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Chapter 1

Introduction

1.1 Purpose of the study

A single wall carbon nanotube (SWNT) is a single-layer graphite sheet rolled up into a

cylinder, with diameter ∼1 nm and length ∼1 µm. In comparison with its length, a SWNT

diameter is small enough, thus a SWNT can be regarded as a quasi one-dimensional (1D)

material. Depending on how we roll up the graphene sheet, the geometry of SWNT is defined

by a chirality index (n,m). The (n,m) value determines whether a SWNT is metallic (m-

SWNT) or semiconducting (s-SWNT). In m-SWNTs, the existence of the gapless linear

energy band in m-SWNT provides an interesting phenomenon of a 1D electron [1]. In this

thesis, we discuss the origin of so-called electronic Raman spectra as shown below observed

only in m-SWNTs.

Raman spectroscopy is a technique to study optical properties of a material based

on the inelastic scattering of light. In SWNTs, Raman spectroscopy generally provides

a decent understanding of phonons excitation. For instance, the radial breathing mode

(RBM), an atomic vibration mode along the radial direction, appears in Raman spectra at

50 ∼ 200 cm−1 and a longitudinal optic (LO) mode together with an in-plane transverse

optic (iTO) mode form the G band Raman spectra around 1550− 1570 cm−1.

One method for distinguishing s-SWNTs from m-SWNTs is based on the distinct feature

of the G band. The G band feature of s-SWNTs shows the symmetric Lorentzian lineshape,

while that of m-SWNTs shows the asymmetric Breit-Wigner-Fano (BWF) lineshapes [2].
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The BWF line shape, which is a general physical phenomenon, comes from the interference

between the continuum spectra with the discrete spectra [3]. In m-SWNTs, the discrete

spectra comes from phonon excitations, and the continuum spectra comes from electron

excitations. The existence of a gapless linear energy band (Dirac cone) in m-SWNTs modifies

the symmetric G band spectra to give an asymmetric lineshape. Observations of electronic

contribution to the Raman spectra had been noticed since last decade [4, 5, 2], however the

apparent clarification towards this spectra has been accomplished by Farhat et al [6]. He

observed a broad spectrum with well-defined peak only in m-SWNTs and no such feature

in s-SWNTs. This spectrum is ascribed to the electronic Raman scattering (ERS) since this

spectra originate from pure electron excitation. However, our understanding of the electronic

spectra remains unclear since there is no theoretical work that successfully reproduced the

Raman spectra of m-SWNTs from the experimental data.

The purpose of this thesis is to provide a conclusive theoretical description of the ERS

mechanism. Based on gate-modulated Raman spectroscopy (Sec. 1.2.3 and 1.2.4), the origin

of ERS comes from a single particle (electron-hole) excitation within the linear energy band

of m-SWNTs by means of the Coulomb interaction. The Coulomb interaction describing the

interaction between the photo-excited carrier and the electron-hole pairs in the linear band is

introduced within exciton-exciton matrix elements. Our calculation is performed under the

extended tight binding method (ETB) for electronic structures and exciton wave functions.

The Coulomb potential is modeled by the Ohno potential which gives the effective potential

for π electron interaction in sp2 carbon systems. From this calculation, we found that the

first-order ERS process vanished for q = 0 momentum though the Coulomb interaction as a

function of q reach a maximum at q = 0 (Sec. 3.3). We argue that the vanishing Coulomb

interaction at q = 0 is due to the symmetry of sublattice wave function. By considering the

second-order process with q 6= 0, we can reproduce the Raman spectra consistent with the

experimental data (Sec. 4.2). Furthermore, we show that the BWF feature of m-SWNTs

comes from the interference between the G band and the ERS spectra. We also demonstrate

how the asymmetry, spectral width, and peak position of the G band might be affected by

the ERS as a function of laser excitation energy. Finally, based on this theory we predict

that the radial breathing mode (RBM) spectrum should show the BWF line shape as well.
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We expect that this work will also give clarifications for presently available experimental

results and insights for future experimental studies.

This master thesis is organized as follows: In the remaining part of Chapter 1, the

background for understanding this thesis is given. In Chapter 2, the electronic and excitonic

properties of SWNTs is reviewed. In Chapter 3, we will show our original result of exciton-

exciton matrix elements calculation which later contributes to the ERS spectra. We will

present the detail of calculation in the TB method and show the vanishing of matrix elements

at q = 0. In Chapter 4 we compare our calculated result of the ERS spectra with the

experimental data. We will analyze the asymmetry of both the G band and RBM by fitting

to the BWF lineshape. The asymmetry factor 1/qBWF, the spectral width, and the peak

position of the G band and RBM will be analyzed as a function of EL.

1.2 Background

Here we show the background concepts which are important to this thesis.

1.2.1 Raman Spectroscopy in SWNTs

One technique to study the optical properties of SWNTs is Raman spectroscopy. Raman

spectroscopy is an inelastic scattering of light, in which the outgoing light energy differs from

the incoming energy. The energy shift the scattering process originates from different kinds

of elementary excitations, for example: atomic vibrations (phonons), electron excitations

(excitons), charge density waves (plasmons), and spin density waves (magnons). Study of

Raman spectroscopy in SWNTs reveals that the phonon gives the dominant contribution for

the observed Raman spectra. A positive (negative) shift energy of the scattered light corre-

sponds to absorption (emission) of phonons, which is called an anti-Stokes (Stokes) Raman

scattering. The conventional unit for Raman shift energy is cm−1 (1 eV = 8065 cm−1).

Phonon excitations may occur in the first-order or higher-order Raman processes. The

first-order Raman process is defined by one phonon emission during a scattering event. The

higher-order process incorporates overtones or combinations of the phonon modes within

one scattering event. The atomic vibration along the tube radial direction, also known as,
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Figure 1-1: Raman spectra taken from high pressure carbon monoxide (HiPCO) SWNT
bundle with a excitation laser energy at 2.41 eV. The spectra show the radial breathing
mode (RBM) at 50 ∼ 200 cm−1, D band (∼ 1350 cm−1), G band (1550 − 1570 cm−1), and
G′ band (2700 cm−1) features [10].

radial breathing mode (RBM), vibration along the tube axis, Longitudinal optic mode (LO),

and vibration along the tangential direction, in-plane transverse optic mode (iTO) are the

examples of the first-order Raman process [7] (Fig. 1-1). The LO and iTO modes constitute

the G mode which are degenerated in case of graphite but are splitted into two peaks, i.e.

G+ and G− in case of SWNT due to the curvature effect [8]. The G′ band is a second-order

order Raman process which is assigned as the overtone of iTO phonon mode around the K

point, hexagonal corner of graphene Brillouin zone [9]. The D band phonon mode comes

from the defect.

If we look very closely at the G band in s-SWNTs and m-SWNTs, we may observe distinct

features at those spectra (Fig. 1-2). In a m-SWNT, the G band shows somewhat a broad

asymmetric lineshape while in a s-SWNT is symmetric. This asymmetry in m-SWNT occurs

due to a electronic excitation around the metallic band whose spectrum interferes with the

G band phonon mode. The symmetric (asymmetric) lineshape in s-SWNTs (m-SWNTs) are

generally fitted by Lorentzian (Breit-Wigner-Fano) formula. The Breit-Wigner-Fano (BWF)

Fig. 1-1: fig/intro-raswnt1.eps
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Figure 1-2: The RBM, G+, and G− Raman spectra for (a) (11,2) m-SWNT and (b) (15,2)
s-SWNT [12]

lineshape appears in many metallic systems which posses electronic spectra (Sec. 1.2.5). The

electronic structure for s-SWNTs and m-SWNTs will be discussed in Section 2.1.

1.2.2 Resonance Raman spectroscopy

Intensity of the scattered light in Raman spectroscopy is generally very weak; however,

when the laser energy is resonant to the separation energy between the conduction and

valence bands, the intensity is strongly enhanced which we call resonance Raman effect.

In one dimensional (1D) material like SWNTs, the transition energy between valence and

conduction band can be clearly defined due to singularities of 1D density of states, known

as, Van Hove singularities (VHS). Between two VHS in the i th valence band and the i th

conduction band, the transition energy is labeled by Eii, which depends on the geometry of

SWNTs [11]. Therefore matching the laser excitation energy EL to Eii will provide Raman

spectra for given SWNTs (n,m) value [8], thus giving information of the Eii for (n,m)

SWNT. This is called resonance Raman spectroscopy (RRS).

For characterization purposes, the RBM is particularly of great importance since it is

directly related to the nanotube diameter dt [13]. Its frequency, ωRBM, depends on dt and

can be estimated by ωRBM = A/dt + B, where A = (227.0 ± 0.3) cm−1nm and B = (0.3 ±

0.2) cm−1for supergrowth sample [14]. These parameters are sensitive to environment. This

relation is very useful for extracting the nanotube diameter from the RBM position. A

typical RBM range is about 100− 350 cm−1.

Fig. 1-2: fig/intro-ms-swnt.eps
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Figure 1-3: (a) the ERS feature is observed at optical transition energy EL
22 in a (23,14)

m-SWNT. (b) no ERS feature in a (25,8) s-SWNT [6]

1.2.3 Electronic Raman scattering in m-SWNTs

The unambiguous observation of the electronic contribution toward an inelastic scattering of

light in m-SWNTs has been done by Brown et al. [2]. They observe that G− is asymmetric

in m-SWNTs. The spectra are nicely fit to BWF formula and their asymmetric factor is

proportional to inverse diameter of m-SWNTs. Farhat et al. [6] later observed an exclusive

feature found only in m-SWNTs (Fig. 1-3a) but not in s-SWNTs (Fig. 1-3b) and assigned

the spectrum as the electronic Raman scattering (ERS). The ERS spectra with a peak

located at transition energy EL
22 gives a very broad (∼500 cm−1) shape, as what we expect

for continuum scattering, and appears between the RBM and the G bands with shift energy

around 0.06 eV. Because of the ERS broad feature, the G band and RBM lineshapes become

asymmetric in m-SWNTs.

Figure 1-4(a) shows the experimental result of EL dependence of Raman spectra. The

spectra show that the phonons’ peak positions shift according to the shift of EL by EL−~ωph

(the phonon energy) while the ERS peak remains at transition energy Eii due to the maxima

Fig. 1-3: fig/intro-ersfarhat.eps
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Figure 1-4: (a) EL dependence of the ERS for a (23, 14) m-SWNT. The ERS peak position
remains at EL

22 while the phonons peak are shifted as a function of EL. (b) EF dependence
of the ERS. The ERS, shown by the red line, is suppressed when EF is shifted to negative
or positive value. EF is changed by applying a gate voltage through the m-SWNT [6].

of the DOS. This distinct behavior indicates that the origin of ERS is not a phonon excitation.

Furthermore, by shifting the Fermi energy (EF) to the positive (negative) value from the

Dirac cone, the ERS is suppressed (Fig. 1-4 (b)) because of the final (initial) state is occupied

(unoccupied). This ERS suppression indicates that the ERS comes from the single-particle

electron-hole pairs excitation within the linear band.

1.2.4 Gate-modulated Raman spectroscopy

One technique to enrich the understanding of Raman spectroscopy in m-SWNTs is gate-

modulated Raman spectroscopy (GRS). The GRS is used to probe the low-lying electron-

hole pairs excitation within the linear energy band of m-SWNTs by applying a gate voltage

to the m-SWNTs being studied. EF thus is shifted to a positive or negative value depending

on the gate voltage applied (Fig. 1-5(a)).

The GRS is very useful to observe the Kohn anomaly phenomenon in m-SWNTs (Fig. 1-

5(b) and (c)) [15], i. e. the shift of phonon energy due to interaction between a phonon and

Fig. 1-4: fig/intro-erselfermi.eps
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Figure 1-5: A schematic diagram of the electrochemical gating setup. A Pt counter electrode
is used to maintain the gate voltage Vg between the Au contacted m-SWNT and a Ag
pseudoreference electrode. The gate efficiency α, and charge neutrality voltage Vo relate Vg
to EF [6]. (b) G band intensity map as a function of gate voltage VG. (c) G band spectrum
taken at the indicated VG values [15].

a electron-hole pair in the linear energy band of m-SWNTs. Figure 1-5(b) and (c) indicate

that the presence of gate voltage, which give the EF shift to positive and negative value, thus

electron-hole pair excitation near linear energy band is no longer allowed. In both cases, the

phonon energy is larger than that of neutral condition (no hole and no electron doping). In

other words, in the absence of gate voltage, the phonon energy decreases due to electron

hole excitation near EF by means of electron-phonon interaction [16]. This phenomenon is

indicated by gate-voltage dependence of a phonon spectral width and peak intensity position

of the RBM, G and G′ bands [16, 17, 18]. In this thesis, this technique is utilized to prove

that the ERS spectra comes from the single particle electron-hole pairs excitation.

1.2.5 Breit-Wigner-Fano lineshape observed in carbon systems

Fano states that interference between a discrete excitation spectrum and a continuum spec-

trum can lead to the asymmetric spectra, known as the Breit-Wigner-Fano (BWF) line-

Fig. 1-5: fig/intro-gate.eps
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shape [3]. This BWF lineshape is expressed by

I (ω) = I0
[1 + (ω − ω0) /qBWFΓ]

2

1 + [(ω − ω0) /Γ]
2 , (1.1)

where ω0 is the spectral peak position, Γ is the spectral width, and 1/qBWF is the asymmetric

factor due to the mixing of discrete and continuous states. If 1/qBWF = 0, Eq. (1.1) gives

a Lorentzian lineshape. This BWF lineshape exhibit in many physical phenomena and the

following are some examples of BWF line shapes found in carbon systems.

The BWF feature in SWNTs is observed only in the G band of m-SWNTs, while the

G band of s-SWNTs shows Lorentzian lineshape (Fig. 1-2). Figure 1-6(a) shows how the

Raman spectra of m-SWNTs bundles are nicely fitted to the BWF formula (Eq. (1.1)). The

origin of this asymmetric lineshape is widely believed to be a contribution of an electron

excitation within the linear band of m-SWNTs.

In graphene, the G band Raman spectra also exhibit BWF lineshape (Fig. 1-6(b)). The

spectral lineshape strongly depends on the Fermi energy which signifies the signature of

electron contribution near the Fermi level.

In graphite intercalated compound (GIC), for example C8Cs, donor atoms Cs are inserted

between graphite layers. The contribution of donated electron gives the continuum spectra

which modify the discrete phonon spectral shapes to be the BWF (Fig. 1-6(c)).

1.2.6 Exciton photo-physics in SWNTs

The exciton is an excitation of an electron-hole pair bounded by the Coulomb interaction.

The signature of an exciton can be detected by observing a discrete bound state below the

continuum single particle energy spectra, like in energy levels of a hydrogen atom below

the continuum level [21]. In SWNTs, exciton binding energy is even observable at room

temperature due to 1D quantum confinement [22, 23]. Two-photon photo luminescence

experiment is one of the experimental evidence that the bound exciton states present in

s-SWNTs at room temperature [24].

Figure 1-7(c) shows the luminescence map of excitation wavelength and emission wave-

Fig. 1-6: fig/ch1-bwf-gic.eps
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Figure 1-6: Examples of BWF lineshapes found in carbon materials. (a) m-SWNTs bun-
dle [2], (b) graphene with asymmetric factor (1/qBWF ) changes as a function of Fermi energy
[19], and (c) graphite intercalated compound (C8Cs) [20]

length. By applying laser excitation energy below the band gap 1210 nm (1.02 eV) and

1970 nm (0.6 eV), for each nanotube it found that the emission energy is far larger than the

excitation energy, from 1.18 eV (1050 nm) to 1.37 eV (900 nm). This figure is assigned as

two-photon absorption process (Fig. 1-7(b)). However, this emission energy is lower than

twice of the excitation energy. Maultzsch et al. argue that the energy shift is due to the

relaxation of exciton from 2g state to 1u state and thus signifies the existence of the exciton

state at room temperature. u (g ) is the odd (even) excitonic states symmetry with respect

to C2 rotation about the axis passing through the center of hexagon and perpendicular to

the tube axis (U -axis). n = 1, 2 indicate the n exciton eigen states. Emission occurs from the

lowest one-photon active 1u states. From this measurement, we found that exciton binding

energy for s-SWNTs is around 300-400 meV, which is a quarter of SWNTs’ energy gap.

The existence of excitons is not only observable in s-SWNTs but also in m-SWNTs.

Wang et al. found that absorption spectra in m-SWNTs, in spite of the screening effect

which weaken the Coulomb interaction, exciton binding energy is observed to be ∼ 50 meV

[25, 26].

Exciton effect is essential to understand the optical process in SWNTs. Exciton binding

energy modifies the optical transition energy (Eii) from that of single particle picture. The

10



Figure 1-7: (a) Schematic diagram of one-photon absorption and emission in SWNTs. E11

indicates the single particle transition between the lowest subbands. u (g ) is the odd (even)
excitonic states symmetry with respect to C2 rotation about the axis passing through the
center of hexagon and perpendicular to the tube axis (U -axis). n = 1, 2 indicate the n exciton
eigen states. Emission occurs from the lowest one-photon active 1u states. (b) Two-photon
absorption result. (c) Two-photon luminescence spectra [24].

environment effect of (Eii) can be discussed from dielectric screening effect which modifies

exciton binding energy [27, 28, 29, 30].

Fig. 1-7: fig/ch1-exciton.eps
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Chapter 2

Electronic and Excitonic Properties of

Single Wall Carbon Nanotubes

In this chapter, the electronic properties of single wall carbon nanotubes (SWNTs) are

reviewed. The SWNTs geometry is obtained from rolling up the single-layer graphite

(graphene), therefore the electronic structure of SWNTs can be derived from the electronic

structure of graphene. The electronic structure of graphene and SWNTs are calculated with

tight binding methods. In Sec. 2.1.1-2.1.5, we will use simple tight binding method (STB)

to understand the basic electronic structure of graphene and SWNTs. In Sec. 2.1.6, we will

discuss the limitation of STB method and will introduce the extended tight binding (ETB)

method in order to improve calculations. All detailed derivations and important definitions

will be explained below.

2.1 Electronic Properties of Graphene and SWNTs

2.1.1 Graphene unit cell and Brillouin zone

Graphene is a single atomic layer of two dimensional (2D) hexagonal carbon lattice whose

structure is considered the basic building block of sp2 carbon allotropes. The carbon-carbon

atoms of graphene are bound by covalent bondings (σ-bonds) to form the graphene layer.

Several layers of graphene sheets are stacked together by the van der Waals force to form

13



Figure 2-1: (a) The unit cell of graphene which consists of two atomic sites A and B. a1, and
a2 are the unit vectors and acc is the carbon-carbon distance. (b) Brillouin zone of graphene.
Γ, K, K′, and M indicated with a closed diamond, closed circles, opened circles, and closed
hexagons, respectively, are the high symmetry points. Reciprocal lattice vectors is denoted
by b1 and b2.

three dimensional (3D) graphite. A graphene sheet can be wrapped up to form a 0D fullerene

and can be rolled up to form a 1D SWNT.

Figure 2-1 gives the unit cell and Brillouin zone of graphene. Unit vectors a1 and a2 are

given by

a1 = a

(√
3

2
,
1

2

)
, a2 = a

(√
3

2
,−1

2

)
, (2.1)

where a =
√
3acc is the lattice constant for the graphene unit cell and acc = 0.142nm is the

nearest carbon-carbon distance. Reciprocal lattice vectors b1 and b2 are obtained from the

relations:

aibj = 2πδij, (2.2)

where δij is the Kronecker’s delta (δij = 1 for i = j, δij = 0 otherwise) and b1 and b2 are

given by

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3)

The first Brillouin zone is the rhombic area enclosed by b1 and b2 as shown in Fig. 2-1(b).

That Brillouin zone area is equivalent to the shaded hexagon. The high symmetry points

are defined at center Γ, the center of an edge M, and the hexagonal corners K and K′ of

Fig. 2-1: fig/grapbz.eps
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the Brillouin zone which are very useful to simplify the analysis of electronic structure in

Graphene (Sec. 2.1.2).

2.1.2 Electronic structure of graphene

The electronic dispersion relations of graphene is reviewed within the tight-binding method,

starting from a simple tight-binding (STB) method. A STB method (or linear combination

of atomic orbitals, LCAO) is used to calculate the electronic energy dispersion relation of a

crystal, that is the energyE as a function of wavevector k. In the tight binding approximation

of a crystal, the eigenfunctions of electrons are made up by Bloch function corresponding to

atomic orbitals.

Thus the problem of finding an eigenfunction is reduced to finding the coefficients for

the Bloch function consisting of atomic orbitals. Per one unit cell of graphene, we have 5

atomic orbitals (1s, 2s, 2px, 2py, and 2pz) from each A and B atomic site (Fig. 2-1(a)), which

give 10 atomic orbitals all together in the unit cell. The valence electrons (2s, 2px, and 2py)

construct a sp2 hybridization (σ bond) and 2pz orbital gives the π bonding. Hereafter, in

STB method we consider only π electron since its energy is very close to Fermi energy and

it dominantly contributes to electronic transport and optical properties. In the case of small

diameter SWNTs, because of curvature effect, we should take into account the mixing of

σ − π electrons [31, 32].

The electron wavefunction for band with index j is given by given by

ψj(k, r) =
∑
s=A,B

Cj
s(k)φs(k, r), (j = 1, 2). (2.4)

Here j = 1, 2 is the electronic energy band index for π bonding (valence band) and π∗ anti-

bonding (conduction band), respectively and s in the sum is taken over A and B atomic

sites. The Cj
s(k) are wavefunction coefficients for the Bloch functions φs(k, r). The Bloch

wavefunctions are given by a sum over the atomic wavefunctions ϕs for each orbital at the

u–th crystal site multiplied by a phase factor eik·R
u
s . The atomic orbital ϕs in the u unit cell
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is centered at Ru
s .

φs(k, r) =
1√
U

U−1∑
u=0

eik·R
u
sϕs(r−Ru

s ), (s = A,B) . (2.5)

We solve the energy for eigen state j by minimizing

Ej =
〈ψj|H|ψj〉
〈ψj|ψj〉

, (j = 1, 2), (2.6)

as a function of the wavefunction coefficients. The variational condition for finding the

minimum is
∂Ej

∂Cj∗
s

= 0, (j = 1, 2). (2.7)

The resulting equations for Cj
s(k) after minimization Eq. (2.7) are

∑
s′

Hss′C
j
s′(k) = Ej

∑
s′

Sss′C
j
s′(k) (s, s′ = A,B), (2.8)

where Hss′ = 〈φs|H|φs′〉 is the transfer matrix and Sss′ = 〈φs|φs′〉 is the overlap matrix. We

may write explicitly the matrix elements in Eq. (2.8) as

H(k) =

 HAA(k) HAB(k)

HBA(k) HBB(k)

 , and S(k) =

 SAA(k) SAB(k)

SBA(k) SBB(k)

 . (2.9)

Because H(k) and S(k) should form Hermitian matrices, we require

HBA(k) = H∗
AB(k), and SBA(k) = S∗

AB(k). (2.10)

Now we evaluate each component of matrix elements. By using Eq. (2.5),

HAA(k) =
1

U

∑
R,R′

eik.(R−R′)〈ϕA(r−R′)|H|ϕA(r−R)〉

= ε2p +O(R ≥ R± ai). (2.11)

By neglecting the higher order distance R ≥ R± ai contribution, for simplicity, HAA gives

16



Figure 2-2: A and B atomic site of a graphene unit cell. A atom lies at center (0, 0) and
three nearest neighbor B atoms are indicated by R1, R2, and R3 with their (x, y) coordinates
are given. a = 2.46 Å

the orbital energy of 2p level, ε2p. In the same manner, HBB gives the same ε2p. Since the

difference of HAA and HBB is more important than their value itself, we may set HAA =

HBB = 0 which just change the energy threshold.

For HAB(k) using the same method as above, the largest contribution of matrix elements

arise when atoms A and B are nearest neighbors with distance Ri, (i = 1, . . . , 3) for the first

nearest neighbors (Fig. 2-2). Thus we only consider R′ = R+Ri in the summation over R′

and neglecting the more distant term to obtain

HAB(k) =
1

U

∑
R,i

eik.Ri〈ϕA(r−R)|H|ϕB(r−R−Ri), i = 1, . . . 3

≡ tf(k) (2.12)

where t = −3.033 eV [33] is the transfer matrix 〈ϕA(r−R)|H|ϕB(r−R−RAB)〉 which are

the same for three nearest neighbor B atoms in Fig. 2-2, and f(k) is a function of the sum

of the phase factor f(k) =
3∑

i=1

eik.Ri . By using x, y coordinates of Fig. 2-2, f(k) is given by

f(k) = eikxa/
√
3 + 2e−ikxa/2

√
3 cos

(
kya

2

)
. (2.13)

Fig. 2-2: fig/ch2-ab.eps
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Using Eq. (2.5), the overlap integral SAA = SBB = 1, and SAB = sf(k) = S∗
BA. Here the

overlap parameter s is defined by

s = 〈ϕA(r−R)|ϕB(r−R−RAB)〉. (2.14)

In this work, we take s = 0.129 [33] in order to reproduce the result from first principle

calculation of graphite energy bands. Combining Eqs. (2.9)-(2.14), Eq.(2.8) becomes,

 −Ei(k) f(k) {t− sEi(k)}

f ∗(k) {t− sEi(k)} −Ei(k)

 Ci
A(k)

Ci
B(k)

 = 0 , (i = c, v). (2.15)

The solution of Eq. (2.15) is given by

E±
g (k) =

±tw(k)
1± sw(k)

(2.16)

where w(k) =
√
f(k)f ∗(k) Now we use Eg(k) notation for graphene energy dispersion

relation and to distinguish it from E(k), SWNT energy dispersion. + (−) sign denotes the

valence (conduction) band, by noting that t has a negative value. The electronic structure

of π electron now can be obtained by mapping Eg(k) over first Brillouin zone in Fig. 2-1(b).

In Fig. 2-3(a), the 3D picture of E(k) in the first Brillouin zone is plotted. E±
g bands touch

each other at K and K′ points.

For a small electron wavevector k, which is measured from K points, we expand Eq. (2.16)

around K and K′ as f(K + k) and f(K′ + k). The K and K′ points have coordinates

K = (0,−4π/(3a)) and K′ = (0, 4π/(3a)). With k = (kx, ky) we obtain

f(K+ k) =

√
3a

2
(ikx + ky), and f(K′ + k) =

√
3a

2
(ikx − ky) . (2.17)

Substituting Eqs. (2.17) into Eq. (2.16), we get an approximation for the electron energy

dispersion relations close to K points. It turns out that in the linear order approximation

we get the same energy dispersion relation around K and K′ points,

E±
g (k+K) = ±

√
3at

2

√
k2x + k2y. (2.18)

18



��� ��� ���

�

�

�

�

�

Figure 2-3: (a) π electron energy dispersion relation in the first Brillouin zone from Eq.
(2.16). (b) Dirac-cone around K point (Eq. (2.17)). (c) Equi–energy contour of Eg(k) which
shows circle near K point and deform to triangle, known as trigonal warping effect [34], if
we go further to M point. Separation between two equi-energy lines are 0.7 eV.

Here the “+(–)” sign corresponds to valence (conduction) band. In Fig. 2-3(b), we plot the

E(k) for Eq. (2.18) which has a cone shape, known as the Dirac cone. In Fig. 2-3(c) we

plot equi–energy contours which are almost circles around K and K points. The equi–energy

circles deform to triangles, when going to higher electron energies. This is known as the

trigonal warping effect in graphene [34]. The equi–energy contour connecting three nearest

M points is a triangle as shown in Fig. 2-3(c). Optical transitions occur between bonding

and anti–bonding bands and from Fig. 2-3(a) it is clear that low energy optical spectroscopy

in the region of visible light mainly probes electrons around K points between the π and π∗

bands.

We now calculate the wavefunction coefficients for electrons for A and B atoms, Ci
A and

Ci
B, respectively. The wavefunction coefficients are the eigenvectors that are obtained by solv-

ing Eq. (2.15). The normalization and orthonormality condition is 〈ψi(r,k)|ψj(r,k)〉 = δij

where ψi(r,k) = Ci
A(k)φAr,k) + Ci

B(k)φB(r,k). Here, Ci
A(k) and C

i
B(k) are the wavefunc-

tion coefficients, which are the eigenvectors of Eq. (2.15). By putting the possible indices for

i and j, we can obtain four equations, that are needed to calculate the four wavefunction

coefficients (Cj
A, C

j
B for j = c, v) of the Bloch functions. The orthonormality conditions can

Fig. 2-3: fig/ch2-triek.eps
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be expanded in terms of Bloch functions as

〈ψi(r,k)|ψj(r,k)〉 =C∗i
AC

j
A〈φA(r)|φA(r)〉+ C∗i

AC
j
B〈φA(r)|φB(r)〉

+ C∗i
BC

j
A〈φB(r)|φA(r)〉+ C∗i

BC
j
B〈φB(r)|φB(r)〉. (2.19)

Using the Bloch functions in Eq. (2.5) which are also normalized, we get 〈φA(r)|φA(r)〉 = 1

and 〈φB(r)|φB(r)〉 = 1. Thus the orthonormality conditions give

〈ψi(r,k)|ψj(r,k)〉 =C∗i
A (k)Cj

A(k) + sf(k)C∗i
A (k)Cj

B(k)

+ C∗i
B (k)Cj

B(k) + sf ∗(k)C∗i
B (k)Cj

A(k) = δij (2.20)

(i = v, c and j = v, c).

The relation between Cj
A and Cj

B is obtained from Eq. (2.15) and is given by

Ci
A(k) = Ci

B(k)
f(k)

Ei(k)

{
t− sEi(k)

}
. (2.21)

To calculate coefficient Ci
A(k) for i = v, c, we consider 〈ψi(r,k)|ψi(r,k)〉 = 1. We expand

Ψi(r,k) into Bloch functions and use Eq. (2.21) to replace Ci
B(k) by C

i
A(k). Noting that

Ec(k)

t− sEc(k)
= −w(k) and

Ev(k)

t− sEv(k)
= w(k), (2.22)

we can obtain the coefficients for B atoms as

Cv
B(k) = Cv

A

f ∗(k)

w(k)
and Cc

B(k) = −Cc
A

f∗(k)

w(k)
. (2.23)

We can then obtain Ci
A(k) for i = v, c as

Cv
A(k) = exp(iφv)

√
1

2 {1 + sw(k)}
and Cc

A(k) = exp(iφc)

√
1

2 {1− sw(k)}
,

Cv
B(k) = exp [i(φv + θ(f∗)]

√
1

2 {1 + sw(k)}
and Cc

B(k) = − exp [i(φc + θ(f∗)]

√
1

2 {1− sw(k)}
.

(2.24)
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where tan θ(f ∗) = Im(f∗)/Re(f ∗). Note that the phasefactors φv or φc for Eq. (2.24) can

be chosen arbitrarily as long as the phase difference between A and B atoms preserve.

The symmetry of wave function coefficients (Cj
A, C

j
B for j = c, v) play an important role of

vanishing the direct Coulomb interaction at zero momentum transfer which will be discussed

in Section 3.3

2.1.3 SWNT unit cell and Brillouin zone

After discussing the electronic structure of graphene, now we review the electronic structure

of SWNTs with the same simple tight binding method. SWNTs unit cell and Brillouin zone

are defined in the 2D hexagonal plane as shown below. Then we adapt the simple tight

binding method for calculating electronic structure and density of states of a SWNT.

In Fig. 2-4, we show the unrolled unit cell of a SWNT expressed by rectangle ORQP. The

unit cell forms the rectangle ORQP specified by the chiral vector Ch and the translational

vector T. SWNT can be constructed by connecting O to R and P to Q.
−→
OR and

−→
OP define

the chiral vector Ch (the way to roll up the unit cell) and translational vector T (direction

of tube axis), respectively.

Ch is defined in terms of the unit vector of graphene a1 and a2,

Ch = na1 +ma2 ≡ (n,m), (2.25)

where n, m are positive or zero integers with n ≥ m > 0. The circumferential length L of a

SWNT is nothing but the length of Ch:

L = |Ch| = a
√
n2 + nm+m2, (2.26)

the tube diameter dt can be determined by L/π,

dt =
L

π
=
a
√
n2 + nm+m2

π
. (2.27)

Fig. 2-4: fig/ch2-swnt-uc.eps
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Figure 2-4: Rectangle OPQR is the unrolled unitcell of a (4,2) SWNT. SWNT can be

constructed by connecting O to R and P to Q.
−→
OR and

−→
OP define the chiral vector Ch and

translational vector T, respectively. In this figure, Ch = (4, 2), T = (4,−5), and number of
hexagons in the SWNT unit cell N = 28.

The vector T is determined by

T = t1a1 + t2a2 ≡ (t1, t2), (2.28)

where t1 and t2 are integers determined by the relations Ch ·T = 0. Using Eqs. (2.25) and

(2.28), we get

t1 =
2m+ n

dR
, t2 = −2n+m

dR
(2.29)

where dR is the greatest common divisor (gcd) of (2m+n) and (2n+m) so that gcd(t1, t2) = 1.

The absolute value of vector product |Ch ×T| determines the area of a SWNT unit cell

OPQR (Fig. 2-4), while |a1 × a2| equals the area of a graphene hexagon. Relating those

two values, number of hexagons N within a SWNT unit cell, is given by:

N =
|Ch ×T|
|a1 × a2|

=
2(n2 +m2 + nm)

dR
. (2.30)
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(a)

(b)

(c) Chiral

Armchair

Zigzag

Figure 2-5: Classification of SWNTs: (a) zigzag, (b) armchair, (c) chiral SWNTs. From left
to right, the chiral index of each SWNT above is (5, 0), (3, 3), (4, 2), respectively. The shape
of cross section is given by a red line.

The chiral angle θ is defined by an angle between Ch and a1

cos θ =
Ch · a1

|Ch||a1|
=

2n+m

2
√
n2 +m2 + nm

. (2.31)

θ determines the spiral geometry of SWNTs which can be seen in the edge structure (red

lines in Fig. 2-5). θ = 0o and θ = 30o correspond to zigzag (n, 0) and armchair (n, n) SWNTs,

respectively, and chiral SWNTs, (n,m) with n > m > 0 have 0 < θ < 30o. Those three

types of SWNTs are depicted in Fig. 2-5.

The reciprocal lattice vectors K1 and K2 of a SWNT is determined by the relation:

Ch ·K1 = 2π, T ·K1 = 0,

Ch ·K2 = 0, T ·K2 = 2π.
(2.32)

Using Eqs (2.25), (2.28), and (2.32), we get expressions for K1 and K2:

K1 =
1

N
(−t2b1 + t1b2), K2 =

1

N
(mb1 − nb2), (2.33)

Fig. 2-5: fig/ch2-swntclass.eps
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Figure 2-6: The reciprocal lattice vectors K1 and K2, and the Brillouin zone of a (4, 2) swnt
represented by the set of N = 28 parallel cutting lines. The cutting lines are labeled by
the integer angular momentum index µ

{
µ = −

(
N
2
− 1
)
, ..., N

2

}
with µ = 0 correspond to a

cutting line which passes through Γ point.

In Fig. 2-6, we show the reciprocal lattice vectors, K1 and K2, for Ch = (4, 2) SWNT. One

segment of line with length |K2| = 2π/|T| is the first Brillouin zone of a 1D SWNT. From the

expression of K1 in Eq. (2.33), we know that two wave vectors differ by NK1 are equivalent,

in this case N = 28. Thus we have quantized N wave vectors µK1

{
µ = −

(
N
2
− 1
)
, ..., N

2

}
which arise from boundary condition along circumferential direction Ch. We have quasi-

continuous wave vectors in K2 direction because of the periodicity along the tube axis T in

1D SWNTs. But if we have a finite length Lt SWNT, we will have a discrete k point in K2

direction separated with a distance 2π/Lt. Combination of discrete and quasi-continuous

lines resemble 1D SWNTs Brillouin zone,

k = k
K2

|K2|
+ µK1,

{
µ = −

(
N

2
− 1

)
, ...,

N

2
, and − π

T
< k <

π

T

}
, (2.34)

which is called cutting lines [35]. Note that |K1| = 2
dt

and |K2| = 2π
T

which will be used

later.

2.1.4 Electronic structure of SWNTs

The electronic structure of SWNTs can be obtained directly from that of graphene. As

shown in Sec. 2.1.3, SWNTs wave vector composes of quasi-continuous k points in the tube

axis direction K2, and quantized µ wave vector along the circumferential direction K1 (Eq.

Fig. 2-6: fig/ch2-swntbz.eps
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Figure 2-7: (a) The condition of metallic energy bands: if the length ratio of |
−−→
Y K| to |K1|

is an integer we get m-SWNTs otherwise we get s-SWNTs. (b), (c), and (d) illustrate of
the cutting line conditions which give metallic, semiconducting type I, and semiconducting
type II SWNTs respectively. Cutting line label i denotes the ascending order of cutting line
distance measured from K point.

(2.34)). SWNTs energy dispersion now reads

E(k) = Eg

(
k
K2

|K2|
+ µK1

)
,

{
µ = −

(
N

2
− 1

)
, ...,

N

2
, and − π

T
< k <

π

T

}
, (2.35)

where Eg is the graphene energy dispersion relation given by Eq. (2.16).

For a certain (n,m) SWNT, the absence or existence of energy gap in a SWNT depends

on whether a cutting line passes through a K point of 2D graphene BZ or not. The condition

for obtaining metallic energy band is that the ratio of the length of vector
−−→
Y K to that of

K1 in Fig. 2-7(a) is an integer. The vector
−−→
Y K is given by

−−→
Y K = (

−→
ΓK ·K1)

K1

|K1|
=

2n+m

3
K1. (2.36)

The modulus mod (2n +m, 3) = 0, 1, or 2 give metallic, semiconducting type I or type

II SWNTs, respectively as shown in Fig. 2-7(b)-(d). This result implies that one-third of

SWNTs are metallic while the rests are semiconducting [11].

The electronic structure of SWNTs comprise 2N energy bands which originate from N

segments of cutting lines with each cutting line gives bonding π and anti-bonding π∗ bands.

Energy dispersion relation thus is plotted as a function of quasi-continuous k wave vector

along K2. Figure 2-8(a) and (b) show the cutting lines of (4,2) s-SWNT and (15,15) m-

Fig. 2-7: fig/ch2-yk.eps
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Figure 2-8: Cutting lines of (a) semiconducting (4,2) and (b) metallic (15,15) SWNTs with
their corresponding energy dispersion relation. A (4,2) SWNT is a semiconducting tube
since no cutting line passes through K point while (15,15) is metallic. Cutting line label i
has been defined on Fig. 2-7).

SWNT with their corresponding energy dispersion.

2.1.5 Density of states of SWNTs

The electronic density of states (DOS) is defined by the number of available electronic states

for a given energy interval on unit of states/1C-atom/eV. DOS determines Eii values for

the resonant condition for Raman spectra. DOS depends on the dimensionality of a system.

Figure 2-9 depicts the dimensional dependence of DOS by nearly free electron model, which

gives the parabolic energy band. In 3D system, DOS behaves as DOS(E) ∝ (E − E0)
1
2

where E0 is the energy minimum, in 2D system is a step-like function, in 1D system, such

as SWNTs, DOS(E) ∝ (E − E0)
− 1

2 diverges at some points known as Van Hove singularity

points (VHS), and finally in 0D system, DOS gives a delta function DOS(E) ∝ δ(E − E0).

For given energy dispersion Eµ(k), where k is expressed in two numbers (µ, k) which

correspond to K1 and K2 direction of a SWNT BZ respectively, DOS is given by

DOS(E) =
2

N

N
2∑

µ=−(N
2
−1)

∫
dk

1∣∣∣∣dEµ(k)

dk

∣∣∣∣δ [E − Eµ(k)] . (2.37)

Fig. 2-8: fig/ch2-cutband.eps
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Figure 2-9: Density of states for 3D, 2D, 1D, and 0D systems.

Figure 2-10(a) and (b) shows the relationship between energy dispersion and DOS of a

(9,0) SWNT. DOS gives singularities at maxima (minima) of valence (conduction) band.

Around Fermi energy (EF ≡ E = 0 eV), DOS shows a finite value as what is expected linear

energy band. The energy separation between two VHS arising from the i th cutting line is

called transition energy Eii, energy required to excite the electron from i th valence band to

i th conduction band (the cutting line label i has been defined on Fig. 2-7).

The trigonal warping effect discussed in Sec. 2.1.2 induces a splitting of energy band

in metallic SWNT. Figure 2-10(c) shows that even for the same distance from K point, the

cutting line EH
11 gives higher transition energy than that of the cutting line EL

11 (Fig. 2-10(b)).

Mapping the cutting lines on the equi-energy contour reveals that energy dispersion in
−→
KΓ is

much steeper than that in
−−→
KM direction. Thus, VHS point of cutting line EH

11 (EL
11) which

is located in
−→
KΓ (

−−→
KM) direction from K point gives a higher (lower) energy. The splitting

of transition energy Eii is absent in an armchair SWNT because two neighbor of the cutting

lines are parallel to a
−−→
KM line [34]. In a big diameter SWNT, due to the shortness of the

cutting lines, Eii order might exchange to each other [36].

2.1.6 Extended tight binding method

Even though STBmethod gives a good understanding towards electronic property of SWNTs,

recent Eii measurements by photoluminescence (PL) and resonance Raman spectroscopy

(RRS) indicate that the STB calculation is not sufficient to interpret the experimental re-

Fig. 2-9: fig/ch2-dostypes.eps
Fig. 2-10: fig/ch2-esplit.eps
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Figure 2-10: (a) Energy dispersion relation, (b) density of states, and (c) cutting lines of (9,0)
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22 respectively. Superscript L
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sults [37, 38]. The experimental plot of transition energy (Eii) as a function of diameter

or inverse diameter (Kataura plot) in Figs. 2-11(c), (d) differs from the theoretical STB

Kataura plot Fig. 2-11(a) in two different regions: in the large diameter limit and in the

small diameter limit.

In the small dt limit, the families of constant 2n +m deviate from the mean Eii energy

bands in the experimental Kataura plots, while the family spread in the theoretical Kataura

plot remains relatively moderate [38]. In search for the origin of the family spread, we

reconsider the limitations of the STB model discussed previously. Within the STB model,

the long-range atomic interactions and the σ molecular orbitals are neglected. Meanwhile,

the long-range atomic interactions are known to alternate the electronic band structure of the

graphene sheet and SWNTs. On the other hand, the σ molecular orbitals are irrelevant in the

graphene sheet and large diameter SWNTs as they are almost perpendicular to each other. In

small diameter SWNTs, however, the curvature of the SWNTs sidewall changes the lengths

of the inter-atomic bonds and the angles between them. This leads to the rehybridization

of the σ and π molecular orbitals, which affects the band structure of π electrons near the

Fermi level. Furthermore, the σ-π rehybridization suggests that the geometrical structure

of a small diameter SWNTs deviates from the rolled up graphene sheet. A geometrical

structure optimization must thus be performed to allow for atomic relaxation to equilibrium
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Figure 2-11: (a) The STB and (b) the ETB Kataura plot as a function of a SWNT inverse
diameter 1/dt. The STB model only takes into account π orbital and static geometry, while
the ETB model takes into account the long-range atomic interactions, the curvature effects
of small diameter SWNTs, and the optimized geometrical structures of the SWNTs. Black,
red, and blue dots correspond to metallic, semiconducting type I, and semiconducting type II
SWNTs, respectively. The constant 2n+m families are connected by lines. (c) The Kataura
plot extracted from resonance Raman spectroscopy [39]. (d) The Kataura plot extracted
from the Photoluminiscence map [38]. The numbers show the constant 2n+m families.

positions. This in turn affects the Eii energies of the small diameter SWNTs.

In the large dt limit, the ratio of E22 to E11 reaches 1.8 in the experimental Kataura

plots, while the same ratio goes to 2 in the STB Kataura plot [37]. The ratio problem is an

indication of the many-body interactions related to the excitons, that will be discussed in

Sec. 2.2.

The STB model is now extended by including the long-range atomic interactions and

the σ molecular orbitals, and by optimizing the geometrical structure. The resulting model

is referred to as the extended tight-binding model (ETB). Within the framework of the

ETB model, we use the tight-binding parametrization determined from density-functional

theory (DFT) employing the local-density approximation (LDA) and using a local orbital

basis set [40]. The ETB model is discussed in detail by Samsonidze et al. [41]. The ETB

Kataura plot shows a similar family spread to the PL and RRS experimental Kataura plots

(see Fig. 2-11(c) and (d)). The experimental family spread is concluded to be related to

Fig. 2-11: fig/ch2-stbetb.eps
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the relaxation of the geometrical structure of SWNTs. Although the family spread of the

ETB model is in good agreement with the PL and RRS Kataura plots, it still deviates

200 − 300meV from the PL and RRS experiments and the ratio problem was not solved.

This deviations originates from the many-body effects or exciton effects [42].

2.2 Excitonic properties of SWNTs

2.2.1 Bethe-Salpeter equation

Exciton is an electron-hole pair bound by a Coulomb interaction and thus localized both in

real space or k space. But in solids, all electrons or holes wave functions are delocalized as

expressed by the Bloch wave functions. The wave vector of an electron (kc) or a hole (kv)

is no longer a good quantum number in the presence of the Coulomb interaction. To create

an exciton wave function from the electron and hole wave functions, the electron and hole

Bloch functions at many (kc) and (kv) wave vectors have to be mixed to one another. The

exciton wave function, with a center-of-mass momentum K̄ and a relative momentum k, is

a superposition of free e-h two-body states |kc, (k− K̄)v〉 (Eq. (2.4)) as:

|Ψn
K̄〉 =

∑
k

∑
c,v

Zn
kc,(k−K̄)v

|kc, (k− K̄)v〉. (2.38)

The eigen vector Zn
kc,(k−K̄)v

is evaluated by solving one-body Hamiltonian plus the Coulomb

interaction between electron and hole, known as, Bethe—Salpeter (BS) equation [43, 44, 42]:

[
Ekc − E(k−K̄)v +

∑
k′

Kk′
c(k

′−K̄)v,kc(k−K̄)v

]
Zn

k′
c,(k

′−K̄)v
= Ωn

K̄Z
n
k′
c,(k

′−K̄)v
, (2.39)

where Ekc and Ekv are the quasi-electron and quasi-hole energies, respectively. The “quasi-

particle” means that many body Coulomb interactions are added to the single particle energy

and the particle has a finite life time in an excited state. Ωn(K̄) is the n-th excited state

exciton energy.
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The kernel Kk′
ck

′
v ,kckv is given by

Kk′
ck

′
v,kckv = 2δSK

x
k′
ck

′
v ,kckv

−Kd
k′
ck

′
v ,kckv

, (2.40)

with δS = 0 for spin triplet states and δS = 1 for spin singlet states. The direct interaction

kernel Kd for the screened Coulomb potential w is given by the integral

Kd
k′
ck

′
v ,kckv

= Wk′
ckc,k′

vkv

=

∫
dr′drψ∗

k′
c
(r′)ψkc(r

′)w(r′, r)ψk′
v
(r)ψ∗

kv
(r), (2.41)

and the exchange interaction kernel Kx for the bare Coulomb potential v is

Kx
k′
ck

′
v ,kckv

=

∫
dr′drψ∗

k′
c
(r′)ψk′

v
(r′)v(r′, r)ψkc(r)ψ

∗
kv
(r), (2.42)

where ψ is the single particle wave function in Eq. (2.4).

The quasi-particle energies are calculated from the single particle energy εsp(k) by in-

cluding the self-energy corrections Σ(k):

Ekc = εsp(kc) + Σ(kc), (2.43)

Ekv = εsp(kv) + Σ(kv), (2.44)

where Σ(k) is expressed as

Σ(kc) = −
∑
q

Wkc(k+q)v ,(k+q)vkc , (2.45)

Σ(kv) = −
∑
q

Wkv(k+q)v ,(k+q)vkv . (2.46)

The dielectric screening effect is considered within a random phase approximation (RPA),

in which the static screened Coulomb interaction is given by

W =
V

κε(q)
, (2.47)
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Figure 2-12: (a) The ilustration of renormalized transition energy Eii = εsp+Σ−Ebd (b) The
solution of the Bethe-Salpeter equation (Eq. (2.39)) which describes the first- three exciton
wave states of a (8,0) SWNT. The black solid line, the red dash line, and the green dotted
line show exciton state for n = 1, 2, and 3 respectively. (c) Energy levels of singlet exciton
(S = 0) at E11 and E22 for a (8,0) SWNT. (d) Comparison of energy state at K̄ = 0 for
singlet (S = 0) and triplet (S = 1) states with A1 and A2 symmetry.

with the dielectric function ε(q) = 1 + v(q)Π(q) that describes effects of the polarization of

the π bands. The effect of electrons in core states, σ bonds, and the surrounding materials

are all represented by a static dielectric constant κ = 2.2. By calculating the polarization

function Π(q) and the Fourier transformation of the unscreened Coulomb potential v(q),

the exciton energy calculation can be performed. For 1D materials, the Ohno potential is

commonly used for the unscreened Coulomb potential v(q) for π orbitals [23].

Using the information from Eqs. (2.40)-(2.47), we can solve the BS equation (Eq. (2.39)).

The solution of exciton wave function for first-three exciton states are shown in Fig.2-12(a).

The exciton states comprise even and odd function along the k points in the cutting line.

The lowest exciton state, shows a Gaussian function which indicates that exciton is localized

both in reciprocal space and in real space. This localized nature of exciton is due to a strong

Coulomb interaction between electron and hole in a 1D material like a SWNT.

Exciton energy dispersion is shown in Fig. 2-12 (b). Exciton energy states show discrete

levels in lower energy states and continuum level in higher state. The discrete states represent

bound-states of electron-hole similar to the case of Hydrogen atom.

After obtaining the excitation energy Ωn(K̄), the exciton binding binding energy Ebd can

Fig. 2-12: fig/ch2-excitonwf.eps
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be calculated by subtracting the quasi particle energy EQP = Ec(kc)− Ev(kv) with Ω1(0),

Ebd = EQP − Ω1(0). (2.48)

Here Ω1(0), which is the first (lowest) exciton state, is interpreted as the photo absorption

energy Eii, where an electron and a hole lie on the same k point of the 1D Brillouin zone of

graphene. The difference between Eii and the single particle band gap gives the many-body

corrections Emb which is also the difference between Σ and Ebd,

Emb = Σ− Ebd. (2.49)

2.2.2 Symmetry of exciton in SWNTs

As shown in Fig. 2-13, there are three inequivalent regions in the two-dimensional Brillouin

zone (2D BZ) of graphite, i.e., two triangle regions around K, K′ and one hexagonal region

around the Γ point. In the case of SWNTs, the allowed wavevectors are on the so called

cutting lines [35, 45] and can be expressed by k = µK1 + kK2/|K2| in Eq (2.34) [46]. Here

K1 and K2 are, respectively, the reciprocal lattice vectors along the circumferential and axial

directions (Eq. (2.33)). The cutting line index (integer µ) and the 1D wavevectors (k) are

confined to lie within the parallelogram in Fig. 2-13. Figure 2-13 shows that the cutting lines

of a SWNT are also distributed in the three inequivalent regions.

The excitons in SWNTs can then be classified according to the 2K̄ in these three different

regions. The optical transitions will be related to the electron and hole in the K or K′ regions.

If both the electron (kc) and hole (kv) are from the K (or K′) region, then 2K̄ = kc−kv lies

in the Γ region and the corresponding exciton is an A symmetry exciton. If an electron is

from the K region and a hole is from the K′ region, 2K̄ lies in the K region and this exciton

is an E symmetry exciton. If an electron is from the K region and a hole is from the K′

region, 2K̄ lies in the K′ region and this exciton is an E∗ symmetry exciton.

For A excitons, the electron-hole pair |kc,kv〉 = |k, K̄〉 with the electron and hole from

the K region, and | − kv,−kc〉 = | − k, K̄〉 with the electron and hole from the K′ region

Fig. 2-13: fig/ch2-bz.eps
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Figure 2-13: The three inequivalent regions in the 2D BZ of graphite. The cutting lines
for a (6,5) SWNT are shown. The electron-hole pairs and the corresponding center-of-mass
momentum 2K̄ = kc−kv for an A12 exciton of the (6,5) SWNT are indicated. The electron-
hole pair with the electron and hole lie on the second and first cutting lines to the K point
and the electron-hole pair with the electron and hole lie on the first and second cutting lines
to the K′ point correspond to an A12 exciton with the center-of-mass momentum 2K̄ on the
first cutting line to the Γ point.

have the same K̄. Thus, we can recombine these two electron-hole pairs to get

A2,1 = |k,±, K̄〉 = 1√
2
(|k, K̄〉 ± | − k, K̄〉). (2.50)

Here |k,+,K〉 and |k,−,K〉 are antisymmetric and symmetric, respectively, under the C2

(180◦) rotation around the axis perpendicular to the nanotube axis. The corresponding

excitons have A antisymmetric and symmetric under the C2 rotation and are labeled as A2

and A1 excitons, respectively.

Because of the wave function symmetry, A1 and A2 states shows different energy level

(Fig. 2-12(c)). In case of A2 exciton, triplet exciton state (S = 1) has lower energy compared

to singlet states S = 0 due to the correction of exchange interaction in Eq. (2.39). In the

case of A1 exciton, spin degeneracy disappears due to wave function even-symmetry in K

and K′ points.

Among all of the exciton symmetry, only A2 exciton can absorb and emit light (bright

exciton). In this thesis (Sec. 3.2), we deals with A2 exciton with K̄ = 0 since the wavevector
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of light is very small in comparison to graphene Brillouin zone. E and E∗ excitons are dark

exciton since electron and hole cannot recombine and emit photon, they possess a large K̄

while the photon wave vector is almost negligible. A1 exciton is also dark exciton because

of the vanishing exciton-photon matrix element (see Appendix A.1)

2.2.3 Exciton effect in SWNTs

To understand how significant exciton effect in the photo-absorption process in SWNTs,

we present a Kataura plot of Ebd for some m-SWNTs and s-SWNTs in Fig. 2-14(a) and

(b). Exciton binding energy is calculated within STB method by Jiang et al. [42]. From

this calculation we found that Ebd in s-SWNTs are around ∼ 0.3 eV for dt ≈ 2 nm and

increase to ∼ 1 eV as dt ≈ 0.5 nm. This dt dependence of Ebd come from the fact that the

Coulomb interaction is proportional to 1/dt. Ebd in small dt s-SWNTs is in the same order

with the single particle electron energy. Thus the renormalization of electron by considering

exciton effect in SWNTs is significant. Ebd in m-SWNTs shows the same tendency with its

values one-order smaller than that of s-SWNTs due to screening effect which weakened the

Coulomb interaction [42].

To understand whether the single particle spectra or many-body effects contribute to the

large family spread in the exciton Kataura plot, the transition energy E11, the self-energy

Σ, the exciton binding energy Ebd, and the energy correction to the single particle energy

(many-body correction) Σ − Ebd are plotted in the same figure (Fig. 2-14(c)). Although

both Σ and Ebd tend to increase the family spread in smaller diameter SWNTs, the two

values almost cancel each other regarding the family spread, leading to a weak chirality

dependence. The large family spread observed in Eii is thus concluded to originate from the

trigonal warping effect in the single-particle spectra [34]. The net-energy correction (Σ–Ebd)

to the single-particle energy depends predominantly on dt. The correction has a logarithmic

nature, owing to the effect of the Coulomb interaction on the dispersion of graphene [47],

Elog = 0.55(2p/3dt) log

[
3

(
3dt
2p

)]
, (2.51)

where p is an integer corresponds to the ratio of the distances of the cutting lines for each
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Figure 2-14: Kataura plot of exciton binding energy Ebd for (a) s-SWNTs and (b) m-SWNTs.
The result is taken from Ref. [42] within STB method.(c) The excitation energy E11 = Ω0,
self energy Σ, exciton binding energy Ebd, and many body correction Emb. The dashed line
is taken from Eq. (2.51) . The result is taken from Ref. [42] within ETB method.

Eii transition from the K-point in 2D Brillouin zone of graphene [34], p = 1, 2, 3, 4, 5 stands

for ES
11, E

S
22, E

M
11, E

S
33, and E

S
44, respectively. In Fig. 2-14(c), Elog with p = 1 is plotted as a

dashed line. It can be seen that the many-body correction Σ−Ebd calculated in the exciton

picture follows the logarithmic behavior very well. And thus, the ratio problem has been

solved by considering many body correction and exciton effect.

Fig. 2-14: fig/ch2-exbdsm.eps
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Chapter 3

Calculation of Raman spectra

In this Chapter we discuss the Raman scattering process which occurs in SWNTs. The

ground state is defined by the states where all electrons occupy the valence band of a SWNT.

Optical process starts after laser excitation energy is introduced. An exciton is thus generated

as a virtual state via exciton-photon interaction. This photo-excited carrier may undergo

exciton-phonon interaction or exciton-exciton interaction and then relaxes to the conduction

band bottom before emitting a scattered photon by electron-hole recombination.

3.1 Raman scattering amplitudes

Depending on the number of scattering process, we define the order of Raman scattering

(Fig. 3-1). First-order (second-order) scattering corresponds to one- (two-) emission of exci-

tation(s). In this calculation, we restrict our self to take into account only up to second-order

resonance Raman process. Here the resonance means that the one (two) intermediate state

is real electronic states (solid dots in Fig. 3-1) for the first (second) order process. They are

either incident or scattered resonance, respectively, in which incident or the scattered light

has the same energy as the electronic transition energy. The first order Raman scattering

Fig. 3-1: fig/ch3-srdr.eps
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Figure 3-1: (a) First-order, and (b) second-order resonance Raman spectral processes. (top)
incident photon resonance conditions and (bottom) scattered photon resonance conditions.
First-order process deals with zone center (q = 0) excitation. Resonance points are shown
as solid circles [7].

amplitude within time-dependent perturbation theory is given by:

A(1)
ν (ωs) =

1

π

∑
n,n′

[ Mn,i
ex−op

[∆Eni − iγ]

Mn′,n
ex−ph

[∆En′i − ~ων − i(γ + Γν)]

Mf,n′

ex−op

[EL − ~ων − ~ωs − iΓν ]

]
, (3.1)

where ν = zone-center (q = 0) phonon (RBM or G) mode, and ∆Emi = EL − Em − Ei.

We use a broadening factor γ = 60 meV which is relevant to the life time of the photo-

excited carriers [48]. We also utilize the phonon spectral width for the RBM as a constant

ΓRBM = 10 cm−1, and for the G band, which consist of in-plane transverse optic (iTO)

ΓiTO = 20 cm−1 and longitudinal optic (LO) ΓLO = 31 cm−1 [49]. The exciton-photon

(Mb,a
ex−op) and exciton-phonon (Mb,a

ex−ph) matrix elements for a transition between states

a → b are calculated by Jiang’s program [50]. We approximate that the final state is the

same as initial state i = f and the virtual states n = n′. Such virtual states |vir〉 are

generally given by linear combination of many exciton states |n〉

|vir〉 =
∑
n

An|n〉. (3.2)
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However, we assume that the virtual states can be considered as the lowest exciton state

(see Appendix B for detailed derivation).

The second-order Raman scattering amplitude of ERS process, is given by:

A
(2)
ERS(ωs) =

1

π

∑
n,n′,n′′,σ

[ Mn,i
ex−op

[∆Eni − iγ]

Mn′,n
ex−ex(q)

[∆En′i − ~ω1 − i(γ + Γx)]

Mn′′,n′

ex−ex(−q)
[∆En′′i − ~ω1 − ~ω2 − i(γ + 2Γx)]

×
Mf,n′

ex−op

[EL − ~ω1 − ~ω2 − ~ωs − 2iΓx]

]
, (3.3)

where we also consider the same virtual state approximation as in Eq. (3.1). Here, ω1 and

ω2 are the energies of the linear band excitons emitted from the exciton-exciton interaction

in the second-order ERS process (Fig. 3-2(b) and (c)). The summation over σ denotes

all different processes in the ERS mechanism, i.e. intra-valley and inter-valley interaction

as shown in Fig 3-2(b) and (c), respectively. The electron-electron interaction life time is

assumed a constant value Γx = 25 meV so as to reproduce the experimental ERS spectral

width [6]. The exciton-exciton matrix elements Mn′,n
ex−ex(q) are later proven in Sec. 3.3 to be

negligible at q = 0 and thus the first order Raman process (Fig. 3-2(a)) is negligible.

The Raman intensity is calculated by the square of the sum of the RBM and G phonon

amplitudes and the ERS amplitudes since they have the same initial and state which inter-

fered to one another. Raman intensity I is given by:

I =
∑
i

∣∣∣∣∣∑
f

(ARBM + AG + AERS)

∣∣∣∣∣
2

, (3.4)

where AG = AiTO +ALO. We do not consider the G′ band (second order process of K-point

iTO mode [9]) in this current study for simplicity.

In appendix A.1 and A.2 we review the work by Jiang et al. to calculate exciton-photon

and exciton-phonon matrix elements within tight binding (TB) approximation [50]. While

Sec. 3.2 is the present thesis original works of exciton-exciton matrix elements.
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3.2 Exciton-exciton interaction

Optical processes of the ERS consist of (i) an exciton generation via an exciton-photon

interaction, (ii) excitation of another exciton (s) in the linear energy band by the Coulomb

interaction with the photo-excited exciton, and (iii) finally the photo-excited exciton goes

back to the ground state by emitting a photon. The exciton-exciton interaction in (ii)

may occur in either a first-order or high-order process. Here, we consider up to second-

order processes for simplicity. For the first-order process, the photo-excited exciton relaxes

vertically (q = 0) from a virtual state Ψvir to the Eii state after photo-absorption at a

wave vector k, while the other exciton is created in the linear band at wave vector k
′
by

the Coulomb interaction with q = 0 (see Fig. 3-2(a)). In the second-order process, on the

other hand, the existence of the two inequivalent K and K′ points in the graphene Brillouin

zone leads to two different scattering processes, i.e. intra-valley (AV) interaction and the

inter-valley (EV) interaction, shown in Figs. 3-2(b) and (c), respectively since the excitons

at parabolic and linear bands may exist in the same valley (A state), or they may exist in

the different valleys (E state). Such a symmetry labeling for A and E states is obtained from

group theory [51]. After going through the electronic scattering process, the photo-excited

exciton then recombine to the ground state at k by emitting a photon with resonance energy

Es = Eii. This is the reason why the ERS peak position always appear at Eii even though

we change the laser energy EL.

Considering each process denoted by ///o/o/o arrows shown in Fig. 3-2, we write the

perturbed Hamiltonian as:

He−e =
∑
k,k

′
,q

W
(±)

k+q,k
′−q,k,k′c

†c
k+qc

†c′
k
′−q

cv
′

k
′cck, (3.5)

where k and k
′
denote, respectively, an electron state in the parabolic and the linear band,

while c†ck (c
v
k) is the creation (annihilation) operator in the conduction (valence) band. Here

we only consider the scattering of electron and did not consider the scattering of hole for

simplicity. The two-body Coulomb interactionW consists of the direct Kd and the exchange

Fig. 3-2: fig/ch3-ersprocess.eps
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Figure 3-2: All possible (a) First-order electronic Raman process. (b) AV and (c) EV second-
order scattering processes (q 6= 0). In both the first-order and second-order processes, the
interaction between electrons in the parabolic band and the linear band can take place in
the same valley (K or K′ points) or in a different valley.

Kx interaction by following relationship: W (±) = Kd ±Kx, in which + (−) gives a singlet

(triplet) state for the two electrons. A detailed derivation for Kd and Kx will be presented

in Sec. 3.3.

The exciton-exciton matrix element for the photo-excited exciton and another exciton in

a linear energy band is calculated using the following formula:

M±
ex−ex (q) =〈Ψf |He−e|Ψvir〉

=
∑
k,k′

Zn=0∗
(k+q)c,kvZ

n=0∗
(k′−q)c,k′

v
Zn=0

kc,kvW
(±)

k+q,k′−q,k,k′ . (3.6)
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Here the photo-excited exciton state is defined by:

|Ψvir〉 =
∑
k

Zn=0
kc,kvc

†c
k c

v
k|g〉, (3.7)

where Zn∗
kc,kv

is the eigenvector of the n−th exciton state solved from the Bethe-Salpeter

equation (Eq. (2.39)), kc and kv denote wave vectors for the electron and hole states, re-

spectively, with kc = kv for a bright exciton (see Sec. 2.2.2), and |g〉 denotes the ground

state [42]. In Eq. (3.7), we only use the lowest exciton state n = 0, since it gives the dom-

inant contribution to the Raman spectra (see Appendix B).The final state of Eq. (3.6) is

given by:

|Ψf〉 =
∑
k,k′

Zn=0
(k+q)c,kvZ

n=0

(k′−q)c,k′
v
c†ck+qc

†c
k
′−q

cv
k′cvk|g〉. (3.8)

3.3 Electron-electron interaction

In this section we elaborate the calculation of electron-electron interaction W
(±)

k+q,k′−q,k,k′

within tight binding (TB) approximation. An important conclusion of this section is that

for the electron-electron interaction between the photo-excited and the linear band excitons,

the direct interaction Kd vanishes at q = 0 (and thus the exciton-exciton matrix element for

the direct interaction becomes also zero). This is not due to the exciton effect but simply

comes about because of symmetry of the A and B sublattice in graphene unit cell. The

direct interaction Kd already vanishes at q = 0 by considering the symmetry of the A and

B sublattices, before taking into account the summation on k weighted by the exciton wave

function Zk (Eq. (3.6)). The interaction between an electron in the parabolic-band and an

electron in the linear band of a metallic single wall carbon nanotube (m-SWNT) without

the screening effect is given by

V (k1a1,k2a2,k3a3,k4a4)
(±) =

∫
drdr′Φf∗(±)(r, r′)v (r, r′) Φ

vir(±)(r, r′), (3.9)

where (k1a1,k2a2,k3a3,k4a4) ≡
{
(k+ q)c ,

(
k

′ − q
)
c,kc,k

′
v

}
in Eq. (3.5), ai denotes either

c (conduction) or v (valence) band states, and k (k
′
) is a wave vector for the parabolic (linear)

band. Φvir and Φf are the final and virtual states of two interacting electrons. The two-body
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wave function of electrons at the parabolic band and linear band in the virtual state Φvir is

defined as:

Φvir(±)(r, r′) =
1√
2
[ψk3a3 (r)ψk4a4 (r

′)± ψk3a3 (r
′)ψk4a4 (r)] , (3.10)

and the final state Φf is defined as:

Φf(±)(r, r′) =
1√
2
[ψk1a1 (r)ψk2a2 (r

′)± ψk1a1 (r
′)ψk2a2 (r)] , (3.11)

where the + (−) sign is taken for the spin singlet (triplet) state. Here we do not explicitly

show spins functions for simplicity since the Coulomb interaction does not change the spin

direction. ψka (r) is a one-electron wavefunction specified by wave vector k, subband a =

c, v, and position r.

Substituting Eqs. (3.10) and (3.11) into Eq. (3.9) we obtain

V (k1a1,k2a2,k3a3,k4a4)
(±) = Kd ±Kx, (3.12)

where the direct interaction Kd and exchange interaction Kx terms are expressed by

Kd =
1

2
{K(k1a1,k2a2,k3a3,k4a4) +K(k2a2,k1a1,k4a4,k3a3)} , (3.13)

Kx =
1

2
{K(k1a1,k2a2,k4a4,k3a3) +K(k2a2,k1a1,k3a3,k4a4)} , (3.14)

and the Coulomb integral K is defined by

K(k1a1,k2a2,k3a3,k4a4) =

∫
drdr′v (r, r′)ψ∗

k1a1 (r)ψ
∗
k2a2 (r

′)ψk3a3 (r)ψk4a4 (r
′) . (3.15)

The one-electron wave function ψk can be explicitly written by the TB wave function

Eq. (2.4)

ψka (r) =
1√
Nu

∑
s=A,B

Nu∑
u=1

Ca
s (k) e

ik.Rusϕ (r−Rus) , (3.16)

where Nu is the number of hexagons in a SWNT unit cell, R is the atomic position, and

ϕ (r−R) is the atomic orbital atR. The TB coefficient Ca
s (k) has been derived in Eq. (2.24),
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Figure 3-3: The phase factor θ in Eq. (3.17) is defined by the smallest angle between ky
axis and a line passing through a k point measured from the K (or K’) point, and therefore
θ = arctan(kx/ky).

and choosing the phase factor (φc = φv = −θ(k)/2) so as to get

Cc
A (K+ k) =

1√
2
e−iθ(k)/2, Cc

B (K+ k) =
1√
2
e+iθ(k)/2,

Cv
A (K+ k) =

1√
2
e−iθ(k)/2, Cv

B (K+ k) = − 1√
2
e+iθ(k)/2,

(3.17)

where θ = arctan (kx/ky) measured from the K or K′ points (see Fig.3-3, vectors correspond-

ing to the K and K′ points are denoted K and K′, respectively) [52]. In Eq. (3.17), we have

set the overlap integral s = 0 (Eq. (2.24)). The TB coefficient near K′ point can be obtain

by taking complex conjugate of corresponding coefficient near K point.

Fig. 3-3: ch3-theta.eps
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Substituting Eq. (3.16) into Eq. (3.15), we get

K(k1a1,k2a2,k3a3,k4a4) (3.18)

=
1

N2
u

∑
s1u1,s2u2

[ ∑
s′1u

′
1,s

′
2u

′
2

Ca1∗
s1

(k1) e
−ik1.Ru1s1Ca2∗

s′1
(k2) e

−ik2.Ru′1s
′
1

× Ca3
s2

(k3) e
ik3.Ru2s2Ca4

s′2
(k4) e

ik4.Ru′2s
′
2

×
∫
drdr′v (r, r′)ϕ (r−Ru1s1)ϕ

(
r′ −Ru′

1s
′
1

)
ϕ (r−Ru2s2)ϕ

(
r′ −Ru′

2s
′
2

) ]
. (3.19)

The largest contribution from the integrand comes from (u1s1) = (u2s2) ≡ (us) and (u′1s
′
1) =

(u′2s
′
2) ≡ (u′s′). Thus Eq. (3.18) becomes

K(k1a1,k2a2,k3a3,k4a4) ∼=
1

N2
u

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

×e−ik1.Ruse−ik2.Ru′s′eik3.Ruseik4.Ru′s′

×
∫
drdr′v (r, r′) |ϕ (r−Rus)|2 |ϕ (r′ −Ru′s′)|2

=
1

N2
u

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

×ei(k3−k1).Rusei(k4−k2).Ru′s′

×
∫
drdr′v (r, r′) |ϕ (r−Rus)|2 |ϕ (r′ −Ru′s′)|2

=
1

N2
u

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

ei(k3−k1+k4−k2).Rusei(k4−k2).(Ru′s′−Rus)

×
∫
drdr′v (r, r′) |ϕ (r−Rus)|2 |ϕ (r′ −Ru′s′)|2 .

By using the fact that
∑
u,s

ei(k3−k1+k4−k2).Rus = Nuδ (k3 + k4,k1 + k2), we get

K(k1a1,k2a2,k3a3,k4a4) =
∑
ss′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4) vss′ (k4 − k2)

×δ (k3 + k4,k1 + k2) , (3.20)
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where

vss′ (q) =
1

Nu

∑
u′

eiq.(Ru′s′−R0s)

∫
drdr′v (r, r′) |ϕ (r−R0s)|2 |ϕ (r′ −Ru′s′)|2 , (3.21)

is the Fourier transform of the Coulomb integral. When we define the integration of Eq.

(3.21) as v (R0s,Ru′s′),

vss′ (q) =
1

Nu

∑
u′

eiq.(Ru′s′−R0s)v (R0s,Ru′s′) , (3.22)

we can show that vAA (q) = vBB (q) and vAB (q) = v∗BA (q) because of the symmetry between

A and B sublattices. The Coulomb potential v (R,R′) for the π electron system is modeled

by the Ohno potential [42, 53, 54]:

v (R,R′) =
U0√(

4πε0
e2
U0 |R−R′|

)2
+ 1

. (3.23)

where U0 the on-site Coulomb potential for two π electrons at the same site R = R′, which

is defined by

U0 =

∫
drdr′ϕ2

π(r)ϕ
2
π(r

′)
e2

r− r′
= 11.3 eV (3.24)

The lower energy level of the exciton in SWNTs is well-described by this Ohno potential

while for higher exciton state we need a spectral consideration [55]. Here since we consider

only the lowest exciton states, the Ohno potential model is sufficient. The corresponding

direct and exchange terms from Eqs. (3.13) and (3.14) are now expressed by

Kd =
1

2

{
K
(
(k+ q)c , (k

′ − q)c,kc,k
′
v

)
+K

(
(k

′ − q)c, (k+ q)c ,k
′
v,kc

)}
=

∑
ss′=A,B

Cc∗
s (k+ q)Cc∗

s′ (k
′ − q)Cc

s (k)C
v
s′(k

′
)< [vss′ (q)] , (3.25)

Kx =
1

2

{
K
(
(k+ q)c , (k

′ − q)c,k
′
v,kc

)
+K

(
(k

′ − q)c, (k+ q)c ,kc,k
′
v

)}
=

∑
ss′=A,B

Cc∗
s (k+ q)Cc∗

s′ (k
′ − q)Cc

s′ (k)C
v
s (k

′
)<
[
vss′
(
k

′ − k− q
)]
, (3.26)

where < means taking the real part of a complex variable. Inserting Eqs. (3.17) and (3.22)
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to Eqs. (3.25) and (3.26), at q = 0, the direct interaction term becomes

Kd(k+K,k′ +K) =
1

4
(ṽAA (0)− ṽAB (0) + ṽBA (0)− ṽBB (0)) = 0. (3.27)

Using the same manner we obtain

Kd(k+K,k′ +K) = Kd(k+K
′
,k′ +K) = Kd(k+K,k′ +K

′
) = Kd(k+K

′
,k′ +K

′
) = 0,

(3.28)

and the exchange term becomes

Kx(k+K,k′ +K) =
i

2
sin (θ′ − θ) ṽAB

(
k

′ − k
)
, (3.29)

Kx(k+K
′
,k′ +K) =

i

2
sin (θ′ + θ) ṽAB

(
k

′ − k
)
, (3.30)

Kx(k+K,k′ +K
′
) = − i

2
sin (θ′ + θ) ṽAB

(
k

′ − k
)
, (3.31)

Kx(k+K
′
,k′ +K

′
) = − i

2
sin (θ′ − θ) ṽAB

(
k

′ − k
)
, (3.32)

where ṽij = <(vij). If we include the screening effect, we just change v(q) to be the screened

potential w(q) = v(q)/κ (1 + v (q)Π (q)). Here κ is the static dielectric constant due to

electronic core states, σ band, and surrounding materials. In this calculation we use κ = 2.5,

and Π (q) is the RPA polarization function [42] which is given by

Π(q) = −2
∑
k

[
|
∑

sC
v∗
s (k)Cc

s (k+ q)|2

εk+qc − εkv
+

|
∑

sC
c∗
s (k)Cv

s (k+ q)|2

εkc − εk+qv

]
(3.33)

εk is the single particle energy, and the summation over k is taken over all cutting lines in

graphene Brillouin zone. Equations (3.27) and (3.28) proves that the direct terms Kd in the

first-order process at q = 0 vanish, and only the exchange terms Kx survive. Therefore, the

first-order exciton-exciton scattering give a very small contribution to the ERS spectra and

then we must consider the second-order process.
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Chapter 4

Electronic Raman spectra

In this chapter, we show our calculated result of the electronic Raman spectra (ERS) using

Eq. (3.4). Firstly, we discuss the exciton-exciton matrix element Eq. (3.6) from extended

tight binding (ETB) approximation (Sec. 4.1). We calculate the Raman intensity by con-

sidering the quantum interference of the ERS spectra with the RBM and G bands Raman

spectra. In section 4.2, we compare our calculated result of laser excitation energy (EL)

dependence of Raman intensity with the experimental data. By analyzing each spectra, we

can fit the asymmetric line shape of G band, induced by the ERS and phonon spectra inter-

ference, with Breit-Wigner-Fano (BWF) lineshape. Finally, we discuss how the asymmetric

line shapes change as a function of EL.

4.1 Exciton-exciton matrix elements

We calculate exciton-exciton matrix elements Eq. (3.6) which responsible to give the infor-

mation of transition probability of the photo-excited carrier scattered by the linear band

exciton. Our calculation here based on extended tight binding method (ETB).

In Fig. 4-1(a)-(c), we show the direct and the exchange Coulomb interaction processes for

intra-valley and inter-valley interactions. In Fig. 4-1(d) and (e) we show the calculated direct

and exchange Coulomb interaction matrix elements for a (23,14) m-SWNT, respectively. As

what we expect from Eq. (3.28), both AV and EV scattering matrix elements give a zero

Fig. 4-1: fig/ch4-mxx.eps
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Figure 4-1: (a) The direct (AV), (b) the exchange (AV), and (c) the direct (red) and exchange
(green) (EV) Coulomb interaction process. The calculated result of (d) the direct and of
(e) the exchange Coulomb interaction of a (23,14) tube which has a diameter of 2.53 nm.
Label AV (EV) inside each panel shows the states, in which two electrons lie in the same
(different) valley. The one-dimensional (1D) wave vector q is projected on the 1D SWNT
cutting lines and expressed in terms of the translational vector length T . We have T = 0.46
nm for the (23,14) tube.
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value at q = 0 for direct interaction Kd Fig. 4-1(d). At q = 0, only the exchange interaction

Kx gives a small contribution from the AV scattering (Fig. 4-1(e)). The vanishing Kd can be

explained by the presence of three Cc
s and one Cv

s coefficients in Eq. (3.25). Cj
B(C

j′

A ) change

(does not change) the sign when we exchange c → v in j and j′ (Eq. (3.17)). Thus the product

of wave functions always gives an opposite sign when we exchange A → B in s or s′ and

thus the total summation over A and B sublattices vanishes at q = 0 (Eq. (3.17)). As long

as we incorporate three Cc and one Cv coefficients into Kd, the vanishing direct Coulomb

interaction at q = 0 is a general phenomenon in graphene and SWNT systems. The results

from Figs. 4-1(d) and (e) thus imply that the first-order Raman process corresponding to

the AV and EV scattering at q = 0 makes only a minor contribution to the Raman spectra.

Consequently, we should consider the second-order ERS process, in which the q 6= 0 term in

Kd becomes important. It is important to note that in Kd, the dominant matrix elements

arises from q ≈ ±0.1π/T which is only 5% of the cutting line length and thus the transition

is almost vertical.

4.2 EL-dependence of ERS

In Fig. 4-2(a) we show the calculated result of the EL dependence of the Raman intensity

for (23,14) m-SWNT as a function of scattered photon energy ~ωs. In the present work, we

only calculate the EL dependence of the Raman intensity near EL
22 = 2.08 eV.

We cannot reproduce exactly the relative intensity scale with the experimental data

shown in Fig. 4-2 because there are many optical processes interfering with these spectra

other than ERS, G, and RBM. Nevertheless, our calculated result can explain the overall

behavior of the observed ERS as shown in Fig. 4-2(b). The calculated ERS feature has a

very broad spectral width (FWHMERS ≈ 50 meV) with a peak intensity almost comparable

to that of the RBM. Unlike the other phonon modes, whose peak positions are shifted by

changing EL, the ERS peak remains at the frequency of the Eii transition. At EL = 2.07

eV, the ERS spectrum starts to appear and modifies the RBM and the G band line shapes.

For EL = 2.07 eV, although EL is 10 meV below ML
22, the energy-momentum conservation

Fig. 4-2: ch4-calex.eps
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Figure 4-2: (a) Calculated result (this work) for (23,14) m-SWNT and (b) experimental
results (adapted from Ref. [6]) of Raman intensity versus ~ωs for a (23,14) tube where we
have the calculated EL

22 = 2.084 eV and the experimental EL
22 = 2.08 eV and EH

22 = 2.20 eV.
EL

22 and EH
22 are the splitting of transition energy in m-SWNTs due to the trigonal warping

effect [34]. The laser excitation energies EL are taken as 2.00, 2.07, 2.10, 2.14, and 2.20 eV.

during the exciton-exciton scattering may be violated by the Heisenberg uncertainty principle

(∆t ≈ 10 fs corresponding to ∆E ≈ 100 meV).

Each Raman intensity calculated from Eq. (3.4) actually gives a Lorentzian shape for all

phonon modes and also for the ERS as presented in Fig. 4-3(a). However, the broad feature

of the ERS overlaps with the phonon modes and thus the quantum interference between ERS

and G (or RBM) gives rise to the asymmetric line shape, peak shifting, and the intensity

enhancement of the G band, which can be seen as the blue solid line in the inset of Fig.

4-3 (a). We find that the asymmetric line shape of the G band after subtracting the ERS

contribution clearly shows the BWF line shape, fitted by

I (ω) = I0
[1 + (ω − ω0) /qBWFΓ]

2

1 + [(ω − ω0) /Γ]
2 , (4.1)

where 1/qBWF, Γ, and ω0 are respectively, asymmetric factor, spectral width, and central

frequency parameters to be determined (see Fig. 4-3 (b) and (c)). According to Fano [3],

Fig. 4-3: fig/ch4-ersbwf.eps
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Figure 4-3: (a) Calculated Raman spectra for a (23,14) SWNT with EL = 2.14 eV. The
total intensity shown is represented by the solid line. The dashed lines show contributions
from the RBM and G modes, while the dotted blue line is the contribution from the ERS.
Each line shape for the RBM, the G modes, and the ERS are Lorentzian. Inset shows the
G band spectra after subtracted by the ERS spectrum. Filled squares are calculated results
and the solid line shows the BWF fitting (Eq. (4.1)). (b) Asymmetric factor (1/qBWF) as a
function of resonance condition(EL − EL

22). The black circles are calculated result and the
red diamonds show experimental result [6]. (c) spectral width and peak position of the G
band as a function of resonance condition (EL − EL

22) for the (23,14) tube. The solid and
dashed arrows are given as a guide for the corresponding axes.

1/qBWF is proportional to the coupling constant between the continuum spectrum and the

discrete spectrum. In our case, 1/qBWF, Γ and ω0 as a function of EL−EL
22 give “V” shapes,

with the minimum peak ∼ 40 meV above the resonance as depicted in Fig. 4-3(b) and (c).

1/qBWF reaches a maximum value because the intensity and the peak position of the ERS

allows it to have a very strong overlap with the G band at that point. This coupling also

induces the narrowing and the shifting of the G band peak closer to the ERS peak position.

The calculated 1/qBWF values are in the same order with the experimental result, yet the

trend does not conform. The experimental data give relative constant values even when laser

excitation energy goes further away from resonance condition. This difference might arises

due to different fitting of the ERS spectra which are substracted to the G band spectra.

The RBM spectral lineshapes show the similar BWF asymmetry due to RBM-ERS in-

terference (Fig. 4.2(a) and (b)). At EL below EL
22, no ERS spectra appear and thus RBM

spectra give the Lorentzian lineshapes (the black lines of Fig. 4.2(a)). Around 40 meV below

EL
22, the ERS spectra start to appear and modify the RBM and show the BWF lineshapes

(the red lines of Fig. 4.2(a)). The exciton excitation below EL
22 is allowed by the uncertainty
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Figure 4-4: (a), (c) Cascading plot of EL dependence of the RBM and the G mode Raman
intensity (no subtraction with the ERS) as a function of Raman shift, respectively. (b), (d)
The BWF asymmetric factor 1/qBWF of the RBM and the G mode as a function of resonance
condition EL − EL

22, respectively with the error bars shown. EL varies from 2.00 eV to 2.20
eV with stepsize ∆EL = 0.01 eV. In this case EL

22 = 2.10 eV. Black lines of the spectra
show the Lorentzian lineshapes (1/qBWF ≈ 0) and the read lines show the BWF lineshapes
(1/qBWF 6= 0).

principle due to the finite lifetime of the exciton-exciton interaction (∆t ≈ 10 fs correspond-

ing to ∆E ≈ 100 meV).

In comparison to the G band asymmetry (Fig. 4.2(c), (d)), the RBM 1/qBWF gives the

positive sign and the maximum value of |1/qBWF|, which appears near resonance EL ≈ EL
22,

is larger by difference 0.2. The large 1/qBWF in the RBM spectrum arise because at resonant

condition, the ERS and the RBM are greatly enhanced and their peak positions lie very close

to each other (Fig. 4-2 at EL = 2.1 eV) and thus give the strong interference effect. This

RBM asymmetric lineshape in m-SWNTs has never been discussed before in any literature.

In order to explain the sign difference of 1/qBWF in the RBM and G mode spectral

lineshapes, we recall the Raman intensity formula Eq. (3.4). For simplicity, we consider

the ERS-RBM and ERS-G interference independently, so then we can write the intensity

formula as:

Iν = |AERS + Aν |2 , ν = G,RBM. (4.2)

From Eqs. (3.1) and (3.3), we know that Raman scattering amplitudes are generally complex.

Since we are interested only in amplitude as a function of Raman shift (~ωs), we can generally
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Figure 4-5: (a) Raman phase of the RBM, ERS, and G (LO and iTO) mode calculated from
Eqs. (4.5), (3.1), and (3.3) at EL = EL

22 = 2.1 eV. (b) and (c) Cosine of phase difference
ϕERS − ϕRBM and ϕERS − ϕG, respectively. Dotted line in (b) and (c) shows the RBM and
G mode total intensity form Eq. (3.4), respectively. Asymmetric factor 1/qBWF = 0.65 for
RBM and 1/qBWF = −0.27 for G mode.

write Eqs. (3.1) and (3.3) as

Aν(Ων) =
αν + iβν
Ων − iΓν

, ν = RBM, ERS, G (4.3)

where Ων = EL − ~ων − ~ωs for ν = RBM, G (Eq. (3.1)) and for ERS ΩERS = EL − ~ω1 −

~ω2 − ~ωs (Eq. (3.3)). αν and βν are defined by the real and imaginary parts of amplitudes

terms otherwise contain ~ωs. Now we can can write Eq. 4.2 as

Iν = |AERS|2 + |Aν |2 + 2|AERS||Aν | cos(ϕERS − ϕν), ν = G,RBM, (4.4)

where ϕν is the Raman phase for ν (= ERS, G, RBM) Raman spectra given by

ϕν = arctan

(
Im(Aν)

Re(Aν)

)
= arctan

(
βνΩν + Γναν

ανΩν − Γνβν

)
. (4.5)

Eq. (4.5) shows that Raman phase shifts at Ων =
Γνβν
αν

.

In Fig. 4-5(a), we show the calculated Raman phase of the RBM, ERS, and G (LO and

iTO) mode calculated from Eqs. (4.5), (3.1), and (3.3) at EL = EL
22 = 2.1 eV. Phase shift

from −π/2 → π/2 appears in each Raman spectra as described by Eq. (4.5). In case of RBM

and G, Γ contribution in phase shift is negligible so that phase shift appears very close to
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resonance ~ωs = EL − ~ων . Because of this phase shift at the resonance, the interference

term of Raman intensity (Eq. (4.4) drastically change their sign depicted in Figs. 4-5(b) and

(c). The sign change from negative (positive) to positive (negative) correspond to positive

(negative) 1/qBWF because of the ERS phase shift position is at right (left) of the RBM (G

mode).
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Chapter 5

Conclusion

We have formulated a theoretical calculation for the electronic Raman scattering (ERS) by

considering the exciton-exciton interaction. We showed that in the direct Coulomb interac-

tion the zero momentum transfer process q = 0 vanishes due to the symmetry of the SWNT

sublattices. We found that this fact is a general phenomenon occurring not only in carbon

sp2 systems but also in any material which has the same symmetry. Next, by considering a

q 6= 0 second-order process, we can consistently reproduce the ERS spectra from experiment

as a function of EL. This ERS spectrum is coupled with the G band and the interference

with the ERS spectrum shows the Breit-Wigner-Fano (BWF) line shape of the G band. The

asymmetry, narrowing, and shifting of the G band induced by the interference with the ERS

are all sensitive to the peak intensity ratio and the peak distance between the ERS and the

G band. The calculated BWF asymmetric factor is consistent with the experimental result.

We also predict that the RBM also exhibit the similar asymmetry due to quantum interfer-

ence effect with the ERS. Opposite from the G band asymmetry which shows negative sign

of asymmetric factor 1/qBWF, the RBM shows positive 1/qBWF. This RBM asymmetry in

m-SWNTs has never been discussed before in any literature.
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Appendix A

Exciton-photon and exciton-phonon

matrix elements

A.1 Exciton-photon matrix elements

We calculate the electron-photon matrix elementMel−op in the dipole approximation [52, 56,

57],

Mel−op ∝ D(k′,k) ·P, (A.1)

with D(k′,k) = 〈ψ(k′)|∇|ψ(k)〉 being the dipole vector between the initial and final states,

and P being the polarization of the incident light. In the case of parallel polarization, the

dipole selection rule for k gives k′ = k, and we can write the el-op Hamiltonian as

Hel−op =
∑
k

Dkc
+
kcckv(a+ a+), (A.2)

where we have neglected a constant in the optical matrix element Mel−op, Dk is the z com-

ponent of D(k,k), c+kc (ckv) is the electron creation (annihilation) operator in the conduction

(valence) band, and a+ (a) is the photon creation (annihilation) operator.

The exciton wavefunction |Ψn
q〉 with a center-of-mass momentum q can be expressed by
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a linear combination of the k states as

|Ψn
q〉 =

∑
k

Zn
kc,(k−q)vc

+
kcc(k−q)v|0〉, (A.3)

where Zn
kc,(k−q)v is the eigenvector of the n-th (n = 1, 2, · · · ) state of the Bethe-Salpeter

equation, and |0〉 is the ground state. The summation on k is taken for all cutting-lines in

the two-dimensional Brillouin zone (2D BZ). However, the summation on a cutting line of a

k state is sufficient [42] because the range of the Ohno potential in the k− space is smaller

than the distance of two adjacent cutting lines 2/dt. Due to momentum conservation, the

photon-excited exciton is an exciton with q = 0. From Eqs. (A.2) and (A.3), we get the

ex-op matrix element between an excited state |Ψn
0 〉 and the ground state |0〉,

Mex−op = 〈Ψn
0 |Hel−op|0〉 =

∑
k

DkZ
n∗
kc,kv. (A.4)

Because of the existence of two inequivalent valleys (K and K′), among the four sym-

metries of C2 rotation along the axis at the center of a C-C bond, only the A2 exciton is

bright, while other A1, E and E∗ excitons are dark (Sec. 2.2.2). A1 and A2 excitons are

symmetric and antisymmetric under a C2 rotation, respectively. The wavefunction for an A1

(A2) exciton with q = 0 is given by

|Ψn
0 (A1,2)〉 =

1√
2

∑
k

Zn
kc,kv(c

+
kcckv ∓ c+−kcc−kv)|0〉, (A.5)

where k and −k are around the K and K
′
points, respectively, and − (+) in ∓ is for an A1

(A2) exciton.

When we use the relation Dk = D−k, the ex-op matrix elements for the A1 and A2

excitons are given

Mex−op(A
n
1 ) = 0,

Mex−op(A
n
2 ) =

√
2
∑
k

DkZ
n∗
kc,kv.

(A.6)

Equation (A.6) directly indicates that A1 excitons are dark and only A2 excitons are bright,

which is consistent with the predictions by group theory[58].
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Figure A-1: (a) electron and (b) hole scattering processes in the ex-ph matrix element for
the first and second terms of Eq. (A.8). The matrix element for (a) and (b) is determined
by the electron and hole matrix elements weighted by the wavefunction coefficients from the
initial and final states [50].

A.2 Exciton-phonon matrix elements

The Hamiltonian for the electron-phonon coupling for a phonon mode (q, ν) has the form

Hel−ph =
∑
kqν

[
M ν

k,k+q(c)c
+
(k+q)cckc −M ν

k,k+q(v)c
+
(k+q)vckv

]
(bqν + b+qν), (A.7)

where M(c) (M(v)) is the el-ph matrix element for the conduction (valence) band, and b+qν

(bqν) is a phonon creation (annihilation) operator for the νth phonon mode at q [59].

From Eq. (A.7), we obtain the ex-ph matrix element between the initial state |Ψn1
q1〉 and

a final state |Ψn2
q2〉,

Mex−ph = 〈Ψn2
q2|Hel−ph|Ψn1

q1〉

=
∑
k

[
M ν

k,k+q(c)Z
n2∗
k+q,k−q1Z

n1
k,k−q1 −M ν

k,k+q(v)Z
n2∗
k+q2,kZ

n1
k+q2,k+q

]
,

(A.8)

with q = q2 − q1 giving the momentum conservation. The energy conservation for ex-ph

scattering is given by En2
q2 − En1

q1 = Eph for phonon absorption, and En1
q1 − En2

q2 = Eph for

phonon emission (bq,ν). In the following, we will consider only the Stokes (phonon emission)

process and we will not explicitly write the phonon number in |Ψn
q〉.

FigureA-1 schematically illustrates the electron and hole scattering processes in the ex-ph

matrix element, which corresponds to the first and second terms in Eq. (A.8), respectively.
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FigureA-1(a) shows that the ex-ph matrix element from the electron scattering process is

the el-ph matrix elementM ν
k,k+q(c) weighted by the wavefunction coefficient Zn2∗

k+q,k−q1 for an

electron-hole (e-h) pair with the electron at k+ q in the final state |Ψn2
q2〉 and the coefficient

Zn1
k,k−q1 for an e-h pair with the electron at k in the initial state |Ψn1

q1〉. FigureA-1(b) shows

that the ex-ph matrix element from the hole scattering process is the hole-phonon matrix

element −M ν
k,k+q(v) weighted by the wavefunction coefficient Zn2∗

k+q2,k for an e-h pair with

the hole at k in the final state |Ψn2
q2〉 and the coefficient Zn1

k+q2,k+q for an e-h pair with the

hole at k+ q in the initial state |Ψn1
q1〉.
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Appendix B

Virtual state approximation

When an electron in a ground state absorbs a photon with energy EL, the exciton generated

will occupy a virtual state in which the photon energy may not be resonant with any exciton

energy states. We can then define the virtual state as a linear combination of the exciton

states:

|Ψvir〉 =
∑
n

An|n〉 (B.1)

where |n〉 =
∑

k Z
n
kc,kvc

†c
k c

v
k|g〉 is the n-th exciton state and An is the coefficient of transition

from the ground state |g〉 to |n〉 which is determined from time-dependent perturbation

theory (TDPT). From the TDPT calculation we obtain

An(EL, t) =
√
NMn,g

ex−op

sin(EL − En)t/2~
EL − En

, (B.2)

where N is the normalization constant to guarantee
∑

n |An|2 = 1. We eliminate the time

dependency by taking the root mean square over time with lim τ → ∞. We then obtain the

average transition probability:

〈A2
n(EL)〉τ = N

( Mn,g
ex−op

EL − En − iγ

)2

. (B.3)

where we have included a phenomenological quasi particle life time γ ≈ 60 meV. From Eq.

(B.3), we can say that the transition probability in state n is determined by the exciton-

photon matrix elements and by the resonance condition of that energy state to EL.
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1

22

3

E

1

Figure B-1: LO exciton-phonon matrix element from the n-th state to the lowest exciton
state M1,n

ex−ph and exciton-photon matrix element Mn,i
ex−op from the initial state to the n-th

exciton state [50].

In Eq. (5) we approximate the virtual state as the lowest exciton state. We can justify

the approximation based on a calculation of Raman intensity resulting from each exciton

state. In order to obtain the intensity contribution from each state, we use Eqs. (B.1) and

(B.3) to Eq. (3.1) for the LO mode and set ~ωs = ML
22, assuming that in Mex−ph a photo-

excited exciton from the n-th state emits a phonon and always relaxes to the lowest exciton

state n = 1. Figure B-1 shows that M1,n=1
ex−ph (Mn=1,i

ex−op) is typically three orders (one order) of

magnitude larger than that in the continuum states. Therefore, the relative Raman intensity

from the lowest exciton state I0 is almost ten orders larger than that in the continuum states.

Based on this result, we dismiss the contributions of the continuum exciton states to the

virtual state.

Fig. B-1: fig/ap-sfig2.eps

64



Appendix: calculation program

The main program to calculate the electronic Raman spectra for a single chirality m-SWNT

based on the work by Jiang et al. [42, 50] and Sato et al. [36]. All the necessary programs

can be found under the following directory in FLEX workstation:

~hasdeo/for/mxxders/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detail explana-

tions about how to use the programs are given in the 00README file in each subdirectory of

ROOT.

Electronic Raman spectra for a single chirality

Main program: ROOT/ers-onetube.f90

Inputs: 1. subband INTEGER the ii value for Eii transition energy. In metallic SWNT,

we define ii value as following

• subband = 0 for linear band

• subband = 1 for EL
11

• subband = 2 for EH
11

• subband = 3 for EL
22

• subband = 4 for EH
22

• etc.

2. n, m INTEGER the nanotube chiral index.
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3. phmode INTEGER phonon mode. We specify RBM, iTO, or LO by using the fol-

lowing value

• phmode = 3 for RBM

• phmode = 5 for LO

• phmode = 6 for iLO

4. elmin, elmax REAL(8) minimum and maximum laser excitation energy (eV)

Exciton energies and exciton wave functions

Subroutine: ROOT/exh.f90 Construct exciton hamiltonian and calculate its eigenvalues

and eigenvectors

Outputs: 1. exval REAL(8), dimension (bound) exciton energy. exval(1)= Eii by

definition. INTEGER, parameter:: bound= 2000

2. exvec COMPLEX (8), dimension (bound,bound) exciton eigenvector solved from

the Bethe-Salpeter equation. exvec (k,l) will give the exciton eigenvector for k

relative-motion momentum at l state.

Exciton-photon matrix element

Subroutine: ROOT/exopmx.f90 Calculate the exciton photon matrix elements.

Outputs: 1. mexopd COMPLEX(8) exciton-photon matrix element with unit 1/nm.

2. mexopm COMPLEX(8) exciton-photon matrix element with unit eV.

Exciton-phonon matrix element

Subroutine: ROOT/exphmx.f90 Calculate the exciton phonon matrix elements.

Outputs: 1. dmx COMPLEX(8) exciton-phonon matrix element with unit eV/nm.

2. mmx COMPLEX(8) exciton-phonon matrix element with unit eV.
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Exciton-exciton matrix element

Subroutine: ROOT/iniga-diaex.f90 Calculate the exciton-exciton matrix elements.

Outputs: 1. mxx COMPLEX(8) dimension (2,4,2,-100:100) The exciton-exciton ma-

trix elements. We define exciton-exciton matrix element as mxx (spin,valley,k,q),

where

• s= 1 for singlet spin

• s=2 for triplet spin.

• valley= 1 intravalley interaction (A) intravalley scattering (a)

• valley= 2 intravalley interaction (A) intervalley scattering (e)

• valley= 3 intervalley interaction (E) intravalley scattering (a)

• valley= 4 intervalley interaction (E) intervalley scattering (e)

• k=1 photo-excited exciton at K point

• k=2 photo-excited exciton at K′ point
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