, $|m\rangle$, $|n\rangle$ は電子だけではなく結晶の振動の状態も含む波動 関数であり,

$$|g\rangle = |0\rangle_{\rm e} |\omega_{\rm grand}\rangle_{\rm vib},$$

$$|n\rangle = |1\rangle_{\rm e} |\omega_{\rm n}\rangle_{\rm vib},$$

$$|m\rangle = |0\rangle_{\rm e} |\omega_{\rm ex}\rangle_{\rm vib},$$

(1.4)

となる.ここで $|0\rangle_{e}$, $|1\rangle_{e}$ は電子が0または1 個ある時の波動関数, $|\omega\rangle_{vib}$ は結晶が振動数 ω で振動しているときの波動関数である.基底状態 $|g\rangle$ から中間状態 $|n\rangle$ に励起され,再 び電子は $|g\rangle$ と同じ基底状態であるが振動は別の状態 $|m\rangle$ に遷移する.

ラマン散乱には分極率がかかわるため,系の遷移をあらわす演算子の規約表現は分極率の規約表現であらわすことができる.振動の基底状態は全対称であるために,振動によ リラマン散乱が観測されるのは,振動のモードがその物質が属する群のx²,y²,z²,xy, yz,zxのどれかと同じ規約表現に従うときに限定され,これらの基底を持つ振動はラマ ン活性モードという[15].ラマン活性モードでなければ強度は無いが,逆にラマン活性 モードであっても強度が必ずしも強いわけではない.図1.4にカーボンナノチューブにお ける共鳴ラマン散乱の例を示す[14].図1.4で矢印があるところはラマン活性であるがラ マン散乱バンドが弱すぎて観測されていない.一方,図1.4において1,347cm⁻¹というエ ネルギーを持つラマン散乱バンドはカーボンナノチューブとグラファイトのΓ点付近の

図 1.5: SWNT における RBM モードの共鳴ラマン散乱強度のレーザーエネルギー依存性 [16].

フォノン分散には存在しない振動である.このラマン散乱バンドは D-band と呼ばれており,カーボンナノチューブとグラファイト中の欠陥に起因するラマン散乱バンドである. D-band や,他のラマン活性ではないが実験において観測されているラマン散乱バンドについては次節の二重共鳴ラマン散乱で説明できる.

図1.5 はカーボンナノチューブにおける RBM モードのフォノンによる共鳴ラマン散乱 強度のレーザーエネルギー依存性を示している [16].第三章で述べるようにカーボンナノ チューブの電子状態密度は結晶構造に依存して,vHSs の位置が変化する.そのため,入 射光のエネルギーを変えると個々のナノチューブの共鳴条件が変わり,ラマン散乱バンド の強度が変化する.つまり,入射光のエネルギーによってラマン強度が得られるか,得ら れないかが決まる.また RBM モードのフォノンはカーボンナノチューブの結晶構造によ リエネルギーが異なる.これを利用すると,図1.5 からカーボンナノチューブの結晶構造 を類推することが可能となる.

ストークス線と反ストークス線の強度 I_{Stokes} , $I_{\text{Anti-Stokes}}$ は

$$I_{\text{Stokes}} \propto n_{\boldsymbol{q}} + 1, \quad I_{\text{Anti-Stokes}} \propto n_{\boldsymbol{q}},$$
 (1.5)

のように,波数q,モード μ のフォノンの数 $n(q, \mu)$ に比例する. $n(q, \mu)$ はボーズ-アインシュタイン統計に従い,

$$n(q,\mu) = \frac{1}{\exp(\hbar\omega(q,\mu)/k_{\rm B}T) - 1},$$
(1.6)

フォノン分散関係 $\omega(q, \mu)$ によって与えられる.従って一般的にストークス線の方が反ス トークス線よりも強度が強い.これは図 1.3 にもあらわれている.ラマン散乱においては ストークス線と反ストークス線は対称にあられるので,本研究ではストークス線のみを計 算対象とする.

共鳴ラマン散乱のストークス線の強度 I は [9]

$$I(\omega, E_{\text{laser}}) = C\left(\frac{E_a}{E_i}\right) \left(n(q, \mu) + 1\right) \sum_i \left|\sum_a \frac{M_{op}(i, b)M_{el-ph}(b, a)M_{op}(a, i)}{\Delta E_{ai}(\Delta E_{ai} - \hbar\omega)}\right|^2, \quad (1.7)$$
$$\Delta E_{ai} \equiv E_{\text{laser}} - (E_a - E_i) - i\gamma,$$

ここで*C*はカーボンナノチューブの結晶構造によらない定数, ω は波数*q*,モード μ のフォノンの振動数, E_{laser} は入射光のエネルギー, M_{op} は電子光子行列要素 [17, 18], M_{el-ph} は電子格子行列要素,また*i*,*a*,*b*はそれぞれ電子の初期状態,励起状態,散乱後の状態をあらわす.ここで γ はフォノンの寿命をあらわす.共鳴ラマン散乱の強度と線幅は γ にも依存する [19]が,本研究では不確定性関係から導いた 0.06eV という定数だと近似した.式 (1.7)において E_{laser} が $E_a - E_i$ もしくは $E_a - E_i - \hbar\omega$ に等しい場合,強度が1000倍以上も強くなる.カーボンナノチューブでは第三章で述べるように電子状態密度に発散があるためにこの共鳴効果がより強くあわられる.

1.3.3 二重共鳴ラマン散乱

レイリー散乱と共鳴ラマン散乱はブリルアンゾーンの中心付近のみで起こる.しかし, 図1.2や図1.4のように,実験ではこの二つの散乱からは説明できない散乱光が観測され ている.

Saito らはカーボンナノチューブにおけるこれらのラマン散乱バンドは,二個のフォノンの組み合わせ,または一つのフォノンと弾性散乱の組み合わせによる[10],二重共鳴ラマン散乱によるものだとした.図1.6はカーボンナノチューブとグラファイトにおけるラマン散乱のストークス散乱の過程を示している.ラマン散乱ではエネルギーが1eVから3eVのレーザーを試料に照射する.グラファイトとカーボンナノチューブの電子構造においては,この入射光のエネルギーで励起される電子はブリルアンゾーンの六角形の隅のK点(K点の定義は第二章,第三章参照)近傍の電子に限定される.なぜならばグラファイトはK点にフェルミエネルギーを持つからである.特にグラファイトのK点付近の電子のエネルギーバンドは図1.6のように直線で近似でき,等エネルギー面はK点を中心とした円として近似される[4].図1.6(a)は一つのフォノンによる共鳴ラマン散乱をあらわす.図1.6(b)は一つのフォノンの放出と弾性散乱の組み合わせ,図1.6(c)は二つのフォノンの放出の組み合わせ,による二重共鳴ラマン散乱をあらわしている.

二重共鳴ラマン散乱過程を図 1.6 で追うと,

1. 波数kを持つ電子が,価電子バンドから伝導バンドに励起される. M_{optic} .

図 1.6: (a) 共鳴ラマン散乱 (b) 一つのフォノンと弾性散乱の組み合わせによる二重共鳴ラ マン散乱 (c) 二つのフォノンの組み合わせによる二重共鳴ラマン散乱 . 実線はフォノン , 破線は弾性散乱をあらわす [9] .

- 2. 電子が波数 qのフォノンを放出し,波数 k + qへ散乱される. $M_{
 m el-ph}$.
- 3. 電子が波数 -qのフォノンを放出し,波数 k へ散乱される.運動量保存のためにフォノンの波数は -q となる. M_{el-ph} .
- 4. 光子を放出し,最初の状態へと戻る. M_{optic}.

となる.これらの条件に矛盾しなければ,あるK点付近で励起された電子は,図1.7のように Γ 点近傍の波数だけでなく,K点近傍の波数を持ったフォノンを吸収・放出して,別のK点近傍へも散乱される.同じK点近傍での, Γ 点近傍の波数を持ったフォノンによる二重共鳴ラマン散乱の過程をintra-valley 散乱,あるK点から異なるK点へと散乱されるような,K点近傍の波数を持ったフォノンによる過程をinter-valley 散乱と呼ぶ.図1.7はinter-valley 散乱の過程を示している.左上の等エネルギー円上の電子が,フォノンを放出して右上の等エネルギー円上へと散乱される.このとき描かれる二つの等エネルギー円上の電子に対して同様な散乱過程を起こすフォノンを全て考えると,右端にあるような円の集合を得る.このフォノンの集合の状態密度はK点に最も近い箇所と,最も遠い箇所において発散する.そのため,二重共鳴ラマン散乱においてはこの二つの集合に属するフォノンが強くあらわれる.K点に近いフォノンは,波数の変化が小さいのでフォノンの分散が小さく,逆にK点から遠いフォノンの集合は波数の変化が大きいのでフォノンの分散が大きい.前者をq=0,後者をq=2kと呼ぶ.二重共鳴ラマン散乱バンドに分散が

図 1.7: ストークス散乱における inter-valley 散乱の様子.右端にある円の集合の内側が q = 0,外側が q = 2k に対応する [20].

なければq = 0, あればq = 2kと推測される.これはintra-valley 散乱においても同様である.

ストークス散乱における二重共鳴ラマン散乱バンドの強度は[9]

$$I(\omega, E_{\text{laser}}) = \sum_{i} \left| \sum_{a,b,\omega_1,\omega_2} \frac{M_{op}(i,c)M_{el-ph}(c,b)M_{el-ph}(b,a)M_{op}(a,i)}{\Delta E_{ai}(\Delta E_{ai} - \hbar\omega_1)(\Delta E_{bi} - \hbar\omega_1 - \hbar\omega_2)} \right|^2, \quad (1.8)$$

となる.ここで $\omega = \omega_1 + \omega_2$ となる.ここで*i*,*a*,*b*,*c*はそれぞれ,初期状態,励起状態,一つ目の散乱後の中間状態,二つ目の散乱後の中間状態をあらわす. γ は共鳴ラマン散乱と同じように 0.06eV と近似する.

二重共鳴ラマン散乱により説明できるラマン散乱バンドのうち,主要なものの測定値 を紹介する.ここで言う,ラマン散乱バンドのシフトの高低とはすべてフォノンのエネル ギーのことである.ラマン散乱バンドが高エネルギー側へシフトすると言った場合はフォ ノンのエネルギーが増加する方へとラマン散乱バンドが移動するということにする.

本研究で解析対象とする二重共鳴ラマン散乱バンドは次の六つである.

IFMs

Intermidiate Frequency Modes (IFMs) とは 600 cm⁻¹ から 1,100 cm⁻¹ の微弱なラマン散 乱バンドを指す [21, 22] . その強度は *G*-band の 100 分の 1 程度である.図 1.8 は IFMs の 測定結果である [22] . IFMs の興味深い点は,試料としてカーボンナノチューブの束を用 いると,入射光のエネルギーが増加するにつれて,ラマン散乱バンドが低エネルギー側と 高エネルギー側へ移動する点である.図 1.8 において 850 cm⁻¹ 付近に分散の無いラマン 散乱バンドが存在するが,これはカーボンナノチューブのフォノン分散から考えると Γ 点 付近での oTO フォノンによる共鳴ラマン散乱バンドである.これから IFMs は Γ 点付近

図 1.8: (a) アーク放電法により作られた直径が 1.5 ± 0.3 nm のカーボンナノチューブの 束から得られた IFMs と (b) HiPco 法により作られた直径が 1.0 ± 0.3 nm のカーボンナノ チューブの束から得られた IFMs のレーザーエネルギー依存性 [22].

の音響フォノンとoTOフォノンの結合モードだと考えられる.

$$\omega_{IFMs+} = \omega_{\text{oTO}} + \omega_{\text{acoustic}}, \quad \omega_{IFMs-} = \omega_{\text{oTO}} - \omega_{\text{acoustic}}. \tag{1.9}$$

oTO フォノンが放出されるのに対して,音響フォノンが放出(+)もしくは吸収(-)され 図 1.8のような分散を作ると考えられる.Γ点付近の散乱であるから IFMs は intra-valley 散 乱である.またフォノンの状態密度を考えると, intra-valley 散乱ではジグザグナノチュー ブに近いほうが散乱強度が強いことが期待できる.

iTOLA

 $1,800 \text{cm}^{-1}$ から $2,100 \text{cm}^{-1}$ の間にある微弱なラマン散乱バンドを指す.入射光のエネル ギーが増加するにつれて高エネルギー側へとシフトする.名前の通り Γ 点付近の iTO フォ ノンと LA フォノンが両方とも放出(または吸収)される結合モードだと考えられている. 図 1.9 は iTOLA モードの測定結果である [23].分散があるため q = 2k だと考えられる.

 $2,450 \text{cm}^{-1}$

 $2,450 \text{ cm}^{-1}$ 付近の微弱なラマン散乱バンドを指す.K点付近のフォノンの組み合わせだと 考えられており,まだどのフォノンの組み合わせになっているかは分かっていない.このラ マン散乱バンドには分散が無いためq = 0であると考えられている.図1.10は $2,450 \text{ cm}^{-1}$ の測定値である[24].

図 1.9: M-band と iTOLA . 参考文献 [23] より引用 .

図 1.10: 孤立した SWNT における (a) G'-band と (b) 2,450 cm⁻¹ 付近 の二重共鳴ラマン 散乱バンド [24] .

図 1.11: *G'*-band と 2,450 cm⁻¹ の二重共鳴ラマン散乱バンドの分散 [24].測定した試料は, 孤立した SWNT(丸),孤立した DWNT(黒三角), HOPG(×).

G'-band

 $2,700 \text{cm}^{-1}$ 付近のラマン散乱バンドを指し,図 1.2 に見られるように *G*-band のような 強い強度を持つ.図 1.10(a) に *G*'-band の実験での測定値を示す [24].図から *G*'-band に は分散があるため q = 2k だと考えられる.フォノン分散との対応を考えると *G*'-band は K 点付近のフォノン, inter-valley 散乱,でラマン散乱バンドのエネルギーから *D*-band を 作るフォノンが二個放出または吸収される倍音モードと考えられている.*D*-band の強度 は結晶中の欠陥に依存するが,*G*'-band は依存しない.

D'-band

3,200⁻¹ 付近のラマン散乱バンドを指す. *D'*-band は *G*-band を作るフォノンが二個放出また吸収されるモードと考えられている.

1.3.4 欠陥に起因するラマン散乱

D-band

D-band は欠陥に起因する二重共鳴ラマン散乱バンドだと考えられている.実際,高 純度で結晶性が良いグラファイトである Highly Oriented Pyrolytic Graphite (HOPG)を 用いると *D*-band は観測されない. HOPG に熱処理を施して意図的に欠陥を作成すると *D*-band が観測されるようになる.図1.12 は *D*-band が欠陥に起因していることを直接示

図 1.12: マイクロラマン分光を用いた *D*-band の測定結果.図中のラマン散乱バンドは1. アームチェアエッジ,2.ジグザグエッジ,3. HOPG の表面からの散乱光である[12].

す実験結果である[12].マイクロラマン分光を用いて,HOPGの任意の箇所からのラマン 散乱光を観測すると,図1.12のようにHOPGのエッジに入射光を当てた場合にはラマン 散乱光中に *D*-band が観測される.AFM を用いてエッジの状態を調べると,アームチェ ア型になっていることが観測されている.

1970 年に Tuinstra らはグラファイトにおける *D*-band の強度が次式に従うことを発見 した [11].

$$\frac{I_{\rm D}}{I_{\rm G}} = \frac{44({\rm \AA})}{L_{\rm a}}.$$
 (1.10)

ここで I_D は D-band の強度, I_G は G-band の強度, L_a はクラスタのサイズをあらわす. HOPG に熱処理を加えるとグラファイトの表面にクラスタが生成される.このクラスタ は図 6.1 のようなユニットセルの集合体であり,熱処理の温度によりその平均的な大きさ L_a が変化し,高温で処理するほど,クラスタのサイズが大きくなる.つまり D-band を 形成する為の欠陥は減少する.2005年にL.G. Cançado らは図 1.13 測定結果から D-band の強度は $E_{\text{laser}} \ge L_a$ との間には次の関係があるとした [25].

$$\frac{I_{\rm D}}{I_{\rm G}} \propto \frac{1}{E_{\rm laser}^4 L_{\rm a}}.$$
(1.11)

1.4 本論文の構成

本節では本論文の構成を述べる.

図 1.13: (a) *D*-band の強度の E_{laser} 依存性 (b) *D*-band の強度の L_{a} 依存性 . L. G. Cançado らによる [25].

第一章では本研究の背景,目的とカーボンナノチューブにおけるラマン散乱について述べた.

第二章ではグラフェンとカーボンナノチューブの結晶構造について述べる.(n,m)という値からカーボンナノチューブの結晶構造は分類される.この分類は電子構造,フォノン, ラマン散乱の強度などに関係することが以降の章から分かる.

第三章ではグラフェンとカーボンナノチューブの電子構造とフォノンについて述べる. カーボンナノチューブにおいては電子状態密度に発散があり,またフォノンについては結 晶構造による振動方向の依存性があることを示す.

第四章ではグラフェンとカーボンナノチューブにおける電子格子行列要素について述べる. Jiang らの手法 [26] に格子振動の取り扱いに補正を加えた計算をおこない,結果の比較をおこなう.

第五章ではカーボンナノチューブにおける二重共鳴ラマン散乱の強度の計算結果と実験 結果との比較をおこなう.

第六章ではグラファイトにおける欠陥に依存するラマン散乱の強度の計算結果と実験結 果との比較をおこなう.

第2章 結晶構造

カーボンナノチューブは炭素原子で構成されたナノサイズの管である.直径は数ナノ メーター,長さは短いものはナノメートルのスケールから,長いものは現在のところ肉眼 でも確認できるミリメートルの大きさまで作られている.単層の管となっているものを 単層カーボンナノチューブ,二層のものを二層カーボンナノチューブ,多層のものを多層 カーボンナノチューブと呼び,これらをまとめてカーボンナノチューブと呼ぶ.本研究で はカーボンナノチューブの物性を考察するうえで基礎となる単層カーボンナノチューブを 研究の対象とする.以後,とくに断りが無い限りカーボンナノチューブとは単層カーボン ナノチューブを指すこととし,SWNT(Single Wall Carbon Nanotube)と呼ぶことにする. SWNT は炭素で構成された管の総称であるため,結晶構造には様々な種類がある.次 章で述べるように,SWNT は各々の結晶構造の違いから電子構造に差異が生じ,半導体 や金属になるなど多彩な性質をもつ.

2.1 グラフェンの結晶構造

グラフェンは炭素原子から作られる二次元のシートで,グラフェンが積み重なったものがグラファイトとなる.SWNTの結晶構造はグラフェンを円筒状に巻いたものなので, グラフェンの結晶構造の理解がかかせない.そのため,最初にグラフェンの結晶構造について述べる.図2.1のように,グラフェンは炭素原子が六角格子の上に配置された構造になっている.ユニットセルは正六角形であり,その中に二個の炭素原子を含んでいる.こ

図 2.1: グラフェンの単位格子ベクトル

図 2.2: グラフェンの逆格子ベクトル

図 2.3: (5,2) ナノチューブのユニットセル

の二個の炭素原子を A 原子, B 原子と呼ぶことにする. グラフェンの基本格子ベクトルは

$$\boldsymbol{a}_1 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \boldsymbol{a}, \quad \boldsymbol{a}_2 = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \boldsymbol{a}, \tag{2.1}$$

ここでaは基本格子ベクトルの大きさで, $a = \sqrt{3}a_{c-c}$ となる. a_{c-c} はもっとも近い炭素 原子どうしの距離であり, $a_{c-c} \simeq 0.142$ nmなので $a \simeq 0.246$ nmである.

逆格子ベクトルは

$$\boldsymbol{b}_1 = \left(\frac{1}{\sqrt{3}}, 1\right) \frac{2\pi}{a}, \quad \boldsymbol{b}_2 = \left(\frac{1}{\sqrt{3}}, -1\right) \frac{2\pi}{a}, \tag{2.2}$$

となる.図 2.2 にグラフェンの逆格子ベクトルを示す.グラフェンは実空間,逆格子空間ともに六角格子で表現することができる.

2.2 カーボンナノチューブの結晶構造

SWNT はグラフェンを円筒状に巻いたものである.グラフェンの一部を切り出して筒状にすると SWNT のユニットセルになる.図2.3のように,もとのグラフェンの座標で考ると,二つの SWNT 用の基本格子ベクトルがあれば,SWNT のユニットセルを定義できることが分かる.

ーつはカイラルベクトル (Chiral vector) と呼ばれる円周方向を定義するベクトルで,次のように定義される.

$$\boldsymbol{C}_{\mathrm{h}} = n\boldsymbol{a}_{1} + m\boldsymbol{a}_{2} \quad (m \le n; n \in \mathsf{N}, m \in \mathsf{N}).$$

$$(2.3)$$

グラフェンの基本格子ベクトルの係数 (n,m) によって SWNT のユニットセルは決まる. 以後, $n \ge m$ を SWNT の結晶構造を分類する指標として用い, カイラルベクトルの係数 が $n \ge m$ の SWNT を (n,m) ナノチューブと呼ぶことにする.

もう一つは Tlanslational vector と呼ばれる SWNT の軸方向を定義するベクトルで

$$T = t_1 a_1 + t_2 a_2, \quad t_1 = \frac{2m+n}{d_R}, \quad t_2 = \frac{2n+m}{d_R},$$
 (2.4)

となる.ここで d_{R} は $2m + n \ge 2n + m$ の最大公約数である. $C_{h} \ge T$ により囲まれる部分がSWNTのユニットセルとなる.

SWNTのユニットセルには N_u 個の正六角形が含まれることが次式から分かる.

$$N_{\rm u} = \frac{|\boldsymbol{C}_{\rm h} \times \boldsymbol{T}|}{|\boldsymbol{a}_1 \times \boldsymbol{a}_2|}.$$
(2.5)

これからユニットセルには全部で $2N_u$ 個の炭素原子が含まれていることが分かる . $C_h \ge a_1$ がなす角 θ はカイラル角 (Chiral angle) と呼ばれている .

$$\theta = \arccos\left(\frac{\boldsymbol{C}_{\mathrm{h}} \cdot \boldsymbol{a}_{1}}{|\boldsymbol{C}_{\mathrm{h}}||\boldsymbol{a}_{1}|}\right) = \arccos\left(\frac{2n+m}{2\sqrt{n^{2}+m^{2}+nm}}\right).$$
(2.6)

 θ がとる範囲は $0^{\circ} \le \theta \le 30^{\circ}$ となる.

図 2.3 に (5,2) ナノチューブの基本格子ベクトルとユニットセルを例として示す. C_h と T から作られるユニットセルを丸めて SWNT にするときには,この四角形の対辺上にある正六角形が滑らかにつながることが図 2.3 から分かる.

次に SWNT の逆格子ベクトル K₁, K₂ を考える. 逆格子ベクトルは基本格子ベクト ルと

$$C_{h} \cdot K_{1} = 2\pi, \quad T \cdot K_{1} = 0,$$

$$C_{h} \cdot K_{2} = 0, \quad T \cdot K_{2} = 2\pi,$$
(2.7)

を満たすベクトルなので

$$\boldsymbol{K}_{1} = \frac{1}{N_{u}}(-t_{2}\boldsymbol{b}_{1} + t_{1}\boldsymbol{b}_{2}), \quad \boldsymbol{K}_{2} = \frac{1}{N_{u}}(m\boldsymbol{b}_{1} - n\boldsymbol{b}_{2}), \quad (2.8)$$

と書ける. K₁が円周方向, K₂が軸方向に対応した逆格子ベクトルになっている.

例として図 2.4 に (6,3) ナノチューブの逆格子ベクトルとブリルアンゾーンを示す.短 い黒線が (6,3) ナノチューブのブリルアンゾーンである.SWNT のブリルアンゾーンは図 2.4 のように複数の短い線から作られている.そのため,ブリルアンゾーンのことをカッ ティングラインとも呼ぶ.式 (2.8) から SWNT のブリルアンゾーンは円周方向に量子化さ れており, K_1 は N_u 倍されると最初と同じ状態にたどり着くことが分かる.すなわち円 周方向には N_u 個の量子化された状態が存在し,SWNT が一次元物質であることを示して いる.

図 2.4: (6,3) ナノチューブの逆格子ベクトルとブリルアンゾーン

構造の種類	Chiral angle θ	$oldsymbol{C}_{ m h}$
Zigzag	0°	(n,0)
Armchair	30°	(n,n)
Chiral	$0^\circ \leq \theta \leq 30^\circ$	$(n,m), n \neq m$

表 2.1: 結晶構造から見たカーボンナノチューブの分類

以上より, SWNT の波数ベクトル K は次のように書くことができる.

$$\mathbf{K} = \mu \mathbf{K}_1 + k \mathbf{K}_2, \quad (1 - \frac{N_u}{2} \le \mu \le \frac{N_u}{2}; -\frac{1}{2} \le k \le \frac{1}{2}). \tag{2.9}$$

SWNT は表 2.1 のように (n,m) の値によって 3 種類に分けられる . (n,0) をジグザグナ ノチューブ, (n,n)をアームチェアナノチューブ, (n,m)をカイラルナノチューブと呼ぶ . 図 2.5 に (10,0) のジグザグナノチューブ, (10,10)のアームチェアナノチューブ, (10,4)の カイラルナノチューブの結晶構造を示す.これらの呼称はユニットセルの軸方向の境界の 形に由来している.また θ によって六角格子が傾いているのが分かる.

図 2.5: SWNT の結晶構造の例.(a) (10,0) のジグザグナノチューブ.軸方向の境界がジ グザグになっている.(b) (10,10) のアームチェアナノチューブ.軸方向の境界が椅子の手 すりのようになっている.(c) (10,4) のカイラルナノチューブ.軸方向の境界は不規則.

第3章 電子構造とフォノン

3.1 電子構造

SWNT はその結晶構造によって半導体か金属かに別れ,表3.1のように分類される[27]. SWNT の電子構造は,結晶構造の考察と同じように,グラフェンの電子構造が基礎となる.よってグラフェンの電子構造についての考察をおこなった後に,SWNT の電子構造 とその違いによる分類法を考察する.

Ge. G. Samsonidze らは強束縛法において計算に取り入れる近接原子の範囲を最近接原 子だけではなく,10Bohrの範囲にまで広げて計算をおこない[28],実験とのよい一致を 確認した.本研究ではこの手法を用いて電子構造を計算し,またこの手法を拡張強束縛法 (ETB)と呼ぶことにする.

3.1.1 グラフェンの電子構造

位置r,波数k,電子のエネルギーバンドaのグラフェンのブロッホ波動関数は

$$\Psi_{a,k}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{s,o} C_{s,o}(a, \mathbf{k}) \sum_{u} e^{i\mathbf{k}\cdot\mathbf{R}_{u,s}} \phi_{s,o}(\mathbf{r} - \mathbf{R}_{u,s}), \quad (a = 1, ..., 8)$$
(3.1)

と書かれる.ここで N は結晶中のグラフェンのユニットセルの数, s は A または B 原子, u は各正六角形の位置, o は 2s, $2p_x$, $2p_y$, $2p_z$ の各軌道, ϕ は電子の原子軌道の波動関数 をあらわす.系のハミルトニアンを H とすると,波数 k,電子のエネルギーバンド a の 固有エネルギー $E_a(k)$ は

$$E_{a}(\boldsymbol{k}) = \frac{\langle \Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) | H | \Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) \rangle}{\langle \Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) | \Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) \rangle}$$

$$= \frac{\sum_{s,o,s',o'} C_{s',o'}^{*} C_{s,o} \sum_{u,u'} \langle \phi_{s',o'} | H | \phi_{s,o} \rangle}{\sum_{s,o,s',o'} C_{s',o'}^{*} C_{s,o} \sum_{u,u'} \langle \phi_{s',o'} | \phi_{s,o} \rangle}$$

$$\equiv \frac{\sum_{s,o,s',o'} C_{s',o'}^{*} C_{s,o} H_{s,o,s',o'}}{\sum_{s,o,s',o'} C_{s',o'}^{*} C_{s,o} S_{s,o,s',o'}}$$
(3.2)

種類	分類方法	E _F 近傍のカッティングライン
半導体Ⅰ	$\mod(2n+m,3) = 1$	
半導体 II	$\mod(2n+m,3)=2$	
	$\text{if } \operatorname{mod}(N,3) = 1$	$\mu_1 = \pm (N-1)/3, \ \mu_2 = \pm (N+2)/3$
	$\text{if } \operatorname{mod}(N,3) = 2$	$\mu_1 = \pm (N+1)/3, \ \mu_2 = \pm (N-2)/3$
金属 1	$\mod(3m/d_R,3)=0$	
	if $d_X = 1$	$\mu_1^{\rm H} = \pm (N/3 + 1), \ \mu_1^{\rm L} = \pm (N/3 - 1)$
	if $d_X = 2$	$\mu_1^{\rm H} = \pm (N/3 - 1), \ \mu_1^{\rm L} = \pm (N/3 + 1)$
金属 2p	$\mod(3m/d_R,3)=1$	$\mu = (3p+2)N + m/(-3t_2)$
金属 2m	$\mod (3m/d_R, 3) = 2$	$\mu = (3p+2)N - m/(-3t_2)$

表 3.1: 電子構造から見た SWNT の分類 . $N = 2(n^2 + m^2 + nm)/d_R$, $d_R = \gcd(2n + m, 2m + n)$, $d_X = \mod((2n + m)/d, 3)$. $\gcd(a, b)$ は $a \ge b$ の最大公約数 , $\mod(a, b)$ は $a \ge b$ で割った余り. p は式 (3.11) から求まる .

となる.ここで $H_{s,o,s',o'}$ は飛び移り積分, $S_{s,o,s',o'}$ が重なり積分である.強束縛法では $E_a(\mathbf{k})$ が最小になるような係数 $C_{s,o}(a, \mathbf{k})$ を求めるので,

$$\frac{\partial E_a(\mathbf{k})}{\partial C^*_{s',o'}} = \sum_{s,o} C_{s,o} H_{s,o,s',o'} - E_a(\mathbf{k}) \sum_{s,o} C_{s,o} S_{s,o,s',o'} = 0,$$
(3.3)

とする.ここで*C*aを

$$C_a \equiv \begin{pmatrix} C_{1,1}(a, \mathbf{k}) \\ \vdots \\ C_{s,o}(a, \mathbf{k}) \end{pmatrix}, \qquad (3.4)$$

と定義すれば,式(3.3)は

$$\begin{aligned} HC_a &= E_a(\mathbf{k})SC_a,\\ \det|H - ES| &= 0, \end{aligned} \tag{3.5}$$

と書くことができ,永年方程式 (3.5) からグラフェンの電子構造を求めることができる. 実際の数値計算では *H*,*S*には Porezag らが第一原理計算から求めた値 [29] を用いた.

式 (3.5) から求めたグラフェンの電子構造は図 3.1 のようになる.赤線が π^* バンド,青線が π バンドとなる.グラフェンは K 点で π^* バンドと π バンドが接しており伝導体となる.これは SWNT が金属と半導体に分かれる原因となっている.

K点近傍のエネルギーバンドは直線で近似できる[4].

$$E(k) = \frac{\sqrt{3}}{2}\gamma_0 ka. \tag{3.6}$$

図 3.1: グラフェンの電子構造.赤線が π* バンド,青線が π バンド. K 点でこれらのバン ドが接しているのが分かる.

ここで,kはK点から測った距離,aはグラフェンの単位格子ベクトルの長さ, γ_0 は飛び移り積分の値である.K点に近い部分では等エネルギー面は円で近似される.実際は,等エネルギー面は円ではなく三角形に歪んでおり,その性質はトリゴナルワーピングエフェクトと呼ばれている[30,31].このため,SWNTのカッティングラインのK点の横切り方により,電子の状態密度に差が現れ,物性に影響を与える.特に半導体 IとIIのSWNTの間において影響があらわれる.

3.1.2 カーボンナノチューブの電子構造

SWNTの電子構造を拡張強束縛法で計算した結果を図 3.2 と図 3.3 に示す.図 3.2(a) は (10,0) ナノチューブの $E_{\rm F}$ 付近のエネルギー分散関係,図 3.2(b) は状態密度を示している. (10,0) ナノチューブにはバンドギャップがあり半導体になっていることが分かる.図 3.3(a) は (10,10) ナノチューブの $E_{\rm F}$ 付近のエネルギー分散関係,図 3.3(b) は状態密度を示して いる.(10,10) ナノチューブにはバンドギャップが無いために金属になっていることが分 かる.

この原因はSWNTの結晶構造とグラフェンの電子構造に由来する.グラフェンはブリル アンゾーンのK点でエネルギーバンドが接しているために伝導体になる.そのためSWNT のカッティングラインがK点を含んで横切ると,SWNTはエネルギーギャップが無くなっ て金属になり,横切らないとエネルギーギャップが生じて半導体になる.

SWNT は一次元物質であるから,エネルギーバンドの傾きが0になる箇所で状態密度 が発散する.これは van Hove Singuralities(vHS) と呼ばれ [7], vHS のエネルギー幅が小 さい順に, E_{11} , E_{22} ,...といった呼称がつけられている.vHS のエネルギーに近いエネ

図 3.2: (a) (10,0) ナノチューブの $E_{\rm F}$ 付近のエネルギー分散関係 . (10,0) ナノチューブは エネルギーギャップが存在することから半導体となる . (b) (10,0) ナノチューブの状態密 度 . 図の赤線が E_{11} , 緑線が E_{22} に対応する .

図 3.3: (a) (10,10) ナノチューブの $E_{\rm F}$ 付近のエネルギー分散関係. (10,10) ナノチューブ はエネルギーギャップが存在しないことから金属となる. (b) (10,10) ナノチューブの状態 密度. 図の赤線が E_{11} ,緑線が E_{22} に対応する.

図 3.4: 金属 I の SWNT のブリルアンゾーンの例. (a) (6,3) ナノチューブのブリルアン ゾーン.ここで N = 42, p = q = 1, $\mu = 14, 28$. (b) (9,3) ナノチューブのブリルアンゾーン.ここで N = 78, p = 4, q = 3, $\mu = 26, 52$.

ルギーを持った光を SWNT に当てると,強い光吸収が観測される.vHS のエネルギー幅 は (n, m) により異なるため,光のエネルギーを変えることにより SWNT の電子構造,つ まり結晶構造を推測することができる [8].

3.2 電子構造によるカーボンナノチューブの分類

SWNT はカッティングラインの K 点の横切りかたにより,表 3.1 のように分類される. 本節では SWNT の電子構造による分類法と,vHS を持つカッティングラインの解析的な 探索法について述べる.

3.2.1 金属 I

mod(2n+m,3) = 0を満たす SWNT は金属となる.その中でも $mod(3m/d_R,3) = 0$ を満たす SWNT を金属 I と呼ぶことにする.図 3.4 に金属 I のナノチューブのブリルアン ゾーンを示す. $NK_1 = -t_2b_1 + t_1b_2$ かつ $0 \le \mu < N$ であることを考慮すると, Γ 点から 数えて最初に K または K' 点を横切るカッティングラインは

$$\mu \mathbf{K}_1 = \Gamma \dot{\mathbf{K}} + p \mathbf{b}_1 + q \mathbf{b}_2 \quad (0 \le p < (-t_2), 0 \le q < t_1; p, q \in \mathsf{N}), \tag{3.7}$$

図 3.5: 金属 I と II の SWNT のカッティングラインの K 点の横切り方の例. (a) 金属 1 の (6,3) ナノチューブ (b) 金属 2p(4,1) ナノチューブ (c) 金属 2m の (5,2) ナノチューブ.

とあらわされる.ここで $\overrightarrow{\Gamma K}$ は Γ 点からブリルアンゾーンの右上にある K 点までのベクトルで

$$\overrightarrow{\Gamma K} = \frac{1}{3} \left(2\boldsymbol{b}_1 + \boldsymbol{b}_2 \right), \qquad (3.8)$$

となる.式 (3.8) を式 (3.7) に代入し, b₁ と b₂ の係数を比較すれば

$$\mu = \frac{2(3p+2)(n^2+m^2+nm)}{3(2n+m)}, \quad \mu = \frac{2(3q+2)(n^2+m^2+nm)}{3(2m+n)}$$
(3.9)

を得る.ここから *p* と *q* は

$$(3p+2)t_1 = (3q+1)(-t_2) \tag{3.10}$$

という関係を満たすことが分かる.t₁とt₂は互いに素なので

$$(3p+2) = -xt_2, \quad (3q+1) = xt_1, \quad x = 1 \text{ or } 2$$
 (3.11)

となる.xは式(3.7)のpとqの条件から1または2である.

実際に, E_{11} , E_{22} を持つカッティングラインを求めてみると, (6,3)ナノチューブでは N = 42, p = q = 1, $\mu = 14, 28$, (9,3)ナノチューブではN = 78, p = 4, q = 3, $\mu = 26, 52$ となる.これらの値は図 3.4 からも正しいことが分かる.

3.2.2 金属 II

 $mod(3m/d_R,3) = 1$ を満たす SWNT を金属 2p, $mod(3m/d_R,3) = 2$ を満たす SWNT を金属 2m と呼ぶことにする.金属 II のカッティングラインが K 点を横切ると きは図 3.5 のように $k \pm K_2/3$ のどちらかで横切る.そのため, K 点を横切るカッティン

グラインは

$$\mu \boldsymbol{K}_1 \pm \frac{1}{3} \boldsymbol{K}_2 = \overrightarrow{\Gamma K} + p \boldsymbol{b}_1 + q \boldsymbol{b}_2. \tag{3.12}$$

とあらわされる.式(3.7)に代入すると

$$t_1 p + t_2 q = -\frac{m}{d_{\rm R}} \pm \frac{1}{3}.$$
(3.13)

を得る. 残念ながら解析的な方法で式 (3.15) は解けないが, 対応する p, q が見つかれば μ は

$$\mu = \frac{(3p+2)N \pm m}{-3t_2}.$$
(3.14)

となる.

3.2.3 半導体

SWNT は (n,m)が mod (2n+m,3) = 1なら半導体 I, mod (2n+m,3) = 2なら半 導体 II と呼ばれる. K 点に最も近いカッティグラインは

$$\left(\mu \pm \frac{1}{3}\right) \boldsymbol{K}_1 \pm \frac{1}{3} \boldsymbol{K}_2 = \overrightarrow{\Gamma K} + p \boldsymbol{b}_1 + q \boldsymbol{b}_2.$$
(3.15)

とあらわされる.ここで + と - は半導体の I と II をあらわす. E_{11} と E_{22} のカッティング ラインをそれぞれ μ_1 と μ_2 とすれば,金属の場合と同様にして

$$\mu_1 = \pm \frac{N-1}{3}, \quad \mu_2 = \pm \frac{N+2}{3}, \quad \text{if} \mod (N,3) = 1, \\ \mu_1 = \pm \frac{N+1}{3}, \quad \mu_2 = \pm \frac{N-2}{3}, \quad \text{if} \mod (N,3) = 2.$$
(3.16)

となる.

例えば、半導体 I の (4,2) ナノチューブだと N = 28, $\mu_1 = \pm 9$, $\mu_2 = \pm 10$, 半導体 I の (6,1) ナノチューブだと N = 86, $\mu_1 = \pm 28$, $\mu_2 = \pm 29$ となる.

以上の分類法に従って電子構造により SWNT を分けると図 3.6 のようになる.

図 3.6: SWNT の電子構造による分類.分類方法は表 3.1 を参照.

3.3 フォノン

ラマン散乱スペクトルにあらわれるピークのエネルギーは,入射光のエネルギーから, 相互作用により生成・消滅したフォノンのエネルギーを加減したものに等しい.励起され た電子の緩和過程においては,電子がフォノンを放出しながら安定状態へと遷移する.こ れらの物理現象の説明にはSWNTのフォノンの性質を知る必要がある.SWNTの形状は 理想的な円柱では無いので,格子振動には結晶構造依存性があらわれる[32].

本節では Force Constant モデルからフォノンの分散関係と固有ベクトルを計算する.従来は近接原子として第四近接原子までを取り入れた計算がなされていたが[33], Samsonidze らは第 20 近接原子までを取り入れた計算をおこない [28],より正確な値を得た.本研究では Samsonidze らの手法を用いてフォノンの分散関係と固有ベクトルを計算し,さらに次章で述べる電子格子行列要素の計算にも用いる.

3.3.1 Force Constant モデル

ある炭素原子 i とその近接炭素原子 j とが K_{ij} という Force Constant のもとで振動をおこなっている.ここで K_{ij} は

$$K = \begin{pmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz}. \end{pmatrix}$$
(3.17)

という二階のテンソルである.運動方程式は

$$M_i \ddot{\boldsymbol{u}}_i = \sum_j K_{ij} (\boldsymbol{u}_j - \boldsymbol{u}_i), \quad (i = 1, \dots, N),$$
(3.18)

ここで u_i はi番目の炭素原子の平衡位置からのずれ, M_i はi番目の炭素原子の質量である.今後の計算のために u_i をフーリエ級数で展開する.

$$\boldsymbol{u}_{i} = \frac{1}{\sqrt{N_{\Omega}}} \sum_{\boldsymbol{k}} e^{-i(\boldsymbol{k}\cdot\boldsymbol{R}_{i}-\omega t)} \boldsymbol{u}_{\boldsymbol{k}}^{i}, \quad \boldsymbol{u}_{\boldsymbol{k}}^{i} = \frac{1}{\sqrt{N_{\Omega}}} \sum_{\boldsymbol{R}_{i}} e^{i(\boldsymbol{k}\cdot\boldsymbol{R}_{i}-\omega t)} \boldsymbol{u}_{i}.$$
(3.19)

 N_{Ω} は全状態数, ω は各格子振動のモードの振動数である.式(3.19)を式(3.18)に代入すると

$$\left(\sum_{j} K_{ij} - M_{i}\omega^{2}(\boldsymbol{k})I\right) \sum_{\boldsymbol{k}'} e^{-i\boldsymbol{k}'\cdot\boldsymbol{R}_{i}}\boldsymbol{u}_{\boldsymbol{k}'}^{i} = \sum_{j} K_{ij} \sum_{\boldsymbol{k}'} e^{-i\boldsymbol{k}'\cdot\boldsymbol{R}_{j}}\boldsymbol{u}_{\boldsymbol{k}'}^{j}, \quad (3.20)$$

となる.ここで I は単位行列である.この両辺に $e^{i \mathbf{k} \cdot \mathbf{R}_i}$ をかけて \mathbf{R}_i で和をとると

$$\sum_{\boldsymbol{R}_{i}} e^{i(\boldsymbol{k}'-\boldsymbol{k})\cdot\boldsymbol{R}_{i}} = N_{\Omega}\delta_{\boldsymbol{k}',\boldsymbol{k}}.$$
(3.21)

の関係から次式を得る.

$$\left(\sum_{j} K_{ij} - M_{i}\omega^{2}(\boldsymbol{k})I\right)\boldsymbol{u}_{\boldsymbol{k}}^{i} - \sum_{j} K_{ij}e^{i\boldsymbol{k}\cdot\Delta\boldsymbol{R}_{ij}}\boldsymbol{u}_{\boldsymbol{k}}^{j} = 0.$$
(3.22)

ここで $\Delta R_{ij} = R_i - R_j$ である.式 (3.22) は 3×3 の要素に分解することができ,

$$D_{(ij)}(\boldsymbol{k}) = \left(\sum_{j''} K_{ij''} - M_i \omega^2(\boldsymbol{k}) I\right) \delta_{ij} - \sum_{j'} K_{ij'} e^{i\boldsymbol{k}\cdot\Delta\boldsymbol{R}_{ij'}}, \qquad (3.23)$$

という永年方程式を得る.

グラフェン, SWNT のフォノン分散関係と固有ベクトルは式 (3.23) を解くことにより 得られる.本研究では図 3.7 のように第 20 近接原子殻までを計算に取り入れる. *K_{ij}* には Dubay らが第一原理計算から求めた Force Constant を使用した [34].

3.3.2 グラフェンのフォノン分散関係

SWNTのフォノン分散関係はSWNTの電子構造のように考えると理解しやすい.大まかに言うと,SWNTのフォノン分散関係はグラフェンのフォノン分散関係からSWNTのカッティングラインが通過する部分を切り出した形になる.そのために前節の電子構造と同じように,グラフェンのフォノン分散関係から述べる.

図 3.7: 中心が A 原子の場合の近接原子殻.円の中心から,赤が5,オレンジが10,黄が20番目の近接原子殻.

図 3.8: (a) 式 (3.23) と Dubay らの Force Constant[34] から計算したグラフェンのフォノン分散関係.(b) グラファイトにおける K 点付近の Kohn 異常. Piscanec らによる [35].

図 3.8(a) は計算によって得たグラフェンのフォノン分散関係である.SWNTのフォノン分散関係は,グラフェンにおける oTA モードのフォノンのエネルギーがΓ点で有限値を持つことなどを除けば,ほぼ図 3.8(a) に準ずる.Piscanec らはグラフェンのΓ点とK 点付近の光学フォノンに Kohn 異常があると指摘し[35],図 3.8 の K 点付近の iTO モードのフォノンが

$$\hbar\omega_q = \hbar\omega_K + \alpha q, \quad \alpha = 973 \text{cm}^{-1}, \quad \omega_K = 1250 \text{cm}^{-1}. \tag{3.24}$$

という式に従うとした.iTO モードのフォノンは本研究で考察の対象としている二重共鳴 ラマン散乱光に深くかかわっている.そのため,Kohn 異常を考慮したフォノン分散によ る考察は今後の課題である.

図 3.9: (10,0) ナノチューブのフォノン分散関係 . (a) は全体 , (b) は低エネルギー付近の 拡大図 .

3.3.3 カーボンナノチューブのフォノン分散関係

図 3.9(a) は (10,0) ナノチューブのフォノン分散関係,図 3.9(b) は (a) の低エネルギー 部分の拡大図,同様に図 3.10(a) は (10,10) ナノチューブのフォノン分散関係,図 3.10(b)は (a) の低エネルギー部分の拡大図である.横軸はカッティングラインの K_2 方向であり, $|K_2|$ で規格化している.図 3.9, 3.10 には全てのカッティングライン上でのフォノンの分 枝が投影されている.

SWNTにはグラファイトと同じように六個のフォノンモードがある.SWNTはユニットセルに N_u 個の正六角形を含むので,ユニットセル中には 2N_u 個の炭素原子がある.格子振動の自由度は 6N_u 個であり,そのうちの4つが音響フォノンの分枝となる.図 3.9(b) と図 3.10(b) でエネルギーが0になっている二本の分枝のうち,エネルギーの低い方が iTA フォノン,高いほうが LA フォノンである.そのうち iTA は二重に縮退している.その上にあるのがツイスティングモード (TW) である.また 100 cm⁻¹ から 300 cm⁻¹ 付近には, ラジアルブリージングモード (RBM) と呼ばれているモードがある.RBM は Γ 点で有限のエネルギーを持つ光学フォノンの分枝である.これは SWNT の結晶構造が円筒状のためにあらわれる光学フォノンの分枝であり,次節で見るように SWNT の軸に対して垂直な方向への一様伸縮な振動となっている.SWNT の結晶構造によって RBM のエネルギーが異なるので,RBM のラマン散乱光のエネルギーから SWNT の種類を推測することができる.

3.3.4 カーボンナノチューブのフォノンの固有ベクトル

Reich らはカイラル角が小さい (8,4) ナノチューブや (9,3) ナノチューブにおいて, LO と iTO モードのフォノンが高エネルギーの場合に混成することを第一原理計算から指摘 した [32].本節では Force Constant モデルからこの指摘についての考察をおこなう.また Reich らが計算をおこなわかった SWNT についての考察もおこなう.

図 3.10: (10,10) ナノチューブのフォノン分散関係 . (a) は全体 , (b) は低エネルギー付近の拡大図 .

図 3.11 は (10,4) ナノチューブの Γ 点における六個のフォノンモードの振動方向を示し ている.図 3.11(a) から (c) は音響フォノンであり, (c) 以外は並進運動である.(a) はナ ノチューブの軸方向への並進運動 (LA), (b) はナノチューブの軸を中心とした回転運動 (TW), (c) は軸に垂直な方向への一様な伸縮運動 (RBM) である.

図 3.11(d) から (f) は (10,4) ナノチューブの光学フォノンである. (d) は軸に垂直な方向 への振動 (oTO), (e) はナノチューブの軸方向への振動 (LO), (f) はナノチューブの軸を 中心とした振動 (iTO) をあらわす.

SWNT の結晶構造が理想的な円柱になっているとすれば,図 3.12 の (x, 0, 0) の位置に ある炭素原子の Γ 点におけるフォノンの単位ベクトルは,それぞれ

$$\hat{\boldsymbol{e}}_{\mathrm{LA}}^{A} = (0, 0, \frac{1}{\sqrt{2}}), \quad \hat{\boldsymbol{e}}_{\mathrm{TW}}^{A} = (0, \frac{1}{\sqrt{2}}, 0), \quad \hat{\boldsymbol{e}}_{\mathrm{RBM}}^{A} = (\frac{1}{\sqrt{2}}, 0, 0), \\ \hat{\boldsymbol{e}}_{\mathrm{oTO}}^{A} = (\frac{1}{\sqrt{2}}, 0, 0), \quad \hat{\boldsymbol{e}}_{\mathrm{iTO}}^{A} = (0, \frac{1}{\sqrt{2}}, 0), \quad \hat{\boldsymbol{e}}_{\mathrm{LO}}^{A} = (0, 0, \frac{1}{\sqrt{2}}).$$

$$(3.25)$$

となる.しかし,SWNT は正六角形が集まって出来ているために完全な円筒形ではないため,理想的な形状からのずれが大きい.カイラルナノチューブでは例としてあげた図 3.11(e)と(f)のように,式(3.25)のようにはなっていない.

逆に,ジグザグナノチューブやアームチェアナノチューブのように対称性がよいSWNT の格子振動は式 (3.25)の値に近い.図3.13 に (10,0)ジグザグナノチューブ,図3.14 に (10,10)アームチェアナノチューブのΓ点における (a) iTO と (b) LO のフォノンの振動の 方向を示す.このようにSWNT の結晶構造によって格子振動の方向依存性があらわれる. この傾向はジグザグナノチューブに近いカイラルナノチューブにおいて強く,ジグザグナ ノチューブかアームチェアナノチューブになると図3.13と図3.14のように偏向が小さく なる.図3.15 は (6,0) ナノチューブから (26,26) ナノチューブのΓ点におけるフォノンの 単位ベクトルの向きを示している.各点が一つのSWNT における格子振動の向きをあら わす. (a)がRBM, (b)の赤点がLO,青点がiTO モードのフォノンである.緑点に近い ほどLO とiTO モードのフォノンの混成が強い.

図 3.11: (10,4) ナノチューブの Γ 点での格子振動の様子 . それぞれ , (a) LA (b) TW (c) RBM (d) oTO (e) LO (f) iTO に対応する . (10,4) ナノチューブのようなカイラルナノ チューブでは格子振動の方向が理想的な振動にはならないことが分かる .

図 3.12: SWNT の座標と炭素原子の位置

図 3.13: (10,0) ナノチューブのΓ点での格子振動の向き . (a) LO (b) iTO .

図 3.14: (10,10) ナノチューブのΓ点での格子振動の向き . (a) LO (b) iTO .

図 3.15: (6,0) ナノチューブから (26,26) ナノチューブの Γ 点におけるフォノンの単位ベク トルの向きを示している.各点が一つの SWNT における格子振動の向きをあらわす.(a) が RBM,(b)の赤点が LO,青点が iTO,緑点に近いほど LOと iTO モードのフォノンの 混成が強い.

RBM は SWNT の軸に対して垂直な方向への一様伸縮運動であるが,図3.15(a)のよう に軸方向への振動を持つ SWNT も存在する.z 成分が少ない点はアームチェアナノチュー ブ,z 成分が多い点はジグザグナノチューブに近い.さらにz 成分とy 成分が小さいほど 直径が大きい.これは SWNT の直径が大きくなるほどグラフェンに近づくので,RBM の 振動方向が SWNT の表面に対して垂直になるためである.

iTO モードのフォノンは y 方向への振動である.x,z 方向への偏向を持ち,直径が大き いほど x,z 方向への偏向が小さい.LO モードのフォノンは z 方向への振動である.x成 分が少ない点ほどアームチェアに近く、多いほどジグザグナノチュープに近い.また直径 が大きいほど x,y 方向への偏向が小さい.Γ点においても図 3.15(b)の yz 平面での偏向か ら iTO とLO モードのフォノンが混ざりだす傾向が見られる.図 3.16 は (6,0) ナノチュー プから (26,26) ナノチューブにおけるの Γ点における LO モードのフォノンの単位ベクト ルの向き大きさの (a) 直径依存性と (b) カイラル角依存性である.青点が z 成分,赤点が x 成分,黒点が y 成分を示している.直径が大きくなるにつれてグラフェンに近づくので, 偏向である x,y 成分が減少している.さらに z 成分も一定値に近づく.また iTO モード のフォノンも同様の依存性を示す.カイラル角依存性を見ると、ジグザグナノチューブに 近い SWNT の方が偏向が強いことが見られる.これは、グラフェンにおいては LO モー ドのフォノンの向きはユニットセル中の炭素原子を結ぶ線分上を向き、逆に iTO モード のフォノンの向きは垂直になるためである.アームチェアナノチューブを軸に対して垂直 に切ると、切り口における炭素原子の振動方向がグラフェンでの振動方向になる.ジグザ グナノチューブも対称性がよいので、図 3.13 のように LO と iTO モードのフォノンは分

図 3.16: (6,0) ナノチューブから (26,26) ナノチューブにおける Γ 点の LO モードのフォノ ンの単位ベクトルの向きの (a) 直径依存性 (b) カイラル角依存性 . 青点が z 成分, 赤点が x 成分, 黒点が y 成分である. (a) の直径はグラフェンの単位格子ベクトルの大きさを単 位としている.

離する.しかし,カイラル角が増えるに従って炭素原子の振動方向がグラフェンにおける 振動方向からずれていくので偏向が大きくなる.

これらのフォノンの固有ベクトルの偏向は次章の電子格子行列要素の計算に影響を与える.特にLOとiTOモードのフォノンが混成しだす領域では,電子格子行列要素の値も区別がつかなくなり,SWNTの物性に影響を与える.

第4章 電子格子行列要素

SWNTにおけるラマン散乱, PL,電子の緩和過程,輸送などの現象には電子とフォノンの相互作用の理解が必要である.

Jiang らは拡張強束縛法をもとに SWNT における電子格子行列要素を計算した [26]. Γ 点付近では音響フォノンによる格子振動は結晶全体の並進運動になるために,電子格子相 互作用の値は 0 に近づく.しかし、Jiang らの手法は格子振動における炭素原子同士の相 対運動を考慮していないため, Γ 点付近における音響フォノンと電子の相互作用が大きく なる問題があった.

そこで本研究では Jiang らの手法に炭素原子同士の格子振動における相対運動を取り入れた電子格子相互作用を計算し, Jiang らが計算した値との比較をおこなう.

4.1 電子格子行列要素

前章で述べたように,SWNTには四つの音響フォノンの分枝がある. Г点において, RBM を除いた三つの音響フォノンはSWNTの二つの並進運動に対応する. これらの運 動は炭素原子同士の相対位置に変化が無いために電子格子行列要素が小さくなる.本節で は格子振動を相対的に取り扱い,電子格子行列要素を計算する.

図 4.1 のように各炭素原子を中心とした円柱座標を考える.相互作用に関与する二つの 原子がそれぞれの平衡点 $R \ge R'$ から $u \ge u'$ だけずれる.各炭素原子の平衡点からのずれ による相対的なずれは,法線方向(\hat{e}_r),接線方向(\hat{e}_{θ})とz軸方向(\hat{e}_z)に分離される.こ れらを Δr , $\Delta \theta$, Δz とすると

$$\Delta r = \boldsymbol{u}' \cdot \hat{\boldsymbol{e}}_{r'} - \boldsymbol{u} \cdot \hat{\boldsymbol{e}}_{r},$$

$$\Delta \theta = \boldsymbol{u}' \cdot \hat{\boldsymbol{e}}_{\theta'} - \boldsymbol{u} \cdot \hat{\boldsymbol{e}}_{\theta} + (\theta' - \theta) \frac{\boldsymbol{u}' \cdot \hat{\boldsymbol{e}}_{r'} + \boldsymbol{u} \cdot \hat{\boldsymbol{e}}_{r}}{2},$$

$$\Delta z = \boldsymbol{u}' \cdot \hat{\boldsymbol{e}}_{z'} - \boldsymbol{u} \cdot \hat{\boldsymbol{e}}_{z},$$
(4.1)

となる.式 (4.1) の $\Delta \theta$ の二項目は SWNT が円柱であることから現れる.各炭素原子が法 線方向に動くと,相対的には炭素原子同士は接線方向に動く.これらが各原子の格子振動 に対応し,位置 r にある炭素原子の相対的な格子振動 S(r) は

$$\boldsymbol{S}(\boldsymbol{r}) = \Delta r \hat{\boldsymbol{e}}_r + \Delta \theta \hat{\boldsymbol{e}}_\theta + \Delta z \hat{\boldsymbol{e}}_z.$$
(4.2)

図 4.1: SWNT を軸に垂直な平面から見たときの相対運動の基本ベクトル. \hat{e}_z の方向は紙面に対して垂直になっている.

と表現される.ここで θ は \hat{e}_r がx軸となす角である.式(4.1)の $\Delta \theta$ の二項目($\Delta \theta_2$)は SWNTが円柱形であることから現れる.この項が無い場合はRBMの格子振動をあらわ せなくなる.相対運動の導入により各格子振動は次のようになる.

- **RBM** 図 4.1 の \hat{e}_r 方向への一様伸縮運動に対応する. $\Delta \theta_2$ が無い場合,式 (4.1) の値が 0 になる.しかし RBM は波数ベクトルが0 でも存在する振動である.図 4.1 から RBM の振動を相対運動として考えてみると, \hat{e}_r よりも \hat{e}_{θ} 方向への運動成分が多い ことが分かる.そこで,式 (4.1) の $\Delta \theta$ に \hat{e}_r 方向から \hat{e}_{θ} 方向への運動を成り立たせ る項を導入する. $\Delta \theta_2$ は \hat{e}_r 方向の成分が作る円弧に相当する.
- **TW** 図 4.1 の \hat{e}_{θ} 方向への一様回転運動に対応する. $\Delta \theta_2$ が無い場合でも TW では一様回 転を表現できる.そのため,相対運動を考慮するにあたって TW の並進運動を壊し てはいけない. RBM における要請から $\Delta \theta_2$ に補正項が入るが, \hat{e}_r 方向の成分から \hat{e}_{θ} 方向への運動を導いているので TW には影響がない.そのため Γ 点では TW は 並進運動となる.また iTA も TW と同様である.
- LA Γ 点では \hat{e}_z 方向への一様運動になる.そのため, TW と同じように $\Delta \theta_2$ が無い場合 でも LA の運動は表現できる.また xy 平面内での運動はないため,やはり TW と 同様に $\Delta \theta_2$ による影響は無い.そのため Γ 点では LA は並進運動となる.

光学フォノン 相対運動の考慮により,炭素原子間の変化が倍になる.

以上より, Γ 点付近での RBM を除いた音響フォノンの相対運動はS(r)から0になる.これは結晶全体の並進運動に対応している.式 (4.2)の補正を Jiang らの手法に取り入れて電子格子行列要素を計算する.

位置

r , 波数

kの

SWNTの

ブロッホ波動関数は

$$\Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) = \frac{1}{\sqrt{N_u}} \sum_{s,o} C_{s,o}(a,\boldsymbol{k}) \sum_{u} e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{u,s}} \phi_{s,o}(\boldsymbol{r}-\boldsymbol{R}_{u,s}), \qquad (4.3)$$

と書かれる.ここでaは8つのバンド, N_u はSWNTのブリルアンゾーンに含まれるグ ラフェンのユニットセルの数、sはA, B原子, $R_{u,s}$ は各原子の平衡位置, oは2s, $2p_x$, $2p_y$, $2p_z$ の各原子軌道を表す.SWNTのハミルトニアンは

$$H = -\frac{\hbar^2}{2m}\nabla^2 + V, \quad V = \sum_{\boldsymbol{R}_{u,s}} v(\boldsymbol{r} - \boldsymbol{R}_{u,s}), \tag{4.4}$$

と書かれる.vは neutral pseudoatom の Kohn-Sham ポテンシャルを使う [29].状態 (a, k) と (a', k')の間でのポテンシャルエネルギーは

$$\langle \Psi_{a',\mathbf{k}'}(\mathbf{r})|V|\Psi_{a,\mathbf{k}}(\mathbf{r})\rangle = \frac{1}{N} \sum_{s',o'} \sum_{s,o} C^*_{s',o'}(a',\mathbf{k}')C_{s,o}(a,\mathbf{k})$$

$$\sum_{u'} \sum_{u} e^{i(-\mathbf{k}'\cdot\mathbf{R}'_{u',s'}+\mathbf{k}\cdot\mathbf{R}_{u,s})} m(t',o',t,o)$$
(4.5)

という行列要素で表現される.mは原子軌道に対する行列要素であり,

$$m(t', o', t, o) = \int d\mathbf{r} \phi_{s', o'}(\mathbf{r} - \mathbf{R}_{u', s'}) \left[\sum_{\mathbf{R}_{u'', s''}} v(\mathbf{r} - \mathbf{R}_{u'', s''}) \right] \phi_{s, o}(\mathbf{r} - \mathbf{R}_{u, s}), \quad (4.6)$$

となる.*m*の和は $\mathbf{R}_{u,s} = \mathbf{R}_{u',s'}$, $\mathbf{R}_{u',s'} = \mathbf{R}_{u'',s''}$ または $\mathbf{R}_{u'',s''} = \mathbf{R}_{u,s}$ のいずれかを満た すようにとる [29].これより *m* はポテンシャルと一つの原子軌道が重なったオフサイト の行列要素 m_{α} と,原子軌道同士が重なったオンサイトの行列要素 m_{γ} に分離される.

$$m(t', o', t, o) = m_{\alpha}(t', o', t, o) + m_{\gamma}(t', o', t, o), \qquad (4.7)$$

ここで

$$m_{\alpha} = \int d\mathbf{r} \phi_{s',o'}(\mathbf{r} - \mathbf{R}_{u',s'}) \left[v(\mathbf{r} - \mathbf{R}_{u',s'}) + v(\mathbf{r} - \mathbf{R}_{u,s}) \right] \phi_{s,o}(\mathbf{r} - \mathbf{R}_{u,s}),$$

$$m_{\gamma} = \delta_{\mathbf{R}_{u,s},\mathbf{R}_{u',s'}} \int d\mathbf{r} \phi_{s',o'}(\mathbf{r} - \mathbf{R}_{u',s'}) \left[\sum_{\mathbf{R}_{u'',s''} \neq \mathbf{R}_{u'',s''}} v(\mathbf{r} - \mathbf{R}_{u'',s''}) \right] \phi_{s,o}(\mathbf{r} - \mathbf{R}_{u',s'}).$$
(4.8)

となる.ポテンシャルの変化 δV は各炭素原子の平衡位置 $\mathbf{R}_{u,s}$ からの相対的なずれ $S(\mathbf{R}_{u,s})$ と v の微分の積

$$\delta V = \sum_{\boldsymbol{R}_{u,s}} v(\boldsymbol{r} - \boldsymbol{R}_{u,s} - \boldsymbol{S}(\boldsymbol{R}_{u,s})) - v(\boldsymbol{r} - \boldsymbol{R}_{u,s})$$

$$\simeq -\sum_{\boldsymbol{R}_{u,s}} \nabla v(\boldsymbol{r} - \boldsymbol{R}_{u,s}) \cdot \boldsymbol{S}(\boldsymbol{R}_{u,s}).$$
(4.9)

に等しく,電子格子行列要素は

$$M^{\nu}_{\alpha,\boldsymbol{k}\to\alpha',\boldsymbol{k}'} = \langle \Psi_{a',\boldsymbol{k}'}(\boldsymbol{r}) | \delta V | \Psi_{a,\boldsymbol{k}}(\boldsymbol{r}) \rangle$$

$$= -\frac{1}{N} \sum_{s',o'} \sum_{s,o} C^{*}_{s',o'}(a',\boldsymbol{k}') C_{s,o}(a,\boldsymbol{k}) \sum_{u,u'} e^{i(-\boldsymbol{k}'\cdot\boldsymbol{R}_{u',s'}+\boldsymbol{k}\cdot\boldsymbol{R}_{u,s})} \delta m(s',o',s,o).$$

(4.10)

となる. δm はmのようにオンサイトの行列要素 δm_{γ} とオフサイト δm_{α} に分離でき $\delta m = \delta m_{\gamma} + \delta m_{\alpha}$ となる.ここで

$$\delta m_{\alpha} = \int d\boldsymbol{r} \phi_{s',o'}(\boldsymbol{r} - \boldsymbol{R}_{u',s'})$$

$$\left[\nabla v(\boldsymbol{r} - \boldsymbol{R}_{u',s'}) \cdot \boldsymbol{S}(\boldsymbol{R}_{u',s'}) + \nabla v(\boldsymbol{r} - \boldsymbol{R}_{u,s}) \cdot \boldsymbol{S}(\boldsymbol{R}_{u,s})\right] \phi_{s,o}(\boldsymbol{r} - \boldsymbol{R}_{u,s}),$$

$$\delta m_{\gamma} = \delta_{\boldsymbol{R}_{u,s},\boldsymbol{R}_{u',s'}} \int d\boldsymbol{r} \phi_{s',o'}(\boldsymbol{r} - \boldsymbol{R}_{u',s'})$$

$$\left[\sum_{\boldsymbol{R}_{u'',s''} \neq \boldsymbol{R}_{u'',s''}} \nabla v(\boldsymbol{r} - \boldsymbol{R}_{u'',s''}) \cdot \boldsymbol{S}(\boldsymbol{R}_{u'',s''})\right] \phi_{s,o}(\boldsymbol{r} - \boldsymbol{R}_{u',s'}).$$
(4.11)

となる. δm は格子振動によるポテンシャルの変化からの寄与をあらわし,デフォメーションポテンシャルと呼ばれる.

炭素原子の電子軌道は 2s, $2p_x$, $2p_y$, $2p_z$ 軌道が混成して s, π , σ 軌道を作っている. これらの混成軌道は電子格子相互作用を考える二原子の方向に対して図 4.2, 4.3, 4.4 の ように,全体として平行か垂直になる.そのため,デフォメーションポテンシャルは原子 間方向に対して平行な方向と垂直な方向に分離できる.ここでは式 (4.12) で定義される単 位ベクトルを導入する [36].

$$\vec{\alpha}_{p} = \int d\boldsymbol{r} \phi_{u} \nabla v(\boldsymbol{r}) \phi_{\nu}(\boldsymbol{r} - \tau) = \alpha_{p}(\tau) \hat{I}(\alpha_{p}),$$

$$\vec{\beta}_{p} = \int d\boldsymbol{r} \phi_{u} \nabla v(\boldsymbol{r} - \tau) \phi_{\nu}(\boldsymbol{r} - \tau),$$

$$= \int d\boldsymbol{r} \phi_{u} \nabla v(\boldsymbol{r}) \phi_{\nu}(\boldsymbol{r} + \tau) = \beta_{p}(\tau) \hat{I}(\beta_{p}),$$

$$\vec{\lambda}_{p} = \int d\boldsymbol{r} \phi_{u} \nabla v(\boldsymbol{r} - \tau) \phi_{\nu}(\boldsymbol{r}) = \lambda_{p}(\tau) \hat{I}(\lambda_{p}),$$
(4.12)

図 4.2: オフサイトのデフォメーションポテンシャル δm_{α} における電子軌道とポテンシャルの組み合わせ.(1)から(5)が原子間の方向に対して平行,(6)から(9)が垂直になる[26].

図 4.3: オフサイトのデフォメーションポテンシャル δm_{β} におけるおける電子軌道とポテ ンシャルの組み合わせ.(1)から(5)が原子間の方向に対して平行,(6)から(9)が垂直に なる[26].

図 4.4: オンサイトのデフォメーションポテンシャル δm_{λ} における電子軌道とポテンシャルの組み合わせ.(1)から(4)が原子間の方向に対して平行,(5)と(6)が垂直になる[26].

図 4.5: (a) 原子間方向のオンサイトの変位ポテンシャル. (b) 原子間方向に垂直な方向の オンサイトの変位ポテンシャル.

図 4.6: (a) 原子間方向のオフサイトの変位ポテンシャル. (b) 原子間方向に垂直な方向の オフサイトの変位ポテンシャル.

$$\begin{aligned} \boldsymbol{\mathcal{L}} \boldsymbol{\mathcal{C}} \boldsymbol{\mathcal{P}} &\equiv \boldsymbol{\mu}, \boldsymbol{\nu} \; \boldsymbol{\mathcal{C}} \boldsymbol{\mathcal{T}} \boldsymbol{\mathcal{S}} \; \boldsymbol{\mathcal{S}} \; . \; \delta \boldsymbol{m} \; \boldsymbol{\mathsf{I}} \boldsymbol{\mathsf{I}} \\ \delta \boldsymbol{m}_{\alpha} &= \left[\sum_{p} \chi_{o',o}^{p} \vec{\alpha}_{p} (|\boldsymbol{R}_{u,s} - \boldsymbol{R}_{u',s'}|) \right] \cdot \boldsymbol{S}(\boldsymbol{R}_{u',s'}) + \left[\sum_{p} \chi_{o',o}^{p} \vec{\beta}_{p} (|\boldsymbol{R}_{u,s} - \boldsymbol{R}_{u',s'}|) \right] \cdot \boldsymbol{S}(\boldsymbol{R}_{u,s}), \\ \delta \boldsymbol{m}_{\gamma} &= \delta_{\boldsymbol{R}_{u,s},\boldsymbol{R}_{u',s'}} \sum_{\boldsymbol{R}_{u'',s''} \neq \boldsymbol{R}_{u',s'}} \nabla \boldsymbol{v}(\boldsymbol{r} - \boldsymbol{R}_{u'',s''}) \left[\sum_{p} \chi_{o',o}^{p} \vec{\lambda}_{p} (|\boldsymbol{R}_{u'',s''} - \boldsymbol{R}_{u',s'}|) \right] \cdot \boldsymbol{S}(\boldsymbol{R}_{u'',s''}) \end{aligned}$$

$$(4.13)$$

となる.ここで $\chi^{p}_{o',o}$ はoとo'軌道を式 (4.12) に従って射影したときの係数となる.Porezaq らによる計算から δm_{γ} は原子間距離に対して,図4.5, $\delta m_{\alpha} \ge \delta m_{\beta}$ は図4.6のように求められる [29].

炭素原子の相対運動を計算するために平衡位置からの格子振動を求める.平衡位置 $R_{u,s}$ にある炭素原子の格子振動 u は

$$\boldsymbol{u}(\boldsymbol{R}_{u,s}) = A_{\nu} \sqrt{n_{\nu}(\boldsymbol{q})} \boldsymbol{e}^{\nu}(\boldsymbol{R}_{u,s}) e^{\pm i\omega_{\nu}(\boldsymbol{q})t}, \qquad (4.14)$$

ここで \pm はフォノンの放出 (+) と吸収 (-) をあらわす . $n_{\nu}(q)$ はモード ν , 波数 q のフォ

ノンの Bose 関数で,フォノンが放出されるときは

$$n_{\nu}(\boldsymbol{q}) = \frac{1}{e^{\hbar\omega/k_B T} - 1} + 1, \qquad (4.15)$$

フォノンが吸収されるときは

$$n_{\nu}(\boldsymbol{q}) = \frac{1}{e^{\hbar\omega/k_B T} - 1}.$$
 (4.16)

となる.Tは格子の温度, k_B はボルツマン定数である.格子振動の振幅Aは

$$A_{\nu}(\boldsymbol{q}) = \sqrt{\frac{\hbar}{2N_u m_C \omega_{\nu}(\boldsymbol{q})}},\tag{4.17}$$

であり N_u , m_C , ω はそれぞれ SWNT のユニットセル中の六角格子の数,炭素原子の質量,フォノンの振動数である. $e^{\nu}(\mathbf{R}_{u,s})$ はフォノンの固有ベクトルで

$$\boldsymbol{e}^{\nu}(\boldsymbol{R}_{u,s}) = e^{i\boldsymbol{q}\cdot\boldsymbol{R}_{u,s}}U(\phi)\boldsymbol{e}^{\nu}_{\boldsymbol{q}}(s), \qquad (4.18)$$

Uはs番目の原子を $R_{u,s}$ にある原子へと回転させる行列, $e_q^{\nu}(s)$ はフォノンの固有ベクト ルである.uを用いて相対運動Sを求める.以上より,状態 (α, k) から (α', k') へのモー ド ν のフォノンによる電子格子相互作用の行列要素 $M_{\alpha, k \to \alpha', k'}^{\nu}$ は

$$M^{\nu}_{\alpha,\mathbf{k}\to\alpha',\mathbf{k}'} = -\frac{1}{\sqrt{N_u}}\sqrt{n_{\nu}(\mathbf{q})}g^{\nu}_{\alpha,\mathbf{k}\to\alpha',\mathbf{k}'},$$

$$g^{\nu}_{\alpha,\mathbf{k}\to\alpha',\mathbf{k}'} = \left(\frac{\hbar}{2m_C\omega_{\nu}(\mathbf{q})}\right)^{\frac{1}{2}}D^{\nu}_{\alpha,\mathbf{k}\to\alpha',\mathbf{k}'}$$
(4.19)

と表される.ここで $D^{\nu}_{\alpha,k\to\alpha',k'}$ はポテンシャルの変化による相互作用を表すデフォメーションマトリックスで次のようになる.

$$D_{\alpha,\mathbf{k}\to\alpha',\mathbf{k}'}^{\nu} = D_{\lambda} + D_{\alpha} + D_{\beta},$$

$$D_{\gamma} = \sum_{s',o',o} C_{s',o'}^{*}(a',\mathbf{k}')C_{s',o}(a,\mathbf{k})$$

$$\times \sum_{u,s} \left[\left(\sum_{p} \chi_{o',o}^{p} \vec{\lambda}_{p}(|\mathbf{R}_{u,s} - \mathbf{r}_{s'}|) \right) \cdot \mathbf{e}_{\mathbf{k}'-\mathbf{k}}^{\nu}(\mathbf{R}_{u,s}) \right] e^{-i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{r}_{s'}},$$

$$D_{\alpha} = \sum_{s',o'} \sum_{s,o} C_{s',o'}^{*}(a',\mathbf{k}')C_{s,o}(a,\mathbf{k}) \sum_{u} e^{i\mathbf{k}\cdot(\mathbf{R}_{u,s} - \mathbf{r}_{s'})} e^{-i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{r}_{s'}}$$

$$\times \left[\left(\sum_{p} \chi_{o',o}^{p} \vec{\alpha}_{p}(|\mathbf{R}_{u,s} - \mathbf{r}_{s'}|) \right) \cdot \mathbf{e}_{\mathbf{k}'-\mathbf{k}}^{\nu}(\mathbf{R}_{u,s}) \right],$$

$$D_{\beta} = \sum_{s',o'} \sum_{s,o} C_{s',o'}^{*}(a',\mathbf{k}')C_{s,o}(a,\mathbf{k}) \sum_{u} e^{i\mathbf{k}\cdot(\mathbf{R}_{u,s} - \mathbf{r}_{s'})} e^{-i(\mathbf{k}'-\mathbf{k})\cdot\mathbf{r}_{s'}}$$

$$\times \left[\left(\sum_{p} \chi_{o',o}^{p} \vec{\beta}_{p}(|\mathbf{R}_{u,s} - \mathbf{r}_{s'}|) \right) \cdot \mathbf{e}_{\mathbf{k}'-\mathbf{k}}^{\nu}(\mathbf{R}_{u,s}) \right].$$
(4.20)

図 4.7: 半導体 SWNT の *E*₂₂ 遷移における RBM と電子の相互作用の直径依存性.(a) と (b) が Jiang らによる計算値.(a) が半導体 I,(b) が半導体 II.(c) と(d) が相対運動を取 り入れた計算値.(c) が半導体 I,(d) が半導体 II.図中の青線が *n* - *m* が最も小さく,赤 線が最も大きい.

4.2 Jiangらの計算結果との比較

本節では Γ 点での RBM, iTO, LO モードのフォノンによる電子格子行列要素の計算 結果を示す.これらの三つのフォノンは共鳴ラマン散乱において活性であり, SWNTの 共鳴ラマン散乱のうちの主要な三つのピークとなる.そのため,電子格子行列要素から対 応するラマン散乱の強度が推測でき,SWNTの分類ができると期待される.実際,電子 格子行列要素はSWNTの結晶構造によって値が異なり,またn-mで結ばれる線上に並 ぶことが計算から示される.これらはファミリーパターンと呼ばれている.

本節では (6,0) から (26,26) ナノチューブの間にある半導体ナノチューブを計算の対象 とする.さらに *E*₂₂ 遷移による電子格子行列要素 *g* を計算し, Jiang らの計算結果と比較 する.

4.2.1 RBM

図 4.7 は RBM の |g|の直径依存性を示している.(a) と(b) が Jiang らの計算結果,(c) と(d) が相対運動を取り入れた計算結果である.ここで(a) と(c) が半導体 I,(b) と(d) が 半導体 II の計算結果である.図 4.7 で線で結ばれている点は個々の SWNT の電子格子行 列要素をあらわす.この線はn - mが一定になるような(n,m)ナノチューブを結んでお り,図(c),(d) ではn - mは青線が最も小さく,赤線が最も大きい.

RBM における |g|の直径依存性は SWNT の直径が大きくなるにつれて減少する.これは RBM が SWNT の軸に垂直な方向への伸縮運動に対応することに起因する.グラフェ

図 4.8: 半導体 SWNT の *E*₂₂ 遷移における RBM と電子の相互作用のカイラル角依存性. (a) と (b) が Jiang らによる計算値. (a) が半導体 I, (b) が半導体 II. (c) と (d) が相対運動 を取り入れた計算値. (c) が半導体 I, (d) が半導体 II. 図中の青線が *n* – *m* が最も小さく, 赤線が最も大きい.

ンでのデフォメーションポテンシャル m はグラフェンの面に対して垂直な方向に奇関数 になっており, m の積分値が0になる.SWNT は直径が大きくなるにしたがって,円周の 曲率が小さくなりグラフェンに近づく.そのため RBM の電子格子行列要素は小さくなる.

(c),(d)が(a),(b)と比べて相互作用が小さいのは,JiangらがRBMはナノチューブの表面に対して常に法線方向に運動すると定義していたのに対して,本研究では拡張強束 縛法から格子振動を計算し,かつ相対運動として扱ったためである.そのため,運動の方向が法線方向から接線方向へと変化し,相互作用が弱くなっている.

図 4.8 は RBM と電子の相互作用の行列要素 |g|のカイラル角依存性を示している.ここで (a) と (c) が半導体 I, (b) と (d) が半導体 II の計算結果である.図 4.8 で線で結ばれている点は個々の SWNT の電子格子相互作用をあらわす.この線はn-mが一定になるような (n,m) ナノチューブを結んでおり,図 (c),(d) ではn-m は青線が最も小さく,赤線が最も大きい.カイラル角依存性を見ると半導体 I ではn-m によるファミリーパターンが現れている.前章で見たように Г点での RBM の単位ベクトルはアームチェアナノチューブよりもジグザグナノチューブに近いほうが偏向が大きい.つまり純粋な法線方向の運動をおこなうのはアームチェアナノチューブに近い場合であるため,余計な運動成分が入るジグザグナノチューブよりの場合は |g|が小さくなる.(a),(b) とくらべて(c),(d) の |g|が力イラル角依存性でファミリーパターンがよくあらわれるているのも,このためである.

図 4.9: Jiang らによる *E*₂₂ 遷移における半導体 I と II の LO モードのフォノンと電子の相 互作用の (a) 直径依存性と (b) カイラル角依存性.

図 4.10: 半導体 SWNT の *E*₂₂ 遷移における LO モードのフォノンと電子の |*g*|.(a) と (b) |*g*| の直径依存性.(a) が半導体 I,(b) が半導体 II.(c) と (d) |*g*| のカイラル角依存性.(c) が半導体 I,(d) が半導体 II.図中の青線が *n* - *m* が最も小さく,赤線が最も大きい.

4.2.2 LO

図 4.9 が Jiang らによる E_{22} 遷移における LO モードのフォノンと電子の電子格子行列 要素の (a) 直径依存性と (b) カイラル角依存性,図 4.10 は相対運動を取り入れた電子格子 行列要素の (a),(b) が直径依存性,(c),(d) がカイラル角依存性である.グラフェンでの Γ 点における LO モードのフォノンと電子の相互作用行列要素は同状態での iTO モード のフォノンよりも強い値を持つ.ゆえに SWNT の直径が大きくなるにつれ LO モードの フォノンによる |g| は一定値に向かって収束し,それは iTO モードのフォノンの値よりも 大きい.直径依存性をあらわす図 4.9(a),図 4.10(a),(b) でその傾向が現れているのがあ らわれているのが分かる.

図 4.10(a), (b) において *n* – *m* が小さく,かつ直径が小さい場合に |*g*| が急激に減少しているのは,第三章で述べたフォノンの固有ベクトルの偏向が原因である.この領域に

図 4.11: 半導体 SWNT の E₂₂ 遷移における iTO モードのフォノンと電子の相互作用の直 径依存性.(a)と(b)が Jiang らによる計算値.(a)が半導体 I,(b)が半導体 II.(c)と(d) が相対運動を取り入れた計算値.(c)が半導体 I,(d)が半導体 II.図中の青線が *n* - *m* が 最も小さく,赤線が最も大きい.

おいては LO と iTO の混成が他の SWNT にくらべて強い.そのため |g| が iTO の値に近づく.

カイラル角依存性について見るとアームチェアナノチューブに近づくにつれて, |g|が 一定値に近づく.これは第三章での Γ 点でのLOモードのフォノン単位ベクトルの方向の 議論から,ジグザグよりのナノチューブの方がアームチェアよりのナノチューブよりも偏 向の度合いが強いことによる.図4.9(b)に比べて図4.10(c), (d)にファミリーパターンの あらわれが少ないのはSWNTの直径による Γ 点でのLOモードの偏向が,直径が小さい SWNTを除き,小さいためである.

4.2.3 iTO

図 4.11 は半導体 SWNT の E_{22} 遷移における iTO モードのフォノンによる電子格子行列 要素の直径依存性である.(a),(b) が Jiang らによる計算値,(c),(d) が相対運動を取り 入れた計算値である.(a) から(d) は直径が大きくなるにつれて |g| が減少している.これ は SWNT の直径が大きくなるにつれ,結晶構造がグラフェンに近づくためであり,グラ フェンでは iTO モードによる |g| が小さいためである.

n-mが小さいファミリーパターンにおいて |g|が急激に増加しているのは,第三章で見たように LO モードのフォノンと iTO モードのフォノンの混成が起こるためである.これは図 4.10 で |g|が急激に減少していた部分と対応している.そのため,この領域では LO モードのフォノンと iTO モードのフォノンで |g|が互いに近い値をとる.

図 4.12: 半導体 SWNT の *E*₂₂ 遷移における iTO モードのフォノンと電子の相互作用の カイラル角依存性 . (a) と (b) が Jiang らによる計算値 . (a) が半導体 I , (b) が半導体 II . (c) と (d) が相対運動を取り入れた計算値 . (c) が半導体 I , (d) が半導体 II . 図中の青線が *n - m* が最も小さく,赤線が最も大きい.

図 4.12 は半導体 SWNT の E_{22} 遷移における iTO フォノンによる電子格子行列要素のカ イラル角依存性を示す.(a),(b) が Jiang らによる計算値,(c),(d) が相対運動を取り入 れた計算値である.n - m が小さく,直径が小さいナノチューブで |g| が大きいのは,や はり LO モードのフォノンと iTO モードのフォノンが混成することが原因である.この領 域では LO モードのフォノンと iTO モードのフォノンの |g| は互いに近い値をとる.カイ ラル角が大きいナノチューブにおいて |g| が大きな値をとることも iTO の偏向がこの領域 で小さいためである.

4.2.4 intra-valley と inter-valley 散乱における電子格子行列要素

これまでは Г点における電子格行列要素だけを見たが, ラマン散乱を考察するには,大きな波数を持ったフォノンによる電子格子行列要素についても調べる必要がある.電子の散乱は Г点付近のフォノンによる intra-valley 散乱と K点付近のフォノンによる inter-valley 散乱に分類される.フォノン分散と電子構造から,二つの散乱過程によってあらわれるラマン散乱バンドも異なる.共鳴ラマン散乱バンド,二重共鳴ラマン散乱バンドの成り立ちは,本節で述べる電子格子行列要素が理解の一端になる.

図 4.13 は (6,0) から (26,26) までの SWNT についての電子格子行列要素である. 各 SWNT の *E*_{ii}の伝導バンドからのフォノンによる可能な電子の散乱を調べ,フォノンのエネルギー に対して電子格子行列要素を図示している. 各点がある SWNT における電子の一つの散 乱過程を示している. S1 が半導体 I,S2 が半導体 II,M が金属であり,左側が inter-valley 散乱,右側が intra-valley 散乱である.

図 4.13: SWNT の *E*_{ii} があるカッティングラインからのフォノンによる電子の散乱を考え たときの電子格子行列要素とフォノンのエネルギーの関係 . S1 は半導体 I, S2 は半導体 II, M は金属ナノチューブである . 左側が inter-valley 散乱,右側が intra-valley 散乱である.

共鳴ラマン散乱に関係する電子格子行列要素から見る.図 4.13 の赤点が LO モードのフォノン,青点が iTO モードのフォノンによる散乱である.共鳴ラマン散乱では LO と iTO フォノンは *G*-band を形成する.前節で見たように LO と iTO モードのフォノンによる電子格子行列要素の値が SWNT によって異なるため,*G*-band が LO モードのフォノン による G_+ , iTO モードのフォノンによる G_- に分離する原因となっている.茶色の点は oTO モードのフォノンである.灰色,緑色,橙色は oTA, iTA, LA モードのフォノンで ある.音響フォノンの電子格子行列要素がフォノンのエネルギーが小さくなるにつれ0 に 近づくのが読み取れる.音響フォノンで共鳴ラマン散乱にあらわれるのは RBM である. 図 4.13 で言うと 100 から 400 cm⁻¹ の領域にある点に対応する.

二重共鳴ラマン散乱において寄与するのは図4.13の電子格子行列要素の積である.intravalley 散乱では,LOとiTOモードのフォノンはその倍音モードで D'-bandを形成するが, LOとiTOモードのフォノンには分散が無いため,D'-bandにも分散が無いことが予想さ れる.また,他の二重共鳴ラマン散乱バンドに比べて強度が強いと考えられる.橙色の点 がLAモードのフォノンである.iTOとLAによる結合モードであるiTOLAは1,800か ら2,000cm⁻¹に分散を持つが,これは図4.13でLAに大きな分散があることから理解で きる.700から1,100cm⁻¹に観測されるIFMsはoTOと音響フォノンの結合モードと考え られる.図4.13からoTOモードのフォノンが900cm⁻¹,音響フォノンは低エネルギー領 域に広い分散を持つことが分かる.さらに音響フォノンによる電子格子行列要素は小さい ため,他の二重共鳴ラマン散乱バンドと比較してもIFMsの強度は小さい. inter-valley 散乱においては, iTO モードのフォノンはその倍音モードで *G*'-band を形成する.*G*'-band は実験結果から分散を持つことが知られている.図4.13 において iTO モードのフォノンの分散が小さいのはグラファイトと同様に K 点付近の Kohn 異常の情報が含まれていないためである.2,450 cm⁻¹ 付近にあらわれる二重共鳴ラマン散乱バンドは LO モードのフォノンによる倍音モードである.

第5章 二重共鳴ラマン強度の計算結果

本章では第一章で述べた二重共鳴ラマン散乱バンドを式 (1.8) を用いて計算した結果に ついての考察をおこなう.

5.1 intra-valley 散乱

intra-valley 散乱は Γ 点付近の波数ベクトルの大きさが小さいフォノンによる散乱である.計算の結果から intra-valley 散乱であるのは IFMs, iTOLA, D'-band である.

5.1.1 IFMs

図 5.1 に式 (1.8) から計算した IFMs を示す.計算には図 1.8 の結果を再現するように, 半径が 0.5nm から 2.0nm の SWNT を用いた.

図 5.1 の計算結果から, IFMs は第一章での仮定のように intra-valley 散乱の, oTO モードのフォノンと iTA モードのフォノンの結合モードである.oTO モードのフォノンの放出に対して,低エネルギー側へシフトするピークが iTA モードのフォノンの吸収,高エネルギー側へシフトするピークが iTA モードのフォノンの放出との結合モードに対応する.このため二つの分散は 900 cm⁻¹ 付近に観測される oTO モードのフォノンの共鳴ラマン散乱バンドを中心にほぼ対称にあらわれ,V 字型のパターンを作る.

V字型のパターンが形成される原因は E_{33} と E_{44} の値にある.IFMs が低エネルギー側 ヘシフトする分散では,2n + mが一定であれば,直径が増えるに従って E_{33} が減少する. つまりジグザグナノチューブの E_{33} が最も大きく,アームチェアナノチューブに近くなる につれて E_{33} が小さくなる.また2n + mが一定のSWNTにおけるIFMsのラマンシフト はほぼ一定なため,IFMs は縦に並ぶ.IFMs が高エネルギー側へシフトするピークでは 2n + mが一定であれば E_{44} の変化はほぼない.そのため,低エネルギー側へシフトする ピークとは異なり,大きな半値幅を持ったピークとして観測されやすい.図 5.1 は図 1.8 にくらべ,IFMsの分散が小さいがこれは計算におけるフォノン分散関係の再現の問題で ある.図 5.1 は実験結果である図 1.8 をよく再現している.

IFMs は次の理由からジグザグナノチューブに近いSWNT からのラマン強度が大きいと 考えられる.ジグザグナノチューブのカッティングラインはΓ点とK点を結ぶ線(FK)に

49

図 5.1: 計算から得られた IFMs のピークの位置と E_{laser} の関係. ピークの位置は 2n + mが一定になる線で結んである. E_{laser} は左側へシフトするピークが E_{33} , 右側へシフトするピークは E_{44} である. 円の内部が塗りつぶされていないピークは強度が小さい.

垂直であり、また Γ K 上に中心がある. K 点付近では伝導バンドの等エネルギー面が Γ K に対して平行になる点があり、そこでの状態密度は大きい.これは電子だけではなく Γ 点 近傍でのフォノンの状態密度についても同様である.そのため、ジグザグナノチューブの 場合は intra-valley 散乱において大きな状態密度を持つフォノンが存在し、さらに E_{33} と E_{44} のエネルギーが近いために、IFMs を形成するエネルギーを持つフォノンによる散乱 が可能となる.例として表 5.1 にジグザグナノチューブに近い半導体 I ナノチューブの E_{33} と E_{44} を示す.また、カッティングラインの K 点の横切り方から、半導体 I ナノチューブ は半導体 II ナノチューブよりも強い強度を持つ [30].そのために IFMs においては半導体 I のジグザグナノチューブのラマン強度が最も強いと考えられる.2n + m というファミ リーパターンを考えると、 E_{33} と E_{44} はジグザグナノチューブが最大値をとり、アームチェ アナノチューブに近づくにつれて減少する.この傾向は実験結果にもあらわれている.

5.1.2 iTOLA

図 5.2 に式 (1.8) から計算した iTOLA の分散を示す.計算には直径が 0.5nm から 2.0nm の半導体 I ナノチューブを用い, *E*_{laser} には各 SWNT の *E_{ii}* を用いた.

計算結果から iTOLA は intra-valley 散乱における iTO モードのフォノンと LA モード のフォノンの結合モードである.図 4.13 から iTO モードのフォノンの電子格子行列要素

(n,m)	2n+m	E_{33}	E_{44}	(n,m)	2n+m	E ₃₃	E_{44}
(23,0)	46	1.73	1.90	(21,1)	43	1.85	2.01
(20,0)	40	2.00	2.14	(18,1)	37	2.16	2.29
(17,0)	34	2.37	2.45	(15,1)	31	2.60	2.63
(14,0)	28	2.83	2.90				

表 5.1: ジグザグナノチューブに近い半導体 I ナノチューブの E₃₃ と E₄₄.

は大きくても 0.3eV であるが, iTO モードのフォノンと組み合う波数ベクトルを持つ LA モードのフォノンの電子格子行列要素が小さいために, iTOLA の強度は RBM や *G*-band といった共鳴ラマン散乱バンドに比べると弱い.iTOLA を作るフォノンの組み合わせは, フォノン分散から考えると LO モードのフォノンと音響フォノンの組み合わせも可能であ るように考えられる.しかし, Γ点付近では LO モードのフォノンは iTO モードのフォ ノンよりもエネルギーが高いために, iTOLA を形成するために必要な音響フォノンのエ ネルギーが小さくなる.そのため,音響フォノンによる電子格子行列要素が小さくなり, LO モードのフォノンと音響フォノンの組み合わせの二重共鳴ラマン強度も小さくなる. また,エネルギー保存から考えても LO モードのフォノンと音響フォノンの結合モードの 存在はない.そのため, iTOLA は iTO モードのフォノンとLA モードのフォノンの結合

図 5.2 より iTOLA の分散は $194 \text{cm}^{-1}/\text{eV}$ であるが,実験値の $128 \text{cm}^{-1}/\text{eV}[23]$ と比較す ると 1.5 倍である.これは Γ 点付近の iTO モードのフォノンの分枝における Kohn 異常が 原因だと考えられる [35].iTOLA の分散は二つのフォノンのエネルギーの和によって決 まる. E_{laser} が増加するとフォノンの波数ベクトルは Γ 点から離れ, iTO モードのフォノ ンのエネルギーは減少し,LA モードのフォノンのエネルギーは増加する.Kohn 異常に より SWNT の iTO モードのフォノンの分枝も図 3.8(b) のように低エネルギー側へ下がる と予想される.Kohn 異常を考慮すれば iTOLA の分散も小さくなるはずである.図 5.2 に おける各 SWNT からの iTOLA は,直径が大きい SWNT ほど低エネルギー側に位置して いる.これは直径が大きい SWNT 程 E_{ii} が小さいためである.

5.1.3 D'-band

D'-band は 3,200 cm⁻¹ 付近に観測される二重共鳴ラマン散乱バンドである.計算から D'-band は intra-valley 散乱における LO モードのフォノンによる倍音モードである.図 4.13 から LO モードのフォノンと iTO モードのフォノンの電子格子行列要素差は2倍以 上ある.そのため, iTO モードのフォノンによる倍音モードや iTO モードのフォノンと LO モードのフォノンの結合モードによる二重共鳴ラマン散乱バンドは LO モードのフォ

図 5.2: iTOLA の分散の E_{laser} 依存性. 各点は直径が 0.5nm から 2.0nm の半導体 I ナノ チューブにおける iTOLA の位置を示している. E_{laser} には各 SWNT の E_{ii} を用いた.

ノンの倍音モードによる二重共鳴ラマン散乱バンドと比較して弱い.

図 5.3 に D'-band の強度と直径の関係を示す.計算には直径が 0.5nm から 2.0nm の SWNTを用い, E_{laser} には各 SWNT の E_{ii} を用いた.半導体 I においては E_{33} を持つカッ ティングラインは K 点を挟んで Γ 点側, E_{22} と E_{44} を持つカッティングラインは M 点側に あるため, E_{33} は E_{22} と E_{44} よりも電子光子行列要素が大きい [17, 18]. そのため, D'-band の強度も強い.半導体 II において E_{22} と E_{44} では強度が強く, E_{33} では弱いこと, また金 属についても半導体 I と同様に電子光子行列要素の大小により強度に差があらわれる.半 導体 II の E_{22} が最も強度が強いのは, E_{22} を持つカッティグラインが K 点に近いためで ある.図 5.4 に D'-band の強度とカイラル角の関係を示す.第四章の議論から,半導体 II においてはアームチェアナノチューブに近い方が電子格子行列要素が大きい.そのため D'-band の強度はカイラル角が大きくなるにつれて強くなる.半導体 I においては電子格 子行列要素はジグザグナノチューブに近い方が大きい.また電子光子行列要素はアーム チェアナノチューブに近い方が大きい.ことのフォノンによる電子格子 行列要素の変化は電子光子行列要素に対して小さいために,半導体 I における D'-band の 強度はカイラル角が大きくなるにつれて強くなる.

5.2 inter-valley 散乱

本節では inter-valley 散乱による二重共鳴ラマン散乱について考察する.計算から, intervalley 散乱に分類されたのは,分散の無い2,450 cm⁻¹ 付近の二重共鳴ラマン散乱バンドと, 分散のある 2,700 cm⁻¹ 付近の *G*'-band である.

図 5.3: 直径が 0.5nm から 2.0nm の SWNT における *D'*-band の強度と直径の関係 . *E*_{laser} は赤が *E*₂₂ , 青が *E*₃₃ , 黒が *E*₄₄ がであることを示す . SI が半導体 I , SII が半導体 II , Metal が金属ナノチューブである .

図 5.4: 直径が 0.5nm から 2.0nm の SWNT における *D*'-band の強度とカイラル角の関係 . *E*_{laser} は赤が *E*₂₂ , 青が *E*₃₃ , 黒が *E*₄₄ がであることを示す . SI が半導体 I , SII が半導体 II , Metal が金属ナノチューブである .

5.2.1 2,450 cm⁻¹

 $2,450 \text{ cm}^{-1}$ 付近に観測される二重共鳴ラマン散乱バンドの起源は,フォノン分散から推測すると (1) LO モードのフォノンによる倍音モード か (2) iTO モードのフォノンとLA モードのフォノンの結合モードのどちらかである [10, 37, 31, 38, 24] . 直径が 0.5nm から 2.0nm の SWNT において (1) と (2) の仮定のもとに計算した結果が図 5.5 と図 5.6 である . E_{laser} には 1.5eV から 3.0eV の範囲にある各 SWNT の $E_{22}(\pi)$, $E_{33}(青)$, $E_{44}(黒)$ を用いた. SI は半導体 I, SII は半導体 II, Metal は金属ナノチュープである.

強度とラマンシフトの関係から 2,450cm⁻¹ は LO モードのフォノンの倍音モードである. 図 4.13 から K 点付近では LO モードのフォノンと iTO フォノンの電子格子行列要素は最 大で 0.4eV と 0.3eV であるが, iTO モードのフォノンと組み合う波数を持つ LA モードの フォノンの電子格子行列要素は,LOモードのフォノンに比べて小さいために(2)による散 乱は見えない.半導体Ⅰが半導体Ⅱに比べて強度が強いのは電子光子行列要素がによる. 半導体 I は E₃₃,半導体 II は E₄₄ で共鳴するために,半導体 II の方が Γ 点に近い.そのた め電子光子行列要素が小さくなり[17,18], 散乱光の強度が弱くなるためである.図5.5に おいて, 各 SWNT からの共鳴ラマン散乱光は 2,450 cm⁻¹ 付近には無く, 2,500 cm⁻¹ から 2.650cm⁻¹ に分布している.第三章で求めたフォノン分散のK点近傍におけるLOモード のフォノンのエネルギーは,実験値よりも 30cm⁻¹ 大きいことが Maultzsch らにより報告 されている [39] . 2,450 cm⁻¹ は LO モードのフォノンの倍音モードなので,計算値は実験値 よりも 60cm⁻¹ 大きく, 2,440cm⁻¹ から 2,590cm⁻¹ に分布しているとみなせる. Shimada らは孤立した SWNT において 2,450cm⁻¹ には分散が無いとした [24].図 5.5 において該 当する分散を持つ SWNT は半導体 II の SWNT である.実験では (n,m) が求められてい ないため, SWNTの種類は判別できないが, Shimada らが観測した SWNT は孤立した半 導体 II の SWNT である可能性が高い.図 5.5 においては,金属,半導体 I,半導体 II の どれもが E_{laser} が増加するにつれて2,450cm⁻¹が高エネルギー側へシフトし,強度が減少 する傾向がみられる.これは Elaser が増加すると LO モードのフォノンの波数ベクトルが K 点から離れ,エネルギーが増加するためである.SWNTの束による測定をおこなうと, 2,450cm⁻¹には分散が観測される可能性がある.

5.2.2 G'-band

図 5.7 に式 (1.8) から計算した *G'*-band の分散と E_{laser} の関係を示す.計算には直径が 0.5nm から 2.0nm の SWNT を用い, E_{laser} には 1.5eV から 3.0eV の範囲にある各 SWNT の $E_{22}(赤)$, $E_{33}(青)$, $E_{44}(黒)$ を用いた. SI は半導体 I, SII は半導体 II, Metal は金属ナ ノチューブである.

G'-band はiTOモードのフォノンの倍音モードである.図5.7からG'-bandは2,750cm⁻¹ から2,900cm⁻¹に分布している.これは図1.10(a),図1.11と比較して200cm⁻¹も大きい.

図 5.5: 2,450 cm⁻¹ 付近の二重共鳴ラマン散乱バンドが LO モードのフォノンの倍音モード だと仮定したとき,直径が 0.5 nm から 2.0 nm の SWNT における (上) 強度 と (下) E_{laser} と のラマンシフトとの関係. E_{laser} には 1.5 eV から 3.0 eV の範囲にある各 SWNT の $E_{22}(赤)$, $E_{33}(青)$, $E_{44}(黒)$ を用いた.

図 5.6: 2,450 cm⁻¹ 付近の二重共鳴ラマン散乱バンドが iTO モードのフォノンと LA モードのフォノンの結合モードだと仮定したとき,直径が 0.5 nm から 2.0 nm の SWNT における (上) 強度 と (下) E_{laser} とのラマンシフトとの関係. E_{laser} には 1.5 eV から 3.0 eV の範囲にある各 SWNT の $E_{22}(赤)$, $E_{33}(青)$, $E_{44}(黒)$ を用いた.

図 5.7: 直径が 0.5nm から 2.0nm の SWNT における G'-band の分散と E_{laser} の関係 . SI は 半導体 I, SII は半導体 II, Metal は金属ナノチューブである . E_{laser} には 1.5eV から 3.0eV の範囲にある各 SWNT の $E_{22}(赤)$, $E_{33}(青)$, $E_{44}(黒)$ を用いた .

第三章で求めたフォノン分散の K 点近傍における iTO モードのフォノンのエネルギーは, 実験値よりも 35 cm⁻¹ 大きいことが Maultzsch らにより報告されている [39] . また, グラ ファイトの K 点付近の iTO モードのフォノンの分枝には Kohn 異常がある [35] . 本研究で は SWNT のフォノン分散を計算するにあたっては Kohn 異常を考慮していないため, K 点付近の iTO モードのフォノンの分散が正しく再現されていない. そのため実験値と比較 して *G'*-band の位置が 200 cm⁻¹ もずれたと考えられる.図 5.7 において *E*_{laser} が減少する につれて, *G'*-band の分散が小さくなるのもこれが原因である.*G'*-band の分散は図 5.7 から 121 cm⁻¹/eV となり実験での値 120 cm⁻¹/eV[24] と一致するが,より正確な議論には Kohn 異常を考慮したフォノン分散の導入が必要である.iTO モードのフォノンは次章で 述べる欠陥に起因する二重共鳴ラマン散乱バンドの一つである *D*-band に関与するフォノ ンである.*D*-band は欠陥が無いと観測されないが [12], *G'*-band は観測される.これは 式 (6.6)の *M*_{elastic} が iTO モードのフォノンによる *M*_{el-ph} に置き換わり,式 (1.8) になるた めである.

第6章 欠陥に起因するラマン散乱の強度 の計算結果

6.1 *D*-band

D-bandの理論計算はこれまでにもおこなわれてきたが[40,41],電子光子行列要素,電子格子行列要素を考慮しておらず,実験結果との一致は得られていない.本研究ではこれらを組み込んだ計算から式(1.11)の再現を目指す.

6.1.1 弹性散乱行列

実験とグラファイトのフォノン分散関係から, *D*-band は K 点付近の光学フォノンと欠陥に起因する弾性散乱により構成されると推測される.そこで,次のようなモデルから弾性散乱行列を導き *D*-band の計算を行う.試料中のクラスタはエッジで仕切られている. グラファイトのユニットセルは正六角形であるので,エッジは図 6.1 のように表現できる. 図の上下端をアームチェアエッジ,左右端をジグザグエッジと呼ぶ.HOPG 中における クラスタは図 6.1 のような一辺が *L*_a の長方形であると近似する.波数 *k* から *k'* への弾性 散乱行列 *M_{k'k}* は

$$M_{\boldsymbol{k}'\boldsymbol{k}} = \langle \Psi(\boldsymbol{k}') | H | \Psi(\boldsymbol{k}) \rangle, \qquad (6.1)$$

とあらわされる.ここで H はナノグラファイトのハミルトニアン, Ψ は

$$\Psi^{l}(\boldsymbol{k},\boldsymbol{r}) = \sum_{s=A,B} c_{s}^{l}(\boldsymbol{k})\Phi_{s}(\boldsymbol{k},\boldsymbol{r})$$

$$\Phi_{s}(\boldsymbol{k},\boldsymbol{r}) = \frac{1}{\sqrt{N_{u}}}\sum_{\boldsymbol{R}_{s}} e^{i\boldsymbol{k}\boldsymbol{R}_{s}}\phi(\boldsymbol{r}-\boldsymbol{R}_{s})$$
(6.2)

というナノグラファイトの波動関数である.ここで N_u , C, $\phi(r - R_s)$ は結晶中に含まれるユニットセルの数,波動関数の係数,位置 $r - R_s$ にある炭素原子の原子軌道をあらわす.式 (6.2) を式 (6.1) へと代入すると

$$M_{\boldsymbol{k}'\boldsymbol{k}} = \frac{1}{N_u} \sum_{s,s'} c_{s'}^*(\boldsymbol{k}') c_s(\boldsymbol{k}) \sum_{\boldsymbol{R},\boldsymbol{R}_{s'}} \exp\left(-i\boldsymbol{k}'\boldsymbol{R}_{s'} + i\boldsymbol{k}\boldsymbol{R}_s\right) \langle \phi(\boldsymbol{R}_{s'}) | H | \phi(\boldsymbol{R}_s) \rangle.$$
(6.3)

図 6.1: HOPG 中のクラスタの模式図.図の上下端がアームチェアエッジ,左右端がジグ ザグエッジに対応する.

を得る.式(6.3)において最近接原子のみを考えると

$$\langle \phi(\mathbf{R}_i) | H | \phi(\mathbf{R}_j) \rangle = \begin{cases} \gamma_0 & \mathbf{R}_i \ge \mathbf{R}_j \text{ が最近接の場合} \\ 0 & \mathcal{E} \text{otherwise} \end{cases}$$
 (6.4)

となるので,弾性散乱行列は

$$M_{\mathbf{k}'\mathbf{k}} = -\frac{a\gamma_0}{2L_a w(\mathbf{k})} \,\delta(k_x, k_x') \left[2w^2(\mathbf{k}) \cos\left\{\frac{(k_y' - k_y)L_a}{2}\right\} - \left\{ \exp\left(-i\frac{\sqrt{3}k_x a}{2}\right) + 2\cos\left(\frac{k_y a}{2}\right) \right\} \times \cos\left\{\frac{k_y a}{2} - \frac{(k_y' - k_y)L_a}{2}\right\} - \left\{ \exp\left(i\frac{\sqrt{3}k_x' a}{2}\right) + 2\cos\left(\frac{k_y' a}{2}\right) \right\} \times \cos\left\{\frac{k_y' a}{2} + \frac{(k_y' - k_y)L_a}{2}\right\} \right]$$
(6.5)

と表現される.計算では式 (6.5)を弾性散乱行列 M_{elastic} として二重共鳴ラマン散乱強度を計算する. D-band の強度は

$$I(\omega, E_{\text{laser}}) = \sum_{j} \left| \sum_{a,b,c,\omega} \frac{M_{\text{optic}}(\boldsymbol{k}, jc) M_{\text{elastic}}(-\boldsymbol{q}, cb) M_{\text{el-ph}}(\boldsymbol{q}, ba) M_{\text{optic}}(\boldsymbol{k}, aj)}{\Delta E_{aj} (\Delta E_{bj} - \hbar\omega) (\Delta E_{aj} - \hbar\omega)} \right|^2, \quad (6.6)$$

となる.

6.1.2 *D*-band の強度

図 6.2 は計算から求めたグラファイトの D-band のスペクトルである.第三章で述べた

図 6.2: グラファイトにおける *D*-band のスペクトルの E_{laser} 依存性 . $L_{\text{a}} = 90$ Å, E_{laser} は それぞれ 1.9, 2.3, 2.7eV である. Kohn 異常をフォノン分散に外挿したことにより分散 が 50 cm⁻¹/eV となっている.

ように,K点付近のiTOモードのフォノン分枝にはKohn 異常が現れることが指摘されている[35].Kohn 異常を考慮せずにグラフェンのフォノン分散を数値計算で求めると,K点付近でD-bandのエネルギーに該当するフォノンの分散が小さいために,D-bandの分散が実験での測定結果 51cm⁻¹/eV に対して[42],21cm⁻¹/eV になる.式(3.24) に従い,Kohn 異常を図 3.8 の K点付近のiTOモードのフォノンの分枝に適用すると,実験と同じ50cm⁻¹/eV の分散を得る.これより,iTOモードのフォノンの分枝に式(3.24)を外挿し,Kohn 異常を再現することにする.この手法ではエネルギーの分散のみ変化し,フォノンの固有ベクトルが変わらない.そのため,図6.2のラマン散乱バンドはいびつな形になる.しかし,正しいD-bandの分散を得られることと,これから述べるように, E_{laser} 依存性が実験結果と一致することから,K点付近でのiTOモードのフォノンの分枝を再現する

図 6.3 はグラファイトの I_D/I_G の (a) E_{laser} 依存性と (b) L_a 依存性の計算結果である.図 6.3 より I_D/I_G の E_{laser} 依存性は次式に従う.

$$\frac{I_{\rm D}}{I_{\rm G}} \propto E_{\rm laser}^{-4}.$$
(6.7)

式 (6.7) は実験結果から導き出された経験式 (1.11) と一致する. E_{laser} 依存性がこのようになるのは,電子光子行列要素 M_{optic} が E_{laser}^{-1} に比例し [17, 18],二重共鳴ラマン散乱強度が式 (6.6) から M_{optic}^4 に比例するためである.

一方, L_a依存性については,図6.3より

$$\frac{I_{\rm D}}{I_{\rm G}} \propto L_{\rm a}^{-2},\tag{6.8}$$

という関係が導かれる.実験結果からは式(1.11)が得られており, L_a^{-1} に比例するという

図 6.3: (a) グラファイトにおける I_D/I_G の E_{laser} 依存性.黒線は L_a が 30Å, 赤線が L_a が 150Å で 20Å 刻みで変化する.(b) グラファイトにおける I_D/I_G の L_a 依存性.黒線は E_{laser} が 1.9eV, 赤線が E_{laser} が 2.7eV で 0.2eV 刻みで変化する. $I_D/I_G \propto E_{\text{laser}}^{-4} L_a^{-2}$ である.

依存性が導かれているため,この計算結果には改善すべき点がある.式 (6.8) となる原因 は, L_a 依存性が含まれる M_{elastic} にある.式 (6.5)の M_{elastic} には,ナノグラファイトの波 動関数の規格化条件として,結晶中のグラフェンのユニットセルの数Nが $1/\sqrt{N}$ という 形であらわれる.Nは L_a に比例し,さらに二重共鳴ラマン散乱強度は N^{-2} に比例するた め,式(6.8)の関係となる. L_a 依存性を解決する方法の一つを小山が修士論文において議 論している[18].

第7章 結論と今後の課題

本研究で得られた結論と今後の課題を示す.

7.1 結論

7.1.1 電子格子行列要素

Samsonidze らによる拡張強束縛法を取り入れた格子振動の計算を用いて, Γ点における格子振動の(*n*,*m*)依存性を示した.Γ点近傍の音響フォノンによる電子格子行列要素を評価するために,炭素原子同士の相対運動を考え,Jiangらの拡張強束縛法を用いた電子格子行列要素の計算に組み込んだ.さらに,電子格子行列要素の計算に,拡張強束縛法から求めた格子振動も導入し,電子格子行列要素の(*n*,*m*)依存性を示した.

7.1.2 二重共鳴ラマン散乱バンド

二重共鳴ラマン散乱バンドの強度を計算することによって,そのバンドを作るフォノン を同定し,q依存性を示した.IFMs は intra-valley 散乱であり,oTO モードと iTA モード のフォノンの結合モードである.低(高)エネルギー側へシフトする分散は oTO モードの フォノンの放出と iTA モードのフォノンの吸収(放出)から成り立つ. E_{laser} によってピー クを作る (n,m)が異なり,2n + mのファミリーパターンをなす.その中ではカイラル角 が小さいほどラマン強度が強い.iTOLA は intra-valley 散乱であり,iTO モードのフォノ ンと LA モードのフォノンの結合モードである.その分散は 194cm⁻¹ である.2,450cm⁻¹ は inter-valley 散乱であり,LO モードのフォノンの倍音モードである.(n,m)によって分 散がある.G'-band は inter-valley 散乱であり,iTO フォノンの倍音モードである.その 分散は 121cm⁻¹ である.D'-band は intra-valley 散乱であり,LO モードのフォノンの倍 音モードである.q = 0であるため分散はない.直径が大きく,カイラル角が大きいほど ラマン強度が強い.

7.1.3 グラファイトにおける D-band の強度

グラファイトにおける *D*-band は iTO モードのフォノンと弾性散乱の結合モードから構成されていることを確かめた. *D*-band の強度は E_{laser}^{-4} に比例することを導き,実験との 一致を見た.また, *D*-band の強度は L_{a}^{-2} に比例することを示した.

7.2 今後の課題

7.2.1 二重共鳴ラマンバンドの強度

本研究では電子格子行列要素と電子光子行列要素から二重共鳴ラマン散乱バンドの強度 を計算した.しかし,カーボンナノチューブは一次元系であるため,光吸収においてはエ キシトンの効果が支配的になる.そのためエキシトンを考慮した共鳴ラマン散乱バンドの 強度を計算する必要がある.

7.2.2 欠陥に起因するラマン散乱バンドの強度

グラファイトの *D*-band における *L*_a 依存性を再現するために,弾性散乱行列を改良す る必要がある.また K 点付近における iTO フォノンの Kohn 異常を線形方程式で外挿す る近似ではなく,フォノン分散の計算過程から取り込むことも必要である.

カーボンナノチューブにおける *D*-band の強度の *E*laser 依存性と欠陥依存性についても 議論する必要がある.その場合には,*D*-band の強度に最も寄与する欠陥を調べなければ ならない.また,弾性散乱行列もグラファイトとは異なるモデルから計算する必要がある だろう.

参考文献

- [1] S. Iijima, Nature (London) **354**, 56 (1991).
- [2] S. Iijima and T. Ichihashi, Nature(London) **363**, 603 (1993).
- [3] Kenji Hata, Don N. Futaba, Kohei Mizuno, Tatsunori Namai, Motoo Yumura, and Sumio Iijima, Science 306, 1362 (November 19 2004).
- [4] edited by 齋藤 理一郎 and 篠原 久典, カーボンナノチューブの基礎と応用 (培風館, 東京都千代田区九段南 4-3-12, 2004).
- [5] Pavel Nikolaev, Michael J. Bronikowski, R. Kelley Bradley, Frank Rohmund, Daniel T. Colbert, K. A. Smith, and Richard E. Smalley, Chemical Physics Letters 313(Issues 1-2), 91 (November 5 1999).
- [6] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, *Physical Properties of Carbon Nan-otubes* (Imperial College Press, London, 1998).
- [7] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synthetic Metals 103, 2555–2558 (1999).
- [8] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361–2366 (2002).
- [9] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Physics Reports 409, 47–99 (2005).
- [10] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002).
- [11] F. Tuinstra and J. L. Koenig, The Journal of Chemical Physics 53(3), 1126–1130 (1970).
- [12] L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, Physical Review Letters 93(24), 247401 (2004).

- [13] edited by 濱口 宏夫 and 平川 暁子, ラマン分光法 (学会出版センター, 東京都文京区 本郷 6-2-10, 1988).
- [14] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187–191 (1997).
- [15] 今野 豊彦,物質の対称性と群論 (共立出版,東京都, 2004).
- [16] C. Fantini, A. Jorio, M. Souza, A. J. Mai Jr., M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004).
- [17] J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, and M. S. Dresselhaus, Carbon 42, 3169–3176 (2004).
- [18] 小山 祐司. カーボンナノチューブの散乱過程と発光強度. Master's thesis, 東北大学 大学院理学研究科物理学専攻, 2006.
- [19] J. Jiang, R. Saito, A. Gruneis, S. G. Chou, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 71, 205420 (2005).
- [20] L. G. Cançado, M. A. Pimenta, R. Saito, A. Jorio, L. O. Ladeira, A. Grüneis, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 66, 035415 (2002).
- [21] C. Fantini, A. Jorio, M. Souza, L. O. Ladeira, A. G. Souza Filho, R. Saito, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, Physical Review Letters 93(8), 087401 (2004).
- [22] C. Fantini, A. Jorio, M. Souza, R. Saito, Ge. G. Samsonidze, M. S. Dresselhaus, and M. A. Pimenta, Physical Review B (Condensed Matter and Materials Physics) 72(8), 085446 (2005).
- [23] V. W. Brar, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, Phys. Rev. B 66, 155418 (2002).
- [24] T. Shimada, T. Sugai, C. Fantini, M. Souza, L. G. Cançado, A. Jorio, M. A. Pimenta, R. Saito, A. Grüneis G. Dresselhaus, M. S. Dresselhaus, Y. Ohno, T. Mizutani, and H. Shinohara, Carbon 43, 1049–1054 (2005).
- [25] L. G. Cançado. private communication, 2005.

- [26] J. Jiang, R. Saito, Ge. G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Physical Review B (Condensed Matter and Materials Physics) 72(23), 235408 (2005).
- [27] R. Saito, K. Sato, Y. Oyama, J. Jiang, Ge. G. Samsonidze, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 71, 153413 (2005).
- [28] Ge. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 85, 5703–5705 (2004).
- [29] D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995).
- [30] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981–2990 (2000).
- [31] Ge. G. Samsonidze, R. Saito, A. Jorio, A. G. Souza Filho, A. Grüneis, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 90, 027403 (2003).
- [32] S. Reich, C. Thomsen, and P. Ordejón, Physical Review B (Condensed Matter and Materials Physics) 64(19), 195416 (2001).
- [33] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, *Physical Properties of Carbon Nan-otubes* (Imperial College Press, London, 1998).
- [34] O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).
- [35] S. Piscanec, M. Lazzeri, Francesco Mauri, A. C. Ferrari, and J. Robertson, Physical Review Letters 93(18), 185503 (2004).
- [36] R. Saito and H. Kamimura, J. Phys. Soc. Japan 52, 407 (1983).
- [37] A. Grüneis, R. Saito, T. Kimura, L. G. Cançado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 65, 155405–1–7 (2002).
- [38] R. Saito, A. Grüneis, Ge. G. Samsonidze, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Jorio, L. G. Cançado, C. Fantini, M. A. Pimenta, and A. G. Souza Filho, New Journal of Physics 5, 157.1–157.15 (2003).
- [39] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, Phys. Rev. Lett. 92, 075501 (2004).

- [40] A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
- [41] C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).
- [42] M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 59, R6585–R6588 (1999).

発表実績

学会発表

- K. Sato, R. Saito, A. Grüneis, J. Jiang, K. Shimada Two phonon Raman intensity of single wall carbon nanotubes 第 28 回フラーレン・ナノチューブ総合シンポジウム (講演番号 1P-32) 名城大学 天白キャンパス, 平成 17 年 1 月 7 日
- R. Saito, J. Jiang, Y. Oyama, K. Sato, S. G. Chou, Ge. G. Samsonidze, A. Jorio, M. A. Pimenta Relaxation processes in Raman and photoluminescence of single-wall carbon nanotube Sixth International Conference on the Science and Application of Nanotubes Gothenburg, Sweden, 26 Jun. 2005 - 1 Jul. 2005
- R. Saito, J. Jiang, K. Sato, Y. Oyama, C. Fantini, A. Jorio, M. A. Pimenta, Ge. G. Samsonidze, S. G. Chou, G. Dresselhaus, M. S. Dresselhaus Raman and photoluminescence intensity calculation of single wall carbon nanotubes 1st Workshop on Nanotube Optics and Nanospectroscopy (WONTON 2005) Telluride Science Research Center, Telluride, Colorado, USA, Jul. 17, 2005 - Jul. 20, 2005
- 4. K. Sato, R. Saito, J. Jiang, A. Grüneis, Ge. G. Samsonidze Intermediate frequency modes of single wall carbon nanotubes 第 29 回フラーレン・ナノチューブ総合シンポジウム (講演番号 1P-49) 京都大学, 平成 17 年 7 月 25 日
- 5. R. Saito, K. Sato, Y. Oyama, J. Jiang. A. Jorio, G. Dresselhaus, M. S. Dresselhaus Optical response of carbon nanotubes (invited)
 第 54 回 藤原セミナー、グランドホテルニュー王子、苫小牧、2005 年 9 月 1 日から 4 日

- R. Saito, K. Sato, Y. Oyama, J. Jiang. A. Jorio, G. Dresselhaus, M. S. Dresselhaus Optical properties of carbon nanotubes (invited)
 5th NSF-MEXT international symposium on nano-technology Stanford University, USA, Sep. 12, 2005 - Sep. 15, 2005
- 7. 齋藤 理一郎, J. Jiang, 小山 祐司, 佐藤 健太郎 ナノチューブの電子格子相互作用と発光分光における緩和 日本物理学会 2005 年秋季大会 同志社大学, 京田辺キャンパス, 2005 年 9 月 19 日から 22 日
- R. Saito, K. Sato, Y. Oyama, J. Jiang, A. Jorio, G. Dresselhaus, M. S. Dresselhaus Electron phonon interaction and optical response of carbon nanotube 2nd Korea-Japan Symposium on Carbon Nanotubes (invited) Taikansou, Matsushima, Miyagi, Nov. 28, 2005 - Nov. 30, 2005
- J. Jiang, R. Saito, Y. Oyama, K. Sato, Ge. G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhasu, M. S. Dresselhaus Excitonic properties of single-walled carbon nanotubes 2nd Korea-Japan Symposium on Carbon Nanotubes Taikansou, Matsushima, Miyagi, Nov. 28, 2005 - Nov. 30, 2005
- Y. Oyama, R. Saito, K. Sato, J. Jiang, L. G. Cancado, M. A. Pimenta, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus
 The elastic scattering matrix elements at defects of nano-graphite and nanotubes
 2nd Korea-Japan Symposium on Carbon Nanotubes
 Taikansou, Matsushima, Miyagi, Nov. 28, 2005 Nov. 30, 2005
- K. Sato, R. Saito, Y. Oyama, L. G. Cançado, J. Jiang, M. A. Pimenta, A. Jorio, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus The double resonance Raman intensity in graphite and nanotubes 2nd Korea-Japan Symposium on Carbon Nanotube(講演番号 2P-12) 平成 17年11月 28日
- 12. 齋藤 理一郎, J. Jiang, 佐藤 健太郎、小山 祐司
 単層カーボンナノチューブにおける発光と共鳴ラマン分光強度のファミリーパターン
 第 30 回フラーレン・ナノチューブ総合シンポジウム (講演番号 1-2)
 名城大学, 名古屋, 2006 年1月7日から9日
- J. Jiang, 齋藤 理一郎, 佐藤 健太郎, 小山 祐司, J. S. Park Exciton-phonon matrix elements in single-wall carbon nanotuubes 第 30 回フラーレン・ナノチューブ総合シンポジウム (講演番号 2P-40) 名城大学, 名古屋, 2006 年 1 月 7 日から 9 日
- 14. R. Saito, J. Jiang, S. Roche, K. Sasaki, S. Murakami, K. Sato, Y. Oyama MAGNETIC PROPERTIES OF CARBON NANOTUBES AND NANOGRAPHITE 強磁場シンポジウム つくば NIMS 千現地区, 2006 年 1 月 17 日から 20 日
- 15. 齋藤 理一郎, J. Jiang, 佐藤 健太郎,小山 祐司, Park JinSung
 ナノチューブの発光強度とラマン強度における励起子効果
 日本物理学会第61回年次大会
 松山大学,愛媛, 2006年3月27日から30日
- 16. 佐藤 健太郎,小山 祐司,齋藤 理一郎, J. Jiang
 ナノチューブの弾性散乱と D-band 強度
 日本物理学会 第 61 回年次大会
 松山大学,愛媛,2006 年 3 月 27 日から 30 日

論文

- R. Saito, K. Sato, Y. Oyama, J. Jiang, Ge. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus
 Cutting lines near the Fermi energy of single-wall carbon nanotubes
 Physical Review B 72, 153413 (2005).
- Y. Oyama, R. Saito, K. Sato, J. Jiang, Ge. G. Samsonidze, A. Grüneis, Y. Miyauchi , S. Maruyama, G. Dresselhaus and M. S. Dresselhaus Photoluminescomce intensity of single-wall carbon nanotubes Carbon 44, 873-879 (2006).