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Chapter 1

Introduction

1.1 Purpose of the study

Graphene, which is a single layer of carbon atom arranged in honeycomb lattice, has

attracted a lot of interest because of its peculiar features such as its two-dimensional

nature and linear electronic dispersion at so-called Dirac point [1, 2, 3, 4, 5, 6]. This

linear behaviour of electronic band structure is different from to electronic band struc-

ture of other two-dimensional electron gas, which possesses parabolic electronic band

structure. Elementary excitations in graphene have been studied extensively [7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and one of those is plasmon [7, 8, 9,

10, 11, 12, 13]. Plasmon is the quantum of elementary excitation involving collec-

tive oscillation of electrons [21]. Plasmon can propagate at certain frequencies and

wave vectors [21, 22, 23, 24, 25]. Due to the linear band structure, plasmon proper-

ties in graphene are different from the ones in normal two-dimensional electron gas,

too [7, 26, 22]. The plasmon in graphene has been studied extensively theoretically

and also experimentally. Because of its two-dimensional nature, graphene plasmon is

categorized as surface plasmon (SP).

Graphene is also well-known as transparent material. On undoped condition,

graphene absorbs only around 2.3% incident Electromagnetic (EM) wave [4, 27, 28, 6].

This property is important for making device such as optical devices such as liquid-

crystal displays, touch screen and light-emitting diodes [4, 27, 28]. However, other

devices such as solar cells, photodectors and optical antennas require a strong optical

1



2 Chapter 1. Introduction

absorption. The purpose of this thesis is to explain the properties of graphene SP,

which includes the study of SP dispersion relation and damping. Another purpose is

to get a tuneable high absorption of EM wave by graphene. This contains the study of

EM wave absorption by graphene and the relation to SP excitation. We consider that

graphene placed between two dielectric media can be a good geometry for discussing

EM absorption.

Theoretically, graphene plasmon can be studied by using random phase approxi-

mation (RPA) [7, 26, 22, 24] which is used to calculate the dielectric function of a ma-

terial. To observe plasmon experimentally, electron energy loss spectroscopy (EELS)

is used [21, 29]. Both theoretical and experimental studies can result the dispersion

relation of plasmon [7, 26, 30, 31] that is the relation between plasmon frequency and

wave vector. The theoretical dispersion relation of graphene SP can be calculated

by using RPA theory of quantum mechanics or by solving Maxwell equations on the

surface (semiclassical model) [7, 13]. Those two methods agree with each other up to

a limit of wave vector (q → 0). The dielectric function can be related to conductivity.

Conductivity is used to study the absorption of EM wave. It will be shown in this

thesis that the real part of conductivity is related to the absorption.

This master thesis is organized as follows: In the remaining part of Chapter 1,

the background for understanding this thesis is given. In Chapter 2, the electronic

properties of graphene and RPA theory of dielectric function are reviewed. The di-

electric function is used to explain SP in Chapter 3 and also to derive the conductivity

in Chapter 4. In Chapter 3, the graphene SP properties is presented. In Chapter 4,

EM wave absorption by graphene and its relation to SP excitation are explained. In

Chapter 5, we provide the conclusion of this thesis.

1.2 Background

Here we show the basic concepts which are important for understanding this thesis.

1.2.1 Absorption of light by graphene

Graphene is well-known as a transparent material [27, 28]. It transmits almost all

visible light and its transmittance can be expressed in terms of the fine-structure
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Figure 1.1 Graphene transparency. An aperture partially covered by single layer graphene
in the middle and bilayer graphene in right side. The plot shows the transmittance of visible
light [27].

constant α = e2/~c [27, 28]. This transmittance can be expressed as below [27, 28],

T ≈ 1− πα = 97.7% (1.1)

Single layer graphene only reflects negligible portion of incident light, around

< 0.1% of incident light [27, 28]. This will give 2.3% absorption of single layer graphene

for visible light. This absorption characteristic is due to graphene’s universal conduc-

tivity σ0 = e2/4~ [28]. This has already been proved experimentally and the absorp-

tion increases linearly with the increase of layer’s number [27, 28]. Fig. 1.1 shows the

absorption of visible light by single layer graphene and bilayer graphene [27]. It can

be seen that the absorption is proportional to number of graphene layers [27, 28]. It

is reported also that optical spectroscopy shows the absorption independent of wave-

length [27]. This dependency of graphene optical properties which only depend on

fundamental constant is due to the two-dimensional nature and gapless electronic dis-

persion of graphene [27].

Due to its optical properties, graphene has several applications. The high trans-

parency of graphene can be useful for designing optical devices such as liquid-crystal

displays, touch screen and LED [28, 32, 33, 34, 35]. However, other devices such as

Fig. 1.1: Fig/fig1k4.eps



4 Chapter 1. Introduction

solar cells, photodectors and optical antennas require a strong optical absorption in

order to generate a large photocurrent [28]. In recent years, the possibilities of enhanc-

ing optical absorption in graphene have been studied extensively, but most of them

utilize complicated techniques such as using a grating coupler or shaping the graphene

into rib-bons or disks [8, 36, 37]. Practical optoelectronic applications of graphene are

thus still challenging.

1.2.2 Surface plasmon in material and its usage

Before going to plasmon, we need to define what plasma is. A plasma is a medium

with equal concentration of positive and negative charges, of which at least one charge

type is mobile. In a solid (for example metal) the negative charges of the conduction

electrons are balanced by an equal concentration of positive charge of the ion cores.

This conduction electrons can oscillate about positive charges and this oscillation

is called plasma oscillation. The quantum of plasma oscillation is called plasmon.

More formal definition of plasmon is the quantum of elementary excitation involving

collective oscillation of electron [21]. There are two kinds of plasmon, first kind is the

bulk plasmon and the second kind is the surface plasmon [21]. The bulk plasmon differs

from surface plasmon in their dimensionality and polarization. The bulk plasmon is

the oscillation of three-dimensional (3D) electron gas which occurs inside the material,

while surface plasmon oscillation is confined within two-dimension (2D) surface of

material. The polarization of bulk plasmon is longitudinal, while surface plasmon’s is

tranversal. The illustrations for both bulk plasmon and SP are shown in Fig. 1.2.

To get the idea of this kind of charge oscillation, we take an example of bulk

plasmon in a solid. In Fig. 1.3, the electrons are indicated by the gray background,

while the positive ion cores are indicated by the + sign. The positive ion cores are

immobile. If, for example, we apply an external electric field E, this will make electrons

displaced by amount of displacement u as depicted in Fig. 1.3(b). If we release the

electrons by turning off the external electric field, we can have oscillation of these

electrons about positive ion cores. This can be pictured by imagining that the gray

background is going up and down in oscillatory manner (Fig. 1.3(d)). A collective

displacement of the electron cloud by distance u creates a surface charge density

σ = ± neu at the slab boundaries (Fig. 1.3(c)). This leads to a homogenous electric



1.2. Background 5

Dielectric

Figure 1.2 (a) Illustration of bulk plasmon. The negative charge (electrons) inside metal
oscillate about fixed positive charge. (b) Illustration of surface plasmon. The negative charge
(electrons) oscillate about fixed positive charge on surface of metal. The lines are the accom-
panying electric fields.

field inside slab which will act as a restoring force of the electrons. The equation of

motion of u in a unit volume of the electron gas with concentration n is [21, 38]

d2u

dt2
+ ωpu = 0 , (1.2)

where ωp is expressed by

ωp =

√
ne2

ε0m
. (1.3)

This clearly shows the oscillatory motion of electrons of frequency ωp. This natural

frequency is called as bulk plasmon frequency.

Here assume that all electrons move in phase. Therefore, the ωp only corresponds

to limit wave vector k equal to zero. A bulk plasmon of small wave vector has a

frequency approximately the frequency equal to ωp. However, if the correction of

wave vector dependency is also considered, the wave vector dependency on frequency

of oscillation can be written as follows [21, 38]

ω ≈ ωp(1 + 3k2vF/10ω2
p + ...) , (1.4)

where vF is the Fermi velocity. Due to the longitudinal nature of excitation, bulk

plasmon do not couple to transverse electromagnetic waves, and can only be excited

Fig. 1.2: Fig/fig1k6.eps
Fig. 1.3: Fig/fig1k7.eps
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(a)

(b)

Figure 1.3 (a) Neutral slab, with a unit volume of the electron gas is indicated by gray
background and positive ion cores by + sign. (b) Electrons are displaced with distance u. (c)
Displacing electrons leads to surface density σ = ±neu which will create electric field inside
the slab. The electric field acts as restoring force. (d) Illustration of bulk plasmon, the gray
slab goes up and down [21, 38].

by the impact of particle. Thus in order to observe this kind of excitation, electron

energy loss spectroscopy is adopted in experiments [21, 29]. For metal, when high

energy electrons are passed through thin metallic foils, the loss of electrons energy

gives information of ωp and k. For most metals, ωp is within ultraviolet regime in order

of 5 - 15 eV. This depends also on details of energy band structure of an electron [21].

Even though bulk plasmon cannot couple to transverse electromagnetic waves, the

frequency of bulk plasmon ωp is important as a threshold frequency for external elec-

tromagnetic wave propagating through the plasma. If the frequency of electromagnetic

wave is less than ωp, the electrons can follow the EM wave to screen out the incident

field, and thus the EM does not propagate, instead it will be reflected. Of course

the electromagnetic wave can enter the plasma up to some distance, this distance is

known as a skin depth. If the frequency of electromagnetic wave is more than ωp, the
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electrons cannot respond fast enough to screen the incident field. The wave will be

transmitted.

SP is essentially an electromagnetic wave that is trapped on the surface because of

their interaction with free electrons of the conductor [39]. In this interaction, the free

electrons respond collectively by oscillating in resonance with the external electromag-

netic wave. The work on SP field was pioneered by Ritchie in the 1950s, who predicted

the existence of self-sustained collective excitations at metal surface [40]. In this pi-

oneering work, he predicted theoretically that a fast electron fired at thin metal foil

acquired a new lowered loss due to the collective excitation on the surface [40]. Later

on, the electron energy loss experiments conducted by Powell and Swan proved the ex-

istence of surface excitation of electrons, and now it is called surface plasmon [21, 41].

Fig. 1.4 shows the electron energy loss spectra for aluminium and magnesium [21].
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Figure 1.4 Electron energy loss spectra for (a) aluminium and (b) magnesium with primary
electron energies 2020eV. There are 12 loss peaks and 10 loss peaks for aluminum and
magnesium, respectively. These loss peaks are made up of combinations of 10.3 and 15.3 eV
losses for aluminium and 7.1 and 10.6 eV losses for magnesium. The lower losses are due to
surface plasmon, while the higher ones are due to bulk plasmon [21, 41]

.

In both spectra, the loss peaks are made up of combinations of two kinds of loss. The

higher energy losses are due to bulk plasmon, while the lower ones are due to surface

plasmon. This proves the existence of collective excitation on the surface, which has

been predicted theoretically by Ritchie before.

An important point for SP is that SP has transverse polarization. Therefore, it

Fig. 1.4: Fig/fig1k1.eps
Fig. 1.5: Fig/fig1k8.eps



8 Chapter 1. Introduction

Dielectric

Figure 1.5 (a)Illustration of surface plasmon. (b) The evanescent field of SP [39].

can be excited by external electromagnetic wave. SP has an essentially transverse

magnetic character as shown in Fig. 1.5(a). The field component perpendicular to the

surface becomes enhanced near the surface and decays exponentially with distance

away from the surface. The field in this perpendicular direction is an evanescent wave.

The decay length of the field inside dielectric material above the metal, denoted by δd

in Fig. 1.5(b) is of the order of half the wavelength of electromagnetic wave involved

in the excitation, while the decay length inside the metal, denoted by δm corresponds

to skin depth of metal. The field does not propagate away from the surface, which

means that SP is bounded within the surface and non-radiative [39].

(a) (b)

Figure 1.6 Plasmonic devices (a) Plasmonic waveguide [42] and (b) Plasmonic biosensor [43]

.

The rise of surface plasmon science has allowed the emergence of new field of

technology, so-called plasmonics [38, 39, 44, 45]. In plasmonics, the applications of

surface plasmon are explored [38, 39, 44, 45]. The ability of surface plasmon to be

tuned and localized at nano scale gives rise to rapid development of surface plasmon

Fig. 1.6: Fig/fig1k2.eps
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based device, such as nano scale circuits that have ability to carry optical signals

and electric currents, the plasmonic waveguide at subwavelength [46], electro-plasmon

modulator [43] and plasmon based bio sensor [42]. Plasmonics is also considered to be

a practicable way to control light at nano scale [13]. Fig. 1.6 shows some plasmonic

device. In Fig. 1.6(a), we have plasmonic waveguide, which is silicon-based 3-D hybrid

wave guide to guide SP on surface of silver (Ag). This consists of three layers of (SiO2−

Si−SiO2) placed on both sides of a thin silver film with a symmetry. It is predicted that

it is capable of guiding with nanometric confinement and long propagation distance

(around 696 µm) [42]. Fig. 1.6(b) shows plasmonic biosensor. It uses triangular silver

nanoparticles to support localized SP. It is found that the process of SP excitation

is unexpectedly sensitive to nanoparticle size, shape (triangle), and local (10 − 30

nm) external dielectric environment. This sensitivity to the nanoenvironment can be

utilized to develop a new class of nanoscale affinity biosensors [43].

1.2.3 Graphene as plasmonic material

Graphene has been discussed by many researchers in plasmonic field as a potential

plasmonic material. Some theoretical researches to predict the existence of SP on

graphene has been conducted by researchers [7, 47, 12, 26, 13]. One of the important

results is done by Hwang and Das Sarma [7]. They predicted theoretically the existence

of SP on graphene by plotting its dispersion relation (Fig. 1.7). The dispersion relation

relates frequency and wave vector of a SP. They predicted that graphene SP can exist in

any wave length, even though it is damped. The damped SP is shown as dispersion line

inside single particle excitation (SPE) in Fig. 1.7. SPE in Fig. 1.7 depicts the energy

dissipation of system for exciting an electron as interband and intraband (SPEinter

and SPEintra) transitions by the Coloumb interaction.

It is predicted that graphene has the ability to support surface plasmon within

terahertz (THz) frequency [13, 48, 49]. This frequency range is important for tech-

nological application, for instance, plasmonic terahertz sources [13], amplifier [11, 12],

antenna [50, 12], graphene-based plasmonic wave guide [10, 12, 51] and graphene plas-

monic metamaterial [51, 12]. Fig. 1.8 shows the application of graphene SP. Fig. 1.8(a)

they proposed graphene dipole plasmonic antenna which works at THz frequency

Fig. 1.7: Fig/fig1k5.eps
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Figure 1.7 Grapehe SP dispersion relation [7]. Background lattice dielectric constant is 2.5

range [50]. Graphene here acts as dipole-like antenna and each dipole arm is a set

of two stacked graphene patches separated by a thin Al2O3 insulating film used to

control graphene complex conductivity via electrostatic field effect. The antenna ex-

ploits dipole-like plasmonic resonances that can be frequency-tuned on large range via

the electric field effect in a graphene stack. The silicone here acts as lens for better

directivity [50]. In Fig. 1.8(b) graphene plasmonic waveguide is shown. This device

has enabled us to guide EM wave at f = 30THz (Infrared). The waveguide shown here

also includes the ability to split the wave propagation direction by proper design of

conductivity patterns on the graphene by using uneven ground plane which will make

the bias electric field distributed spatially [51].

The most important property of graphene SP is the easy tunability of graphene

SP due to an easy control of carriers densities by electrical gating and doping [9, 12].

The SP in graphene are also reported to have a relatively low loss compared with

conventional plasmonic materials [13, 12], notably metals which are reported to have

Fig. 1.8: Fig/fig1k3.eps
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(a)

Graphene

Figure 1.8 Plasmonic devices (a) Graphene dipole plasmonic antenna [50] and (b) Graphene
plasmonic waveguide [51]. The green layer is graphene.

enormous losses. The loss here is related to propagation length of the SP. Another

important property of graphene SP is the high confinement compared to metals [12].

This is important parameter of plasmonic materials which describes the ability of a

material to confine light and is characterized by vertical decay length. Both of propa-

gation and vertical length of graphene SP are tunable by doping [12]. This low loss and

high confinement properties are useful for developing applications in subwavelength

optics [12]. Graphene, due to its flexibility, also supports the propagation of SP along

flexible and curved surface [12].





Chapter 2

Electronic Properties of Graphene

In this chapter, the electronic properties of graphene will be reviewed. These elec-

tronic properties include the electronic structure of graphene and also the dielectric

function. First, the electronic structure of graphene is derived by using simple tight

binding (STB) model. We focus on the electronic structure near the Dirac point (K-

point). After getting the electronic structure of graphene, the general formulation of

the dielectric function is derived by using the RPA theory. The electronic structue of

graphene will be used for obtaining the dielectric function of graphene.

2.1 Electronic structure of graphene

2.1.1 Graphene unit cell and Brillouin zone

Graphene is a planar allotrope of carbon where all the carbon atoms form covalent

bonds in a single plane [1, 2, 3, 4, 5, 6]. It has a honeycomb lattice structure. This

lattice structure of graphene has been observed experimentally [2] and is shown by

Figure 2.1(a). The covalent bond between nearest neighbor carbon atoms is called

σ-bond, which are the strongest type of covalent bond among the materials [2, 52].

The σ-bond has the electrons localized along the plane connecting two carbon atoms

and are responsible for the great strength and mechanical properties of graphene [2].

Graphene is well-knows as the mother of three carbon allotropes [2, 3]. Several

layers of graphene sheets are stacked together by the van der Waals force to form

three dimensional (3D) graphite, while by wrapping it up, a 0D fullerene can be made

13
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B

acc

(b) (c)(a)

Figure 2.1 (a) Graphene hexagonal lattice observed experimentally by transmission electron
aberration-corrected microscope (TEAM) [2]. It is shown that carbon-carbon distance is 0.142
nm. (b) The graphene unit cell consisting of two atomic sites A and B. a1 and a2 are the
unit vectors and acc is the nearest neighbor carbon-carbon distance. (b) Brillouin zone of
graphene (shaded hexagon). Γ,K,K′, and M denoted by a closed diamond, closed circles,
opened circles, and closed hexagons, respectively, are the high symmetry points. b1 and b2

are reciprocal lattice vectors [3].

and by rolling it up, a 1D single wall nanotube is made.

The direct lattice and unit cell of graphene are shown by Figure 2.1(b). The unit

vectors of graphene can be expressed by

a1 =

(√
3

2
,

1

2

)
a, a2 =

(√
3

2
,−1

2

)
a. (2.1)

a =
√

3acc is the lattice constant of graphene unit cell and acc = 0.142 nm is the

distance between two carbon atoms as shown by Figure 2.1(a) and (b).

Figure 2.1(c) shows the reciprocal lattice of graphene, which is hexagonal lattice,

but rotated 90◦ with respect to the direct lattice. The first Brillouin zone area is the

shaded hexagon which is enclosed by reciprocal lattice vectors. The reciprocal lattice

vectors are given by

b1 =

(
1√
3
, 1

)
2π

a
, b2 =

(
1√
3
,−1

)
2π

a
. (2.2)

The high symmetry points are denoted by circles in Figure 2.1(c). These high

symmetry points are defined at the center Γ, the center of an edge M, and the hexagonal

corners K and K′ of the Brillouin zone. The position of the M and K point can be

described with respect of Γ point by vectors

ΓM =
2π

a

(
1√
3
, 0

)
, ΓK =

2π

a

(
1√
3
, 3

)
, (2.3)

Fig. 2.1: Fig/fig2k1.eps
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with |ΓM| = 2π/
√

3a, |ΓK| = 4π/3a and |MK| = 2π/3a. There are six K points

(including K′ points) and six M points within the Brillouin zone.

2.1.2 Electronic structure of graphene

The electronic energy dispersion of graphene is calculated by using simple tight binding

(STB) model [1, 3]. The electronic energy dispersion describes the energy E as a

function of wave vector k. In the tight binding approximation, the eigenfunctions of

electrons are made up by the Bloch function that consists of the to atomic orbitals.

In graphene, the valence orbitals (2s, 2px, 2py) are hybridized to one another

and form σ-bonds, while 2pz orbital gives a π bond. The 2pz forms the π band

independently from σ bands and the π band lies around the Fermi energy. Hence, the

electronic transport and optical properties of graphene originate mainly from the π

band [2, 3]. Therefore, hereafter we adopt the STB method to model the π band.

The wave function of an electron in graphene can be written as a linear combination

of the atomic orbitals

Ψ(k, r) = CA(k)φA(k, r) + CB(k)φB(k, r), (2.4)

where φ(k, r) is the Bloch wave function. The Cj (j = A,B) is the coefficient of

Bloch wave function . This Bloch wave function consists of the linear combination of

atomic orbital, that is 2pz orbital. The Bloch wave function can be written as

φj(k, r) =
1√
N

N∑
Rj

eik·Rjϕ(r−Rj). (j = A or B) (2.5)

where RA and RB are the position of A and B sites, respectively. The electronic

energy dispersion E(k) is obtained by minimizing

E(k) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

, (2.6)

in respect to wave function coefficients . Inserting electron wave function to Eq.( 2.6),

a secular equation is obtained [1]

∑
j′

Hjj′Cj′(k) = E
∑
j′

Sjj′Cj′(k) (j, j′ = A, B), (2.7)
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B

a

B

B

RAB

Figure 2.2 The reference atomic site is A. The 3 nearest neighbors (B atomic site) are shown.
The positions of nearest neighbors are indicated by R1, R2, and R3 with respect to A site.

where Hjj′ = 〈φ|H|ψ〉 and Sjj′ = 〈φ|ψ〉 are called the transfer integral matrix and

the overlap integral matrices [1]. Then, Eq. (2.7) has turned into eigenvalue problem,

where it can be written explicitly as HAA(k) HAB(k)

HBA(k) HBB(k)

 CA(k)

CB(k)

 = E(k)

 SAA(k) SAB(k)

SBA(k) SBB(k)

 CA(k)

CB(k)

 .

(2.8)

Thus, the electron energy dispersion can be obtained by solving the secular equation

det [H− ES] = 0 . (2.9)

To solve Eq. (2.9), we need to evaluate the matrix elements of transfer matrix and

overlap matrix. First, we evaluate the matrix elements of transfer matrix. By using

Bloch wave function in Eq. (2.5),

HAA =
1

N

∑
RA,R′

A

eik·(RA−R′
A)
〈
ϕ(r−R′A)|H|ϕ(r−RA)

〉
= ε2p + (terms equal to or more distant than RA = R′A ± ai). (2.10)

The high order contribution to HAA can be neglegted. Therefore, the value of HAA

gives ε2p, which is the energy of the 2p orbital of a carbon atom. By using the same

calculation, HAA also gives ε2p. As for off-diagonal elements of the transfer matrix,

Fig. 2.2: Fig/fig2k2.eps
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the same method is used. Here, the largest contribution comes from three nearest

neighbor atoms and we can neglect more distant terms. The three nearest neighbors

as we can see in Fig. 2.2. The off-diagonal elements can be written as

HAB =
1

N

∑
RA,Ri

eik·(Ri)
〈
ϕ(r−R′A)|H|ϕ(r−RA −Ri)

〉
(i = 1, ...3)

≡ tf(k) , (2.11)

where
〈
ϕ(r−R′A)|H|ϕ(r−RA −Ri)

〉
denotes contribution of each nearest neighbor

atom, denoted by t. By inserting the coordinates of the nearest neighbor atoms, f(k)

in Eq. (2.11)can be evaluated

f(k) =
∑
Ri

eik·Ri (i = 1, ...3)

= eikxa/
√

3 + 2e−ikxa/2
√

3 cos(
kya

2
). (2.12)

The transfer matrix is a Hermite matrix, so HBA(k) = H∗AB(k). Now we have a

complete transfer matrix. The remaining problem is to evaluate the overlap integral

matrix. The overlap of same atomic site is 1, HAA(k) = HBB(k) = 1, while off-site

one should be calculated by considering only the nearest neigbors

HAB =
1

N

∑
RA,Ri

eik·(Ri)
〈
ϕ(r−R′A)|ϕ(r−RA −Ri)

〉
(i = 1, ...3)

= sf(k), (2.13)

where
〈
ϕ(r−R′A)|ϕ(r−RA −Ri)

〉
denotes contribution of each neighbor atom, de-

noted by s. This matrix is also a Hermite matrix, SBA(k) = S∗AB(k).

After getting all necessary matrices, the electronic energy dispersion can be calcu-

lated by Eq. (2.9). The solution is

E±(k) =
∓tw(k)

1∓ sw(k)
, (2.14)

where we set ε2p = 0. The value of t = -3.033 eV and s = 0.129. +(−) sign denotes

the π (π∗) band, with negative value of t. Hereafter, they will be called valence and

conduction band, respectively. The electronic energy dispersion of graphene is plotted

in Fig. 2.3.

Fig. 2.3: Fig/fig2k3.eps
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(a)

K

M

K' K

(b)

K

valence band

conduction band

Dirac 

point

Figure 2.3 (a) The electronic energy dispersion of graphene throughout the whole region of
Brillouin zone. (b) The dispersion around K point [3].

Since there are two π electrons per unit cell, the two electrons fully occupy the

valence band. The conduction band and valence band are degenerate at the K points

at which the Fermi energy exists. This degenerated point is also called as Dirac point.

For small wave vector k measured from K point, f(k) can be expanded around this

point and the electronic energy dispersion around this point can be obtained. With

k = (kx, ky) measured from a K point, the electronic energy dispersion in the vicinity

of the K points reads

E±(k) = ±
√

3at

2

√
k2
x + k2

y , (2.15)

which shows linear behavior to |k| as shown in Fig. 2.3(b). This linear dispersion is

often called Dirac cone. On Dirac cone, one can write the effective Hamiltonian as

HK(k) =

 0 ~vF(kx − iky)

~vF(kx + iky) 0


= ~vF|k|

 0 e−iθk

eiθk 0

 ,

(2.16)

where vF =
√

3
2
at
~ ≈ 106 m/s is the Fermi velocity at Dirac cone and θk is angle

between k to x-axis tan θk =
ky
kx
. The corresponding eigenvectors for positive energies

(electrons) can be written as

ΨK
+ (k, r) = 1√

2
eik·r

 e−iθk/2

eiθk/2

 = eik·r |+, k〉 , (2.17)
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and for negative energies (holes) as

ΨK
− (k, r) = 1√

2
eik·r

 e−iθk/2

−eiθk/2

 = eik·r |−, k〉 , (2.18)

2.2 Graphene dielectric function

After obtaining the electronic energy dispersion relation of graphene, we will use this

dispersion to obtain another electronic property of graphene, the dielectric function.

Dielectric function is considered as a measure of electric response when a perturbation

is applied to a system. In this section, we are going to explain how to derive the

expression of a general dielectric function and adopt it to for graphene as system.

Based on the results of this section, SP dispersion can be obtained, which will be

presented in Chapter 3. Dielectric function of graphene will also be used to determine

the conductivity of graphene, which will be used to calculate absorption probability

of EM wave in Chapter 4.

2.2.1 General random phase approximation (RPA) dielectric

function

When an external electric field is applied to a system consisting of electrons, the system

will respond as a perturbation by rearranging the electrons, so that it can screen the

applied field. In many cases, the response of the system is linear response of the applied

field [24]. Such consideration is well-known as linear response theory. The response

of the system due to the applied field can be depicted by its susceptibility, which is

related to dielectric function. The dielectric function as function of wave vector q and

frequency ω is given by the ratio of Fourier components of external potential to total

potential of the system or equivalently the ratio of the Fourier component of external

charge density to total charge density as follows,

ϕext

ϕ
=
ρeext

ρe
= ε(q, ω) . (2.19)

The total charge density ρe is the summation of external charge density and induced

charge density ρe = ρeext +ρeind, here ρ is defined particle density. The relation between

them is ρe = eρ. The induced charge density can be obtained by using the linear
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response theory. In the linear response theory, the change of expectation value of an

observable due to perturbation can be expressed by [24] :

δ 〈O〉 = −i
∫
θ(t− t′)

〈[
Ô(r, t), Ĥ ′(r′, t′)

]〉
dt′ . (2.20)

Eq. (2.20) is the popular Kubo formula [24]. The average 〈〉 is taken with respect

to unperturbed Hamiltonian. H ′ is a perturbing Hamiltonian acting on the system

at position r′ and time t′, which affects the observable O measured at position r and

time t. For electric field as perturbing field and the O in this section is charge density.

In particular the induced charge is the change of charge density. The perturbing

Hamiltonian is written as H ′(r′, t′) =
∫
eρ(r′, t′)ϕext(r

′, t′)dr′, then the induced charge

is expressed as follows :

ρind(r, t) = −ie
∫
dr′
∫
θ(t− t′) 〈[ρ̂(r, t), ρ̂(r′, t′)]〉ϕext(r

′, t′)dt′ . (2.21)

Here we assume that the system is translation-invariant and we introduce the elec-

tric susceptibility or polarization function Π(r−r′, t−t′) = −iθ(t−t′) 〈[ρ̂(r, t), ρ̂(r′, t′)]〉,

we arrive at the Fourier component of induced charge density obtained by convoluting.

ρind(r, t) = e

∫
dr′
∫

Π(r − r′, t− t′)ϕext(r
′, t′)dt′

↓ Convolution

ρind(q, ω) = e Πe(q, ω)ϕext(q, ω) . (2.22)

The Fourier transform of external potential can be expressed by [24],

ϕext(q, ω) =
e

4πε0
F(

1

|r − r′|
)ρext(q, ω) , (2.23)

where F( 1
|r−r′| ) is the Fourier transform of 1

|r−r′| . Using Eq. (2.22), (2.23) and (2.19),

we can obtain the dielectric function as follows,

ε(q, ω) =
1

1 + v(q)Πe(q, ω)
, (2.24)

where v(q) = e2

4πε0
F( 1
|r−r′| ) is Fourier transform of Coloumb potential.

To evaluate the polarization, the concept of second quantization is employed [24].

The density operator ρ =
∑
k c
†
k(t)ck+q(t) and Hamiltonian H =

∑
k εkc

†
kck are used

and it implies that we should work in q space. Plugging the operator to polarization
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expression and taking derivative for polarization with respect to time t, we arrive at

following equation [24]:

i
∂

∂t
Π0k = δ(t− t′) (nk − nk+q) + (εk+q − εk) Πe

0k , (2.25)

where nk is occupation number defined as nk =
〈
c†kck

〉
and Π0 = 1

V

∑
k Π0k, where

V is volume. Π0k is the polarization function for one electron wave vector k. Fourier

transforming the both side of Eq. (2.25) with respect to time and solving for Π0, we

arrive at expression for non-interacting polarization [24].

Π0(q, ω) =
1

V

∑
k

nk − nk+q

~ω + εk − εk+q + iη
. (2.26)

Eq. (2.26) is called non-interacting polarization function because the Hamiltonian

used in calculation does not contain the interaction between two electrons, hence it

contains only kinetic energy in εk. To include the interaction between electrons, the

Hamiltonian must contain interaction term

Vint =
1

2

∑
kk′q 6=0

v(q)c†k+qc
†
k′−qck′ck . (2.27)

Thus H =
∑
k εkc

†
kck + 1

2

∑
kk′q 6=0 v(q)c†k+qc

†
k′−qck′ck. Using the same derivation of

Eq. (2.25) once again, but now taking into account the interaction term, we will arrive

at following equation [24],

i
∂

∂t
Πk = δ(t− t′) (nk − nk+q)− iθ (t− t′)

〈[
−
[
H, c†kck+q

]
, ρ−q

]〉
. (2.28)

Now the random phase approximation (RPA) comes into a play when we evaluate

the commutator containing Vint [24],[
Vint, c

†
kck+q

]
=

1

2

∑
k′,k′′,q′ 6=0

v(q′)
(
c†k′+q′c

†
k′′−q′ck′′

[
ck′ , c

†
kck+q

]
+c†k′+q′c

†
k′′−q′

[
ck′′ , c

†
kck+q

]
ck′ + c′k′+q

[
ck′′−q′ , c

†
kck+q

]
ck′′ck′

+
[
c†k′+q′ , c

†
kck+q

]
ck′′−q′ck′

)
=

1

2

∑
k′,q′ 6=0

v(q′)
(
c†k+q′c

†
k′−q′ck′ck+q + c†k′+q′c

†
k−q′ck+qck′

−c†k′+q′c
†
kck+q+q′ck′ − c†kc

†
k′−q′ck′ck+q−q′

)
. (2.29)
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In RPA, we replace the pairs of operators with their mean-field expression, which

is their average values.[
Vint, c

†
kck+q

]
≈1

2

∑
k′,q′ 6=0

v(q′)
(
c†k+q′ck+q

〈
c†k′−q′ck′

〉
+
〈
c†k+q′ck+q

〉
c†k′−q′ck′

+c†k−q′ck+q

〈
c†k′+q′ck′

〉
+
〈
c†k−q′ck+q

〉
c†k′+q′ck′

−c†k′+q′ck′
〈
c†kck+q+q′

〉
−
〈
c†k′+q′ck′

〉
c†kck+q+q′

−c†kck+q−q′
〈
c†k′−q′ck′

〉
−
〈
c†kck+q−q′

〉
c†k′−q′ck′

)
=v(q) (nk+q − nk)

∑
k′

c†k′−qck′ . (2.30)

Eq. (2.28) can be evaluated. By going to frequency domain for Eq. (2.28), we have

(~ω + εk − εk+q)Πk = (nk − nk+q)(1 + v(q)
∑
k′

Πk′) . (2.31)

The interacting polarization can be solved

Π(q, ω) =
1

V

∑
k

nk − nk+q

~ω + εk − εk+q + iη
(1 + v(q)Π(q, ω))

Π(q, ω) = Π0(q, ω) (1 + v(q)Π(q, ω)) ,

which gives

Π(q, ω) =
Π0(q, ω)

1− v(q)Π0(q, ω)
. (2.32)

By Eq. (2.32), the interacting polarization is expressed in term of non-interacting

polarization. This is the result of RPA approximation. Inserting the interacting

polarization expression Eq. (2.32) to Eq. (2.24), we arrive at the general RPA dielectric

function

ε(q, ω) = 1− v(q)Π0(q, ω) . (2.33)

2.2.2 Graphene dielectric function

From the previous discussion, the general RPA dielectric function has been obtained.

In this section, we are going to calculate the dielectric function for graphene. To do

that, we need to calculate the non-interacting polarization of graphene, hereafter we

denote it by Π0g(q, ω), which is given by Eq. (2.34). For first case, the non-interacting

polarization of undoped graphene will be calculated [23]. Undoped means that the
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Fermi energy is exactly at Dirac point and that all electrons occupies the valence

band. More explanations of the derivation can be seen in Appendix A.

Π0g(q, ω) =
4

A

∑
k

nk − nk+q

~ω + εk − εk+q + iη
| 〈sk|s′k + q〉 |2 , (2.34)

where A is the area of graphene. We use an area A instead of V in Eq. (2.34), be-

cause graphene is two-dimensional material. We evaluate Π0g(q, ω) only at K-point,

where two bands (conduction and valence) touch each other at the Dirac point. The

factor 4 in Eq. (2.34) comes from spin and valley degeneracy. Since we have two

different energy bands, there will be an overlap of wave function, it is denoted by

Fss′ = | 〈sk|s′k + q〉 |2 [23], where s is the band index whose value is 1(-1) for conduc-

tion(valence) band and be denoted by +(-) for conduction(valence) band. The overlap

of wave function can be given by using wave function in Eqs. (2.17) and (2.18) [23].

Fss′ =
1

4
|ei(θk−θk+q) + ss′|2

=
1

2

(
ss′

k + q cosφ

|k + q|
+ 1

)
, (2.35)

where the angle φ is the angle between vector k and q. The next step is to evaluate

the summation in Eq. 2.34. First, the summation over s is carried out.

Π0g(q, ω) =
4

A

∑
k

F++
nk,+ − nk+q,+

~ω + εk,+ − εk+q,+ + iη
+ F−+

nk,− − nk+q,+

~ω + εk,− − εk+q,+ + iη

+ F+−
nk,+ − nk+q,−

~ω + εk,+ − εk+q,− + iη
+ F−−

nk,− − nk+q,−

~ω + εk,− − εk+q,− + iη
. (2.36)

Because undoped condition, we will have only two non-trivial terms

Π0g(q, ω) =
4

A

∑
k

[
F−+nk,−

~ω + εk,− − εk+q,+ + iη
− F+−nk+q,−

~ω + εk,+ − εk+q,− + iη

]
. (2.37)

To simplify the problem, it is easier for consideration to decompose the polarization

function into real and imaginary part We first calculate on the imaginary part and then

obtain the real part by the Kramers-Kronig relation. Using Eq. (2.35) The imaginary

part of polarization can be written as (omitting the negative solution of frequency)

ImΠ0g(q, ω) = − 2π

A~
∑
k

(
1− k + q cosφ

|k + q|

)
δ(ω − vFk − vF|k + q|) . (2.38)
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Then the summation in Eq. (2.38) is evaluated by transforming it into integral.

The integration on φ in Eq. (2.38) is changed into on cosφ and also the δ-function is

also changed in term of cosφ by using δ(f(x)) =
∑
i δ(x− xi)/|

∂f(x)
∂x |xi

.

ImΠ0g(q, ω) = − 2π

A~
A

(2π)2

∫
kdk

∫
dφ

(
1− k + q cosφ

|k + q|

)
δ(ω − vFk − vF|k + q|)

= − 1

π~

∫
kdk

∫
d(cosφ)

sinφ

(
1− k + q cosφ

|k + q|

)
|k + q|
vFkq

× δ(cosφ− ω2 − 2vFkω − v2
Fq

2

2v2
Fkq

) . (2.39)

The integration on cosφ in Eq. (2.39) is now easy to calculate because of δ-function

integration. The simplification of Eq. (2.40) can be seen in Appendix A. Finally we

obtain

ImΠ0g(q, ω) = − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√

(2v2
Fkq)

2 − (ω2 − 2vFkω − v2
Fq

2)2

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√

(v2
Fq

2 − (ω − 2vFk)2)(ω2 − vFq2)

= − 1

π~
1

vF
√
ω2 − vFq2

∫
dk
√
v2
Fq

2 − (ω − 2vFk)2 . (2.40)

Evaluating the integral over k should be done carefully. The limit of integration is

determined by the previous δ(cosφ − ω2−2vFkω−v2Fq
2

2v2Fkq
). From the δ-function, we will

have inequality −1 ≤ ω2−2vFkω−v2Fq
2

2v2Fkq
≤ 1. After evaluating the inequality, we get two

constraints on the integral : (1) ω
2vF
− q

2 ≤ k ≤ ω
2vF

+ q
2 . (2) ω ≥ vFq . Here, the

integration can be performed by substitution of ω − 2vFk = x.

ImΠ0g(q, ω) = − 1

π~
θ(ω − vFq)

vF
√
ω2 − vFq2

ω
2vF

+ q
2∫

ω
2vF
− q

2

dk
√
v2
Fq

2 − (ω − 2vFk)2

= − 1

2π~
θ(ω − vFq)

vF
√
ω2 − vFq2

[
1

2
x
√
v2
Fq 2− x2 +

1

2
v2
Fq

2 arcsin
x

vFq

]−qvF
qvF

= − q2

4~
√
ω2 − vFq2

θ(ω − vFq) . (2.41)

Imaginary part of polarization is thus obtained in Eq. (2.41). θ(x) is step function.

The real part of Π0g can be calculated by using the Kramers-Kronig relation and the

integration can be performed by similiar substitution of Eq. (2.41) .
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ReΠ0g(q, ω) =
2

π

∞∫
0

ω′ImΠe
0g(q, ω

′)

ω′2 − ω2
dω′

=

[
2θ(vFq − ω)√
v2
Fq

2 − ω2
arctan

√
x+ ω2 − v2

Fq
2

v2
Fq

2 − ω2

]∞
v2Fq

2−ω2

= − q2

4~
√
vFq2 − ω2

θ(vFq − ω) . (2.42)

Finally, we have the complete polarization expression of undoped graphene and

also the dielectric function as in Eq. (2.43) v(q) is now e2/2ε0q for two-dimensional

electron gas.

Π0g(q, ω) = − q
2

4~

(
θ(vFq − ω)√
vFq2 − ω2

+ i
θ(ω − vFq)√
ω2 − vFq2

)
. (2.43)

Finally we get the dielectric function for undoped graphene.

ε(q, ω) = 1− e2

2ε0q
Π0g(q, ω) . (2.44)

For doped case, Fermi energy is not located at the Dirac point, but at conduc-

tion band in the case of electron doping. The electrons partially occupy the conduc-

tion band. The electron excitation can be either interband or intraband as shown in

Fig. 2.4. In order to calculate the polarization for doped graphene, we are going back

to Eq. (2.36) and changing the variable of ss′ = β and s = α, where β is 1(-1) for

intraband (interband) transition [53, 7].

Παβ
0g (q, ω) =

2

A

∑
kαβ

nα,k − nαβ,k+q

~ω + α(~vFk − ~vFβ|k + q|) + iη

(
1 + β

k + q cosφ

|k + q|

)
(2.45)

The summation is easier to evaluate if we separately consider imaginary and real

part. The imaginary part of polarization can be written as

Παβ
0g (q, ω) =− 2π

A

∑
kα

(nα,k − nαβ,k+q)

(
1 + β

k + q cosφ

|k + q|

)
δ(~ω + α(~vFk − ~vFβ|k + q|)) . (2.46)

Fig. 2.4: Fig/fig2k4.eps



26 Chapter 2. Basics of graphene

To evaluate the summation, we change it into integration, just like we do before

in Eq. (2.39). For interband transition β = −1, only negative α contributes to the

integration, so that we get only positive solution of ω in delta function. For intraband

transition β = 1, only positive α contributes, because for intraband, the contribution of

transition within valence band is zero (for α = −1, nα,k−nα,k+q = n−,k−n−,k+q = 0).

The integration on angle is changed to be on cosφ and also the δ-function is also

changed in term of cosφ. Afterward, ImΠintra
0g and ImΠinter

0g denote imaginary part

of polarization for intraband and interband transition, respectively and the imaginary

part of polarization is ImΠ0g(q, ω) = ImΠintra
0g + ImΠinter

0g .

ImΠintra
0g (q, ω) =− 1

π~

∫
kdk

∫
d(cosφ)

(
1 +

k + q cosφ

|k + q|

)
(n+,k − n+,k+q)

δ(cosφ− ω2 − v2
Fq

2 + 2vFkω

2v2
Fkq

)
|k + q|
kqvF

2kqv2
F√

4v4
Fk

2q2 − (ω2 + 2kvFω − q2)2

=− 1

π~
1

vF
√
v2
Fq

2 − ω

∫
dk
√

(ω + 2kvF)2 − v2
Fq

2 (2.47)

ImΠinter
0g (q, ω) =− 1

π~

∫
kdk

∫
d(cosφ)

(
1− k + q cosφ

|k + q|

)
(n−,k − n+,k+q)

δ(cosφ− ω2 − v2
Fq

2 − 2vFkω

2v2
Fkq

)
|k + q|
kqvF

2kqv2
F√

4v4
Fk

2q2 − (ω2 − 2kvFω − q2)2

=− 1

π~
1

vF
√
ω − v2

Fq
2

∫
dk
√
v2
Fq

2 − (ω + 2kvF)2 (2.48)

The remaining integration is now on k. Here we need to determine the boundary

of integration. For the interband transition, the constraints of k and ω come from

the energy condition of interband transition (~vF|k + q| > EF) and together with the

Interband

Intraband

Figure 2.4 Electron transition near K-point. The interband and intraband transition are
shown.
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condition of delta function δ(cosφ−ω2−v2Fq
2+2vFkω

2v2Fkq
) for the wave vector. We will obtain

three contraints for k and ω : (1) ~ω−EF
~vF > k ,(2) ω

2vF
− q

2 ≤ k ≤
ω

2vF
+ q

2 and (3) ω > vFq.

The value of ~ω−EF
~vF can be either ~ω−EF

~vF > ω
2vF

+ q
2 or ω

2vF
− q

2 ≤
~ω−EF
~vF ≤ ω

2vF
+ q

2 .

We define function

f(x) = x
√

1− x2 + arcsinx . (2.49)

Based on these possibilities, we obtain

ImΠinter
0g (q, ω) =− 1

π~
θ(ω − vFq)

vF
√
ω2 − v2

Fq
2

{ ω
2vF

+ q
2∫

ω
2vF
− q

2

dk
√
v2
Fq

2 − (ω + 2kvF)2

× θ
(
~ω − ~vFq

2
− EF

)
+

~ω−EF
~vF∫

ω
2vF
− q

2

dk
√
v2
Fq

2 − (ω + 2kvF)2

× θ
(
EF −

~ω − ~vFq
2

)
θ

(
~ω + ~vFq

2
− EF

)}

=− q2

4π~
θ(ω − vFq)√
ω2 − v2

Fq
2

{
(f(1)− f(−1)) θ

(
~ω − ~vFq

2
− EF

)
+

(
f(1)− f(

2EF − ~ω
~vFq

)

)
θ

(
EF −

~ω − ~vFq
2

)
× θ

(
~ω + ~vFq

2
− EF

)}
. (2.50)

For intraband transition, the constraints are : (1) q
2 −

ω
2vF
≤ k ≤ ∞ ,(2) 0 ≤ k ≤

EF
~vF ,(3) k ≥ EF

~vF −
ω
vF

and (4) vFq > ω. The value of EF
~vF −

ω
vF

can be positive or

negative. For positive value, EF
~vF −

ω
vF

< q
2 −

ω
2vF

or q
2 −

ω
2vF
≤ EF

~vF −
ω
vF
≤ EF

~vF . We

define function

g(x) = x
√
x2 − 1− ln(x+

√
x2 − 1) . (2.51)
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ImΠintra
0g (q, ω) =− 1

π~
θ(vFq − ω)

vF
√
v2
Fq

2 − ω2

{ EF
~vF
− ω

vF∫
q
2−

ω
2vF

dk
√

(ω + 2kvF)2 − v2
Fq

2

× θ(~ω − EF)θ

(
EF −

~vFq − ~ω
2

)
+

EF
~vF∫

q
2−

ω
2vF

dk
√

(ω + 2kvF)2 − v2
Fq

2

× θ(EF − ~ω)θ

(
EF −

~vFq − ~ω
2

)
θ

(
~vFq + ~ω

2
− EF

)

+

EF
~vF∫

EF
~vF
− ω

vF

dk
√

(ω + 2kvF)2 − v2
Fq

2θ(EF − ~ω)

× θ
(
EF −

~vFq + ~ω
2

)}

=− q2

4π~
θ(vFq − ω)√
v2
Fq

2 − ω2

{(
g

(
~ω + 2EF

~vFq

)
− g(1)

)
θ(~ω − EF)

× θ
(
EF −

~vFq − ~ω
2

)
+

(
g

(
~ω + 2EF

~vFq

)
− g(1)

)
θ(EF − ~ω)

× θ
(
EF −

~vFq − ~ω
2

)
θ

(
~vFq + ~ω

2
− EF

)
+

(
g

(
~ω + 2EF

~vFq

)
− g

(
2EF − ~ω

~vFq

))
θ(EF − ~ω)

× θ
(
EF −

~vFq + ~ω
2

)}
. (2.52)

The real part of polarization is expressed in Eq. (2.53). The summation over k is

changed into integration on φ and k. We do not split the real part of polarization into

interband and intraband, but it is split only by index α.

Fig. 2.7: Fig/fig2k5.eps
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Figure 2.5 The imaginary part of doped graphene polarization. Both of interband and
intraband polarization are shown within one figure. The boundary between them is ω = vFq.

ReΠ0g(q, ω) =
2

A

∑
k,α,β

nα,k − nαβ,k+q

~ω + α(~vFk − ~vFβ|k + q|)

(
1 +

k + q cosφ

|k + q|

)
=

1

2π2~vF

∑
α

∫
dkθ(k − EF

~vF
)

×
∫ 2π

0

dφ

(
1 +

v2
Fq

2 − (2vFk + αω)2

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

)
. (2.53)

The integration on φ is done within complex plane and depends on α. For α = 1

and α = −1, the integration becomes as below, respectively, (For α = 1)

ReΠ+
0g(q, ω) =

1

2π2~vF

∫
dkθ(k − EF

~vF
)

×
∫ 2π

0

dφ

(
1 +

v2
Fq

2 − (2vFk + ω)2

ω2 − v2
Fq

2 + 2kvFω − 2kv2
Fq cosφ

)
=

1

2π2~vF

∫
dkθ(k − EF

~vF
)
(
2π + 2π

(
v2
Fq

2 − (2vFk + ω)2
))

×

(
θ(ω − vFq)− θ(vFq − ω)θ

(
q− ω

vF
2 − k

))
√

(ω2 − v2
Fq

2 + 2kvFω)2 − 4k2v4
Fq

2
(2.54)
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(For α = -1)

ReΠ−0g(q, ω) =
1

2π2~vF

∫
dkθ(k − EF

~vF
)

×
∫ 2π

0

dφ

(
1 +

v2
Fq

2 − (2vFk − ω)2

ω2 − v2
Fq

2 − 2kvFω − 2kv2
Fq cosφ

)
=

1

2π2~vF

∫
dkθ(k − EF

~vF
)
(
2π + 2π

(
v2
Fq

2 − (2vFk − ω)2
))

×

(
θ(ω − vFq)θ

( ω
vF
− q
2

− k
)
− θ(ω − vFq)θ

(
k −

ω
vF

+ q

2

)

× θ(vFq − ω)θ

( ω
vF

+ q

2
− k
))

× 1√
(ω2 − v2

Fq
2 − 2kvFω)2 − 4k2v4

Fq
2

. (2.55)

The total real part of polarization is the sum of ReΠ0g(q, ω) = ReΠ+
0g(q, ω) +

ReΠ−0g(q, ω). Here, we give the final result of integration for real part of polarization.

ReΠ0g(q, ω) =− 2

π~vF
EF

~vF
+

q2

4π~
θ(ω − vFq)√
ω2 − v2

Fq
2

{
g

(
~ω + 2EF

~vFq

)
− θ

( ω
vF
− q
2

− EF

~vF

)
g

(
~ω − 2EF

~vFq

)
+ θ

(
EF

~vF
−

ω
vF

+ q

2

)
g

(
2EF − ~ω

~vFq

)}

− q2

4π~
θ(vFq − ω)√
v2
Fq

2 − ω2

[
θ

( ω
vF

+ q

2
− EF

~vF

)
×
{
f(1)− f

(
2EF − ~ω

~vFq

)}
+ θ

(
q − ω

vF

2
− EF

~vF

)
×
(
f(1)− f

{
~ω + 2EF

~vFq

)}]
. (2.56)

The function f(x) and g(x) have been defined in Eqs. (2.49), and (2.51). The total

of polarization function is Π0g(q, ω) = ReΠ0g(q, ω)+ImΠ0g(q, ω). Thus, the dielectric

function of doped graphene can be calculated using Eq. (2.44), with doped polarization

function of graphene Eqs. (2.50), and (2.52),(2.56). The plot of real part of dielectric

function for doped graphene is presented in Fig.. 2.6. At certain frequency, the real

part of dielectric function is zero. This zero value of dielectric function is related to

plasmon, which will be discussed in the next chapter.



2.2. Graphene dielectric function 31

0 1 2 3

q/kF

0

1

2

3

/E
F

R
e

  
(q

,
)

0

5

10

-5

-10

Figure 2.6 The real part of doped graphene dielectric function.

The imaginary part of doped graphene dielectric function is plotted as below.
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Figure 2.7 The imaginary part of doped graphene dielectric function.

Fig. 2.6: Fig/fig2k6.eps
Fig. 2.7: Fig/fig2k7.eps





Chapter 3

Graphene Surface Plasmon Properties

In this chapter, the graphene surface plasmon (SP) properties are explained. The

discussed properties in this chapter are the dispersion relation of surface plasmon and

the damping. SP propagates at certain frequency ω and wave vector q, which are

determined by the dispersion relation. The dispersion relation relates the frequency of

SP to its wave vector. The dispersion relation can be obtained from dielectric function

as is discussed in chapter 2. SP, at certain frequency and wave vector, experiences

damping. This damping is related to imaginary part of the polarization function,

which governs the energy dissipation of SP wave [24, 23]. SP acquire finite life time,

when it is damped out.

3.1 Graphene surface plasmon dispersion

Graphene surface plasmon (SP) dispersion relation relates the frequency of SP to its

wave vector. The dispersion relation can be obtained from the dielectric function. The

zeroes of dielectric function determines the dispersion relation of SP. From Eq. (2.19),

we have ϕext(q, ω) = ε(q, ω)ϕ(q, ω), where ϕ(q, ω) is total potential inside the system.

If the dielectric function ε(q, ω) = 0, we can have total potential inside system even

though we do not have external potential exerted to system. To sustain this total

potential, oscillation of charge is required. That is the reason, we can have SP if the

dielectric function is zero.

33
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From Eq. (2.44) , dielectric function can be written as

ε(q, ω) = 1− e2

2ε0q
Π0g(q, ω) . (3.1)

Since the polarization function is a complex function, the dielectric function is also

a complex function. Thus, to find the zeroes of dielectric function is not easy because

of this complex function. The zeroes of Eq. (3.1) should satisfy 1 = e2

2ε0q
Π0g(q,Ω− iγ),

where SP can occur at ω = Ω − iγ and γ is the damping constant. However, if we

consider that damping γ is sufficiently small (γ � Ω), the real and imaginary part of

ω can be separated [25].

1 =
e2

2ε0q
ReΠ0g(q,Ω) (3.2)

γ =ImΠ0g(q,Ω)

[
∂ReΠ0g(q, ω)

∂ω

]−1

Ω

(3.3)

The dispersion relation is determined by Eq. (3.2). The SP occurs at frequency Ω.

In this case, only real part of polarization is needed to find the dispersion relation,

or equivalently, zero value of the real part of the dielectric function determines the

dispersion relation. The damping constant γ is determined by Eq. (3.3). Hereafter,

we consider undoped and doped graphene.

First, the case of undoped graphene is discussed. The real part of polarization

function can be obtained from Eq. (2.43). From Eq. (3.2), we get

1 = − e2

2ε0q

(
q2

4~
θ(vFq − Ω)√
v2
Fq

2 − Ω2

)
. (3.4)

Eq. (3.4) gives no solution for Ω, because the left-hand side is positive, while the

right-hand side gives a negative value. It can be concluded that for undoped graphene,

SP cannot exist. This can be understood by following explanation : for undoped case,

there is no free charge carrier, so we have no possibilities of charge oscillation.

For doped case, we use real part of polarization from Eq. (2.56) and plug it into

Eq. (3.2). The solution is plotted in Fig. 3.1. From Eq. (3.2), we can also say that

zero of real part of dielectric function determines the SP dispersion. It can be seen in

Fig. 2.6 as white line. Then, it is concluded that SP exists in case of doped graphene.
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Figure 3.1 SP dispersion for doped graphene. The dash line is the electronic energy disper-
sion ω = vFq.

Fig. 3.1 shows that the SP dispersion relation of doped graphene in the air, which

is the solution of Eq. (3.2). The frequency is normalized to EF, while the wave vector

is normalized to Fermi wave vector kF . Thus, the shape of dispersion relation remains

the same, even though the EF is changed. For small q (q � kF ), the dispersion is

a function of √q. This √q dependence of frequency is the same as SP of normal 2D

electron gas, which also has the √q dependence of frequency at small wave vector.

The dispersion of graphene SP at small wave vector can be derived as if we expand

the real part of polarization at small q as follows.

From Fig. 3.1, we know that SP occurs at ω > vFq. The real part of polarization

function (Eq.( 2.56)) at ω > vFq can be written as

ReΠ0g(q, ω) = − 2

π~vF
EF

~vF
+

q2

4π~
1√

ω2 − v2
Fq

2

(
g

(
~ω + 2EF

~vFq

)
− g

(
2EF − ~ω

~vFq

))
,

(3.5)

Here g(x) is given in Eq (2.51). For q � kF, the x of g(x) is large, so it can be

approximated as g(x) ≈ x2 − ln 2x. We will have

Fig. 3.1: Fig/fig3k1.eps
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−g
(
~ω + 2EF

~vFq

)
− g

(
2EF − ~ω

~vFq

)
=

(
~ω + 2EF

~vFq

)2

−
(

2EF − ~ω
~vFq

)2

+ ln
2EF − ~ω
~ω + 2EF

≈8EFω

~v2
Fq

2
, (3.6)

where we neglect the logarithmic term for simplicity. Since for small q, 1√
ω2−v2Fq2

≈
1
ω

(
1 +

v2Fq
2

2ω2

)
, the real part of polarization function at small q is given by.

ReΠ0g(q, ω) =− 2

π~vF
EF

~vF
+

q2

4π~ω

(
1 +

v2
Fq

2

2ω2

)(
8EFω

~v2
Fq

2

)
=
EF

π

( q

~ω

)2

. (3.7)

putting Eq. (3.7) to Eq. (3.2), we will have frequency Ω as function of wave vector

which is √q dependent.

Ω(q) =
1

~

√
e2EFq

2πε0
(3.8)

For large q (q > kF ), the dispersion becomes linear to q as shown in Fig. 3.1. The

dispersion seems to be almost parallel to electron dispersion (ω = vFq) for large q.

3.2 Graphene surface plasmon damping

Now we discuss the damping of SP. This damping is related to imaginary part of

polarization, which governs the energy dissipation [24, 23]. SP acquires finite life

time, when it is damped out. The damping of SP can be visualized by imaginary part

of polarization function. The higher the value of imaginary part of polarization, the

higher the damping felt by SP.

Fig. 3.2(a) shows the SP dispersion (blue line) together with the plot of imaginary

part of polarization (ImΠ0g(q, ω)) (coloured plot). The ImΠ0g(q, ω) is associated

with the ability of SP wave to dissipate energy [24]. This gives damping to SP. The

dissipated energy from SP wave is absorbed by an electron. The electron will be

excited to form electron-hole pair (single - particle excitation). An electron is excited

to a state outside the Fermi sea. The possible range of q and ω for single - particle

Fig. 3.2: Fig/fig3k2.eps
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Figure 3.2 (a) SP dispersion (blue line) of doped graphene plotted together with plot of
imaginary part of polarization function (coloured plot). (b) SP dispersion (red line) plotted
together with damping constant (black line).

excitation is given by the coloured region in Fig.. 3.2(a). Hence, the SP within this

region is damped out because of electron-hole pair excitation and acquires a finite life

time.

The excitation of electron can be either interband or intraband, which are shown

in Fig.. 3.2(a) as single particle excitation (SPE) region of interband and intraband

transition. The electron can undergo interband transition and form an electron-hole

pair. The value of ImΠ0g(q, ω) reflects the probability of excitation. The SP dispersion

couples with only the SPE interband excitation as shown in Fig. 3.2(a). At the SPE

region, SP can survive even though it is damped out. It can be seen, that the higher

the SP frequency Ω (or equivalently q), the higher the value of ImΠ0g(q,Ω) (red color).

Therefore high frequency SP experience high damping and we can expect small life

time for high frequency SP, because of high damping.

The excitation of electron cannot occur within white region of Fig. 3.2(a). This is

because there is no final states available for excitation as shown in Fig. 3.3(a). In this

region, electron cannot absorb energy from SP wave, therefore SP is not damped and

long live. The point a1 in Fig. 3.2 is the first direct transition of electron, where the

transfer momentum of electron (q) is q = 0 (see Fig. 3.3(a). Therefore, we need excita-

tion energy to be 2EF. Direct transition can occur only for interband transition. From

Fig. 3.2(a), we see that the value of ImΠ0g(0, ω) is small, that means the probability

Fig. 3.3: Fig/fig3k3.eps
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Figure 3.3 (a) The transition for point a1 of Fig. 3.2(a), which is the first direct transition
of electron. The required excitation energy is 2EF for the first direct transition of electron
q = 0. (b) The transition for point a2 of Fig. 3.2(a), which is the lowest excitation energy for
interband transition of electron. The required energy is EF and q = kF .

to have this excitation is small. The point a2 in Fig. 3.2 is the lowest excitation energy

to have interband transition as shown in Fig. 3.3(b). Electron undergoes transition

from Dirac point to state just above Fermi energy.

The damping can be quantified by damping constant, which is related to SP life

time. Damping constant γ can be calculated from Eq. (3.3). Fig. 3.2(b) shows γ

as a function of SP wave vector (q). We see that γ increases as function of q from

q/kF ∼ 0.87. This is related to previous discussion on imaginary part of polarization.

When SP frequency Ω (or equivalently q) gets higher, the value of ImΠ0g(q,Ω) also

increases, this in turns increases the damping. The life time of SP (τ) is determined

by the damping constant. The life time of SP is written as [47]

τ(q) =
1

2γ(q)
. (3.9)

As SP enters the SPE interband, it immediately acquires a finite life time. From

Fig. 3.2(b), we see that the point of entrance is approximately at q = 0.68kF . At that

point, for a fixed value of EF = 1 eV, SP life time is around 24 ps. For q < 0.68kF,

γ = 0, therefore the life time is infinity (not damped). As q increases, the life time

decreases fast. For instance, at q = 1.5kF , τ is only 1.12 fs. The τ dependency on q is

shown in Fig. 3.4 .

The origin of the SP damping is known as Landau’s damping in plasma physics [7,

24, 25]. We do not discuss it in deep in this thesis, but we will give a simple classical

Fig. 3.4: Fig/fig3k4.eps
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Figure 3.4 SP life time (τ) is plotted as a function of SP wave vector q.

picture of it. Landau’s damping occurs at classical plasma wave. This damping reduces

the energy of plasma wave. This damping is due to different velocities of resonance

electrons. A resonance electron is defined by the electron whose velocity is almost the

same as the plasma wave velocity. The velocity of resonance electron can be slightly

higher or slightly lower than the wave velocity. The slightly faster electrons will give

their energy to wave, we can picture it in our mind that these faster electrons ”push”

the wave and give their energy to wave. The slightly slower electrons will absorb

energy from the wave, they are like being pushed by the wave. Because of classical

Boltzmann distribution for electrons, there are more slightly slower electrons than

slightly faster ones. Therefore, there are more energy absorption by electrons. This

differences between absorption and emission energy reduce the plasma wave energy

and gives damping to plasma wave. This absorbed energy is used by electrons for

electron-hole excitation.





Chapter 4

Tunable Electromagnetic Wave

Absorption by Graphene and Surface

Plasmon Excitation

In this chapter, we will investigate the ability of graphene to absorb the incoming

electromagnetic (EM) wave. First we begin by formulating the absorption, reflectance

and transmittace probabilities of the EM wave by graphene in between two dielectric

media. We use the conductivity of graphene that can be obtained from dielectric func-

tion of graphene in chapter2. We will see, provided that we have certain geometry and

certain range of frequency, we can have very high absorption of EM wave. This high

absorption probability can also be tuned by EF. We argue that this high absorption

probability will be related to excitation of SP.

4.1 EM wave absorption by graphene wrapped by 2 dielectric

media

Let us discuss the formulation of absorption, reflectance and transmittance of EM

wave penetrating to graphene. The easiest way to obtain them is to solve them by

solving the Maxwell equations for EM wave with boundary conditions. We consider

that graphene is placed between two dielectric media as shown in Fig. 4.1.
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Figure 4.1 Graphene is placed between two dielectric media with dielectric constants ε1 and
ε2. Graphene thickness is exaggerated. The incident EM wave comes at an angle θ in medium
1 (left) and is refracted at an angle φ in medium 2 (right). The EM wave is p-polarized.

Graphene is modeled as a conducting interface with the conductivity σ between

two dielectric media with dielectric constants ε1 and ε2. The absorption, reflectance

and transmittance probabilities for this geometry can be calculated by utilizing the

boundary conditions from the Maxwell’s equations. If we adopt the p-polarization of

EM wave as shown in Fig. 4.1, we can obtain two boundary conditions for the electric

field E(i) and magnetic field H(i) (i = 1, 2) as follows:

E
(1)
+ cos θ + E

(1)
− cos θ = E

(2)
+ cosφ, (4.1)

H
(2)
+ − (H

(1)
+ −H(1)

− ) = −σE(2)
+ cosφ, (4.2)

where +(−) index denotes the right-(left-)going waves according to Fig. 4.1, θ is the

incident and reflection angle, φ is the refraction angle, and σ is the conductivity

of graphene. [49]. Eq. (4.1) and (4.2) come from Faraday law and Ampere law,

respectively. The E and H fields are also related each other in terms of the EM wave

impedance in units of Ohm for each medium:

Zi =
Ei
Hi

=
377
√
εi

Ohm, (i = 1, 2), (4.3)

where the constant 377 Ohm is the impedance of vacuum Z0 =
√
µ0/ε0, µ0 and ε0

are vacuum magnetic susceptibility and permitvity, respectively. Quantities φ, θ, and

Zi are related by Snell’s law Z2 sin θ = Z1 sinφ. Solving Eqs. (4.1)-(4.3), we obtain

the reflectance R, transmittance T , and absorption probabilities A of the EM wave as

Fig. 4.1: Fig/fig4k1.eps
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follows:

R =

∣∣∣∣∣E(−)
1

E
(+)
1

∣∣∣∣∣
2

=

∣∣∣∣Z2 cosφ− Z1 cos θ − Z1Z2σ cos θ cosφ

Z2 cosφ+ Z1 cos θ + Z1Z2σ cos θ cosφ

∣∣∣∣2 ,
T =

cosφ

cos θ

Z1

Z2

∣∣∣∣∣E(+)
2

E
(+)
1

∣∣∣∣∣
2

=
4Z1Z2 cos θ cosφ

|Z2 cosφ+ Z1 cos θ + Z1Z2σ cos θ cosφ|2
,

A = 1−R− T, (4.4)

where the values of R, T , and A can be denoted in terms of percentage (0 − 100%).

Note that the factor Z1/Z2 in T of Eq. (4.4) comes from the different velocities of the

EM wave in medium 1 and medium 2.

The EM wave absorption A is determined by the conductivity σ which describes

the electron transition caused by the optical absorption. Here we show an alterna-

tive way to derive σ. σ of graphene is derived from the dielectric function ε using a

random-phase approximation (RPA). Since the coupling between the EM wave and

matter occurs only at long wavelength, we focus our calculation only at q → 0 case.

The real part of polarization at q → 0 can be obtained from Eq. (3.5) and the imag-

inary part of polarization at q → 0 can be obtained from Eq. (2.50). Plugging the

polarization function to Eq. (3.1), the RPA dielectric function of graphene as a func-

tion of wavevector q and angular frequency ω of the EM wave for a given Fermi energy

EF is expressed by [26]

ε (q → 0, ω) =1−
(

e2

2ε0q

)
q2

2π~ω
×

[
2EF

~ω

+
1

2
ln

∣∣∣∣2EF − ~ω
2EF + ~ω

∣∣∣∣− iπ2 Θ (~ω − 2EF)

]
, (4.5)

where e is the fundamental electron charge and Θ is the Heaviside step function. The

relation between σ and ε can be obtained from the continuity equation,

∇ · J + e
∂ρ

∂t
=0 (4.6)

−ieωρ(q, ω) + iq · J =0 , (4.7)
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where J = σ(q, ω)E(q, ω) = −iσ(q, ω)qϕext(q, ω). Eq. (4.7) is obtained by Fourrier

transform of Eq. (4.6). Putting Eq. (2.22), we get the following equation

σ(q, ω) =
ie2ω

q2
Π(q, ω) . (4.8)

Since we want to relate ε and σ, by using Eq. 2.24, Eq. 4.8 can be rewritten as

ε(q, ω) =
1

1− iv(q)σ(q,ω)q2

e2ω

(4.9)

≈1 +
iv(q)σ(q, ω)q2

e2ω
. (4.10)

Eq. (4.10) is valid for small q. In term of ε, σ is expressed as

σ (q, ω) =
i2ε0ω

q
(1− ε (q, ω)) , (4.11)

obtained in (q, ω) space. [54]. Here we use v(q) = e2/2ε0q. Plugging Eq. (4.5) to

Eq. (4.11), σ can be written as [55]

σ (ω) ≡σD + Re σE + Im σE

=
EFe

2

π~
i

~ω + iΓ
+
e2

4~
Θ (~ω − 2EF)

+
ie2

4π~
ln

∣∣∣∣2EF − ~ω
2EF + ~ω

∣∣∣∣ . (4.12)

The first term in Eq. (4.12) is the intraband conductivity, which is known as the

Drude conductivity σD. We add a spectral width Γ as a phenomenological parameter

for scattering rate and it depends on EF as Γ = ~ev2
F/µEF, [13] where vF = 106 m/s is

the Fermi velocity of graphene, µ = 104 cm2/Vs is the electron mobility. The second

and the third terms in Eq. (4.12) correspond to the real part and the imaginary part

of interband conductivity σE , respectively. By inserting Eq. (4.12) and Eq. (4.3) into

Eq. (4.4), we get A,R, T as a function of EF and incidence angle θ. Both σD and σE

affect the EM wave absorption and each contribution as discussed below.

Let us see how the EM wave absorption in graphene can be modified under some

certain conditions. Firstly, in Fig. 4.2(a), we reproduce the 2.3% optical absorption

if graphene is put in a vacuum, [56] i.e. ε1 = ε2 = 1 with EF = 0.64 eV, θ = 0◦.

The absorption A is associated with the real part of σ as shown by the same shape of

both curves in Figs. 4.2(a) and (b). [54] In Fig. 4.2(b), the conductivity of graphene

Fig. 4.2: Fig/fig4k2.eps
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Figure 4.2 (a) The absorption spectra of EM wave at EF = 0.64 eV, ε1 = ε2 = 1 and
θ = 0◦. Inset shows the expanded section of absorption for 1 ≤ ~ω/EF ≤ 3. (b) The
normalized optical conductivity.

[Eq. (4.12)] normalized by σ0 = e2/4~ is shown. The A value of 2.3% is obtained

when ~ω > 2EF [inset of Fig. 4.2(a)] because at this region, the real part of total

conductivity σ is a constant σ0 [see Fig. 4.2(b)] which comes from Re σE (while σD is

negligible). When ~ω/EF ≈ 0 [Fig. 4.2(a)], it can be seen that the A value becomes

large (∼ 20%) due to the Drude conductivity Re σD as shown in Fig. 4.2(b). In this

case, Re σD plays the main role in σ. Because of the large A value in this region,

we let the parameter ~ω = 0.1 meV (equivalent to f = 24.2 GHz or microwave) and

EF = 0.64 eV such that a large A is expected when the incident angle θ is changed.

We introduce total internal reflection (TIR) geometry for getting high absorption.

This is because TIR suppresses the transmittance and thus EM wave can either be

reflected or absorbed by graphene. Since TIR increases the probability of absorption,

EM wave energy is divided only into two channels (absorption and transmission),

not three. In TIR, EM wave comes from medium with higher dielectric constant to

medium with lower dielectric constant (ε1 > ε2). When TIR occurs, no EM wave

can be transmitted, and thus the EM wave can either be reflected or absorbed by

graphene. Here we set ε1 = 2.25 and ε2 = 1.25 which corresponds to θc = 48.19◦. In

Fig. 4.3(a), we show A, R and T as a function of θ. As seen in Fig. 4.3(a), T = 0 if

θ ≥ θc. Interestingly, A becomes almost unity at an angle around 85◦, hence graphene

absorbs all of the incoming EM waves, where R = 0. The dip in the A spectrum

Fig. 4.3: Fig/fig4k3.eps
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Figure 4.3 (a) Absorption probability (A), reflectance (R) and transmittance (T ). The A
value of 0 (100%) expresses the zero (perfect) absorption of the EM wave. The graphene
(EF = 0.64 eV) is sandwiched between two media with ε1 = 2.25 and ε2 = 1.25. (b)
Absorption for several different EF values. (c) Maximum value of A as a function of EF.
Inset shows the enlarged region of the maximum A for small EF values. (d) Absorption range
(AR) as a function of EF.

(Fig. 4.3(a)) indicates the beginning of TIR, where R reaches the maximum value.

In Fig. 4.3(b) we show the EF dependence of A as a function of θ for several EF

values. Furthermore, from each absorption peak as obtained in Fig. 4.3(b), we can

plot the maximum value of A a function of EF [see Fig. 4.3(c)]. The maximum A value

rapidly increases with increasing EF and is saturated near 100% for EF ≥ 0.4 eV . For

~ω/2 < EF < 0.01 eV , A is nearly 0 as we can see in Fig. 4.3(b) and in the inset of

Fig. 4.3(c).

It is expected that when EF decreases, A will decrease monotonically to zero.

However, this is not the case as we can see in Fig. 4.3(b) and in the inset of Fig. 4.3(c).

Even when we set EF equals zero (or ~ω ≥ 2EF), the A value is around 2.2%. This

is due to the vanishing intraband transition, while the interband transition dominates
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with the total conductivity σ is governed by the constant σ0 for ~ω ≥ 2EF. Therefore,

although the EF decreases to zero, absorption is not zero. At the same time, for

~ω < 2EF, Drude conductivity dominates and conductivity is proportional to EF as

we can realize from Eq. (4.12). This is the reason why A for EF = 0.01 eV is smaller

than that for EF = 0 eV.

In Fig. 4.3(d), we define the absorption range (AR) as the difference between the

maximumA value at EF 6= 0 and at EF = 0 while keeping θmax for EF 6= 0. θmax is

the angle which gives the largest A in Fig. 4.3. We can see that AR starts to stabilize

from EF = 0.4 eV at around 99%. It means that if we change the EF from EF > 0.4 eV

to zero, nearly perfect switching of the reflected EM wave can be observed, and this

behavior could be useful for some device applications.

4.2 Application of absorption tunability

From the discussion so far, we conclude that for low energy EM wave (here ~ω =

0.1 eV), the asborption can be tuned by tuning the EF. If we change the EF from

EF > 0.4 eV to zero, nearly perfect switching of the reflected EM wave can be observed.

This tunability can be used to design an EM wave switching device as shown in Fig. 4.4.

The EM wave switching device is a device that can turn on and turn off EM wave at

certain point.

Figure 4.4 Possible design of an EM wave switching device. Multilayered films near the EM
wave source and detector are put for avoiding unnecessary reflection.

Fig. 4.4: Fig/fig4k4.eps
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In Fig. 4.4, a possible design for an EM wave switching device which consists of an

EM wave source, a detector, a gate-voltage modulation system, and a graphene layer

sandwiched between two dielectric materials (ε1, ε2). The EM wave source is placed

at a certain angle where the absorption is maximum when EF 6= 0. The detector is

used to catch the reflected wave. It is necessary to put multi-layered thin films at the

interfaces which are attached to medium 1 and are placed in front of the EM wave

source and the detector so as to suppress unnecessary reflections at the surface of the

medium 1. The most important part is the gates. The gates in the device are used to

change EF of monolayer graphene. For instance, we may use electrochemical doping

if the medium 1 is an electrolyte material [57].

To use this device, we need to refer to absorption spectrum such as shown in

Fig. 4.3(b). The angle of incidence (θ) that we choose should be the one that gives

maximal absorption at certain EF. For example, in case of ε1 = 2.25 and ε2 = 1.25,

we will have absorption spectra in Fig. 4.3(b), and if we choose EF = 0.4 eV, the θ

is 79◦. Almost all of EM wave is absorbed by graphene and detector will not detect

any EM wave. We assign binary number 0 for this. However, if we change EF to be

0 eV , most of EM wave is reflected by graphene and detected by detector. We assign

binary number 1 for this. Thus, we have switching phenomenon for EM wave with

low energy.

4.3 Surface plasmon excitation

From previous discussion, we conclude that graphene can absorb almost all of EM wave

coming to it provided we have TIR geometry. The EM wave that can be absorbed

almost totally should have low energy. Therefore, we need to know the frequency

range of the EM wave that can be used for this phenomenon. In order to investigate

the frequency range for high absorption of the EM wave, we plot the absorption as

function of frequency and angle of incidence as shown in Fig. 4.5.

In Fig. 4.5, the absorption spectrum as function of frequency (f) and angle of

incidence (θ) is plotted. We still use the previous configuration, ε1 = 2.25 and ε2 =

1.25 and EF = 0.64 eV. θc = 48.19◦, therefore TIR occurs when θ > θc. As we can

Fig. 4.5: Fig/fig4k5br.eps



4.3. Surface plasmon excitation 49

θ(deg)

f(
T
H
z
)

A
b
s
o
rp
ti
o
n
(%
)

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

Figure 4.5 Reflectance spectrum as function of frequency (f) and angle of incidence (θ).
ε1 = 2.25 and ε2 = 1.25 and EF = 0.64 eV. θc = 48.19◦. The black color means high
absorption.

see, the high absorption can only obtained for low frequency and θ ∼ 80◦. At around

f = 0.3 THz, the maximum absorption is already around 80 %.

We argue that this high absorption is related to the excitation of low energy SP. To

explain this argument, we need to know the dispersion relation of SP at low frequency

(or equivalently at small q). We know from Eq. (3.8), for small q (q � kF ), the SP

frequency is a function of √q. Eq. (3.8) is also only valid for ε1 = 1 and ε2 = 1.

Therefore, we need to derive SP dispersion if we have ε1 = 2.25 and ε2 = 1.25. To

obtain it, we use the semi-classical method. This method is called as semi-classic

because it uses the classical Maxwell equations, but the conductivity that is used

in the calculation comes from Eq. (4.12), which is derived from quantum mechanics

(RPA) calculation. The resulted dispersion will match with the RPA dispersion only

at q � kF . For EF = 0.64 eV, kF = 0.0972Å−1. It will also be shown that if we go to

smaller q (q is really close to 0), the dispersion will not be a function of √q, instead it

will be linear to q as shown in the inset of Fig. 4.6.

We use Fig. 4.1, but disregard the external EM fields. Graphene is located at

z=0. We consider SP plasmon occurs on graphene and the fields inside ε1 and ε2 are

graphene SP plasmon’s fields. Those fields can be written as
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For z < 0

E(1)
x =A1e

κ1zeiqx

H(1)
y =

iωε0ε1

κ1
A2e

κ1zeiqx . (4.13)

For z > 0

E(2)
x =A2e

−κ2zeiqx

H(2)
y =− iωε0ε2

κ2
A2e

−κ2zeiqx , (4.14)

where we define H(k)
y = iωε0εk

∫
E

(k)
x dz. κ is decay constant of SP field in z-direction

κk =
√
q2 − εk ω

2

c2 . κk value is real, since SP requires decaying fields inside of both

media, otherwise we have a propagating field in z-direction. We use the boundary

conditions, which are similiar to Eqs. (4.1-4.2). We obtain

ε1

κ1
+
ε2

κ2
+

iσ

ωε0
= 0 (4.15)

We need to solve Eq. 4.15 for ω(q). The conductivity that is used is just Drude

conductivity σD, because σD is dominant at ~ω � EF. The solution is calculated

numerically and is plotted in Fig. 4.6.
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Figure 4.6 SP dispersion obtained by solving Eq. 4.15. At very small ω and q, the dispersion
is linear to q and is shown by the inset.

Fig. 4.6: Fig/fig4k6.eps
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Figure 4.7 (a) The absorption spectrum as function of ω and q for EF = 0.5 eV and
EF = 0.64 eV, these plots are to be compared with SP dispersion (the red dash line).

Fig. 4.6 shows the SP dispersion, which is obtained by solving Eq. (4.15) for ω(q).

From the plot, we see the resulted dispersion is a function of √q, just like the result

obtained from RPA calculation for q � kF . To recover the RPA result of Eq. (3.8), we

consider that q � εkω/c. This approximation assumes that there is an instantaneous

Coulomb coupling between charge [58]. This approximation is called as non-retarded

SP. We will have q = κk. Γ is also removed from conductivity in Eq. 4.12. Solving

Eq. (4.15), we will arrive at the SP frequency ω

ω =
1

~

√
EF e2q

πε0(ε1 + ε2)
. (4.16)

If we set ε1 = ε2 = 1, we will recover the SP frequency as in Eq. 3.8. If we solve

exactly for smaller ω and q, the dispersion actually becomes linear to q. This regime

is called retardation regime [58]. In this regime q is comparable to εkω/c, that is why

we need to solve Eq. 4.15 exactly. The exact solution of this regime is linear to q [58]

as shown in inset of Fig. 4.6.

Let us go back to the discussion of high EM wave absorption by graphene. To

know the origin of this high absorption, we plot the absorption spectrum as function

of ω and wave vector of EM wave parallel to graphene surface. It is also denoted by q.

Fig. 4.7: Fig/fig4k7br.eps
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Fig. 4.7 shows the absorption spectrum as function of ω and q. We see that the high

absorption (black) occupies a line, which is linear to q. If we compare to SP dispersion

at the same ω and q scale in Fig. 4.7 (red dash line), we can see that high absorption

resides along the SP dispersion. This means that the high absorption of EM wave with

very low frequency is due to excitation of graphene SP with very low frequency and

wave vector. There is a strong coupling between EM wave with graphene [58], this

coupling excites SP and can be observed as high absorption of low energy EM wave .

Thus, this is the reason, why we have large absorption of the EM wave.



Chapter 5

Conclusions

Graphene surface plasmon (SP) dispersion is determined by the zero values of real part

of dielectric function of graphene. It has been shown in the present thesis that only

doped graphene can support SP. We found that undoped graphene does not support

SP because real part of dielectric function is always positive. However, in region of

non zero of imaginary part of polarization, SP can experience damping due to single

electron excitation or known as Landau’s damping. Dielectric function of graphene

can also be used to calculate the conductivity. Real part of conductivity governs the

absorption of electromagnetic (EM) wave. We shows that graphene can absorb almost

100% of incoming EM wave provided that we have low EM wave energy (up to ω = 1

THz) and total internal reflection geometry, in which graphene is placed between two

dielectric media. We argue that the high absorption is related to the excitation of SP

with low frequency and small wave vector. The absorption probability is also tuneable

by changing the Fermi energy (EF). The absorption probability almost vanishes if

EF = 0 eV. This behavior can be utilized for designing a EM wave switching device

controlled by gate voltage.

Within this thesis, we have derived the dielectric function of graphene, the graphene

SP dispersion and its damping, and also we have obtained and discussed the absorption

spectra of EM wave in graphene. The missing thing is the calculation of energy

dissipation of EM wave coming to graphene. This will be interesting subject for our

future study.
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Appendix A

Derivation of Graphene Dielectric

Function

Here we give more detailed derivation of some calculations of graphene dielectric func-

tion that are not explained in deep within the main thesis content.

A.0.1 Overlap of electron wave function in Dirac cone

Here we give detailed derivation of electron wave function overlap within the Dirac

cone. It is denoted as Fss′ = | 〈sk|s′k + q〉 |2. The wave functions are expressed in

Eq. (2.17) and (2.18).

Fss′ =
1

4

∣∣∣(ei(θk−θk+q)/2 + ss′e−i(θk−θk+q)/2
)∣∣∣2

=
1

4

∣∣∣eiθ/2 + ss′e−iθ/2
∣∣∣2

=
1

2
(ss′ cos θ + 1) . (A.1)

Here θ = θk − θk+q. We want expression in term of φ, that is angle between q and

55
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k (φ = θq − θk). What we need to change is cos θ.

cos θ = cos(θk+q − θk)

= cos θk+q cos θk + sin θk+q sin θk

=
(k + q)x
|k + q|

cos θk +
(k + q)y
|k + q|

sin θk

=
k cos θk + q cos θq

|k + q|
cos θk +

k sin θk + q sin θq
|k + q|

sin θk

=
k + q(cos θq cos θk + sin θq sin θk)

|k + q|

=
k + q cosφ

|k + q|
. (A.2)

We use the fact that,

(k + q)x =kx + qx

=k cos θk + q cos θq (A.3)

(k + q)y =ky + qy

=k sin θk + q sin θq (A.4)

A.0.2 Delta function integration

Integrations involving delta function (δ-function) are done many times within our

discussion of the main thesis. For instance, Eq. (2.39), the integration on φ involves

δ-function. The integration is changed first into on cosφ by substitution and also the

δ-function is changed in term of cosφ by using delta function property : δ(f(x)) =∑
i δ(x− xi)/|

∂f(x)
∂x |xi

.

δ(ω − vFk − vF|k + q|) = δ(ω − vFk − vF
(
k2 + q2 + 2kq cosφ

) 1
2 ) . (A.5)

We want the δ-function in term of cosφ. Therefore we need to find its root (xi).

The root can be obtained from the zero of δ-function argument.

ω − vFk =vF
√
k2 + q2 + 2kq cosφ

cosφi =
ω2 − 2vFkω − v2

Fq
2

2v2
Fkq

. (A.6)
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We have found the root cosφi. The value of |k + q| evaluated with the root can

be obtained also from the zero δ-function argument, |k + q| = ω−vFk
vF

. The derivative

of δ-function evaluated with the root can be calculated.

f(cosφ) = ω − vFk − vF
(
k2 + q2 + 2kq cosφ

) 1
2

|∂f(cosφ)

∂ cosφ
|cosφi

=
vFkq

|k + q|
. (A.7)

We have transformed δ-function to be in term of cosφ.

δ(ω − vFk − vF|k + q|) =
|k + q|
vFkq

δ

(
cosφ− ω2 − 2vFkω − v2

Fq
2

2v2
Fkq

)
. (A.8)

The integration is changed to be on cosφ instead of φ.

2π∫
0

dφ =

π∫
0

dφ+

2π∫
π

dφ (A.9)

=−
−1∫
1

d(cosφ)

sinφ
−

1∫
−1

d(cosφ)

sinφ
(A.10)

=

1∫
−1

d(cosφ)

| sinφ|
+

1∫
−1

d(cosφ)

| sinφ|
(A.11)

=2

1∫
−1

d(cosφ)

| sinφ|
(A.12)

The second term in Eq. A.10 is in third and forth quadrant where sinφ is negative.

Therefore sinφ is change to be its absolute value | sinφ| and we have Eq. (A.11)

and the negative signs become positive. Now we have Eq. (2.39). To solve the δ-

function integration in Eq. (2.39), we just need to substitute cosφ =
ω2−2vFkω−v2Fq

2

2v2Fkq
,

|k + q| = ω−vFk
vF

and sinφ =
√

1− cos2 φ. Finally, we will have Eq. (2.40).

In Eq. (2.40), we make some simplification of the equation. It will be derived

below.
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ImΠ0g(q, ω) = − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√

(2v2
Fkq)

2 − (ω2 − 2vFkω − v2
Fq

2)2

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√

4v4
Fk

2q2 − ω2(ω − 2vF)2 + 2ω2v2
Fq

2 − 4ωv3
Fkq

2 − (v2
Fq

2)2

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√
−ω2(ω − 2vFk)2 + ω2v2

Fq
2 + v2

Fq
2(ω2 − 4ωvFk + 4ωv2

Fk
2)− (v2

Fq
2)2

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√
−ω2(ω − 2vFk)2 + ω2v2

Fq
2 + v2

Fq
2(ω − 2vFk)2 − (v2

Fq
2)2

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√
ω2(v2

Fq
2 − (ω − 2vFk)2)− v2

Fq
2(v2

Fq
2 − (ω − 2vFk)2)

= − 1

π~

∫
dk

v2
Fq

2 − (ω − 2vFk)2

vF
√

(v2
Fq

2 − (ω − 2vFk)2)(ω2 − v2
Fq

2)

= − 1

π~
1

vF
√
ω2 − vFq2

∫
dk
√
v2
Fq

2 − (ω − 2vFk)2 . (A.13)

A.0.3 Real part of doped graphene polarization

In this section, we will give a more detailed derivation for getting the ReΠ0g(q, ω).

We first take a look at Eq. (2.53). Here, the real part of polarization is split by index

α. The nominator of Eq. (2.53) becomes step function −αθ(k − EF
~vF ). In order to

calculate directly, we change the index: nα,k − nαβ,k+q −→ nα,k − n−α,k. There are 4

possibilities of nα,k − n−α,k value.

If k > EF
~vF . For α = 1

n+,k − n−,k = 0− 1 = −1 . (A.14)

For α = −1

n−,k − n+,k = 1− 0 = 1 . (A.15)

If k < EF
~vF . For α = 1

n+,k − n−,k = 1− 1 = 0 . (A.16)

For α = −1

n−,k − n+,k = 1− 1 = 0 . (A.17)
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From these possibilities, we can conclude that nα,k − n−α,k = −αθ(k − EF
~vF ).

Therefore, the real part of polarization can be written as,

ReΠ0g(q, ω) =
2

A

∑
k,α,β

−αθ(k − EF
~vF )

~ω + α(~vFk − ~vFβ|k + q|)

(
1 +

k + q cosφ

|k + q|

)

=
2

A

∑
k,α,β

−αθ(k − EF
~vF )

~ω + α~vFk − ~vFαβ|k + q|

(
1 +

k + q cosφ

|k + q|

)

× ω + αvFk + vFαβ|k + q|
ω + αvFk + vFαβ|k + q|

=
2

A~
∑
k,α,β

−αθ(k − EF
~vF )(ω + αvFk + vFαβ|k + q|)

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

(
1 +

k + q cosφ

|k + q|

)

=
2

A~
∑
k,α,β

[
−αθ(k − EF

~vF
) {ω + 2αvFk + αvFq cosφ

+β

(
α|k + q|+ (ω + αk)(k + q cosφ)

|k + q|

)}]
× 1

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

=
4

A~
∑
k,α

−αθ(k − EF
~vF )(ω + 2αvFk + αvFq cosφ)

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

=
2

A~
∑
k,α

−2αω − 4α2vFk − 2vFq cosφ

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

θ(k − EF

~vF
)

=
1

2π2~
∑
α

∫
dkθ(k − EF

~vF
)
vF
vF
k

2π∫
0

dφ
−2αω − 4α2vFk − 2vFq cosφ

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

(A.18)

We need to modify the integrand, so that the integration can be solved more easily.

Suppose we want to have

1 +B =
−2vFαω − 4α2v2

Fk − 2v2
Fq cosφ

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

B =
−2αω − 4α2vFk − 2vFq cosφ

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

− 1

=
v2
Fq

2 − (2vFk + αω)2

ω2 − v2
Fq

2 + 2kvFωα− 2kv2
Fq cosφ

. (A.19)

Substituting back 1 + B to Eq. (A.18), we will have Eq. (2.53). The function in

the nominator is not a function of φ anymore. The integration on φ of Eq. (2.53) can

now readily be executed. We will use complex plane integration in form of :
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2π∫
0

dφ

a+ b cosφ
=

∮
1

a+ b
2 (z + z−1)

dz

iz

=
2

ib

∮
dz

z2 + 2a
b z + 1

=
2

ib

∮
dz{

z −
(
−ab + 1

b

√
a2 − b2

}) {
z −

(
−ab −

1
b

√
a2 − b2

)} . (A.20)

If a > |b|, the pole is
(
−ab + 1

b

√
a2 − b2

)
.

2π∫
0

dφ

a+ b cosφ
=

4π

b

1{(
−ab + 1

b

√
a2 − b2

}
−
{
−ab −

1
b

√
a2 − b2

)}
=

2π√
a2 − b2

. (A.21)

If −a > |b|, the pole is
(
−ab −

1
b

√
a2 − b2

)
.

2π∫
0

dφ

a+ b cosφ
=

4π

b

1{(
−ab −

1
b

√
a2 − b2

}
−
{
−ab + 1

b

√
a2 − b2

)}
=− 2π√

a2 − b2
. (A.22)

We define z = eiφ and cosφ = z+z−1

2 . Therefore, the contour on complex plane

is unit circle. To use this results, the integration on φ of Eq. (2.53), we substitute

a = ω2 − v2
Fa

2 + 2kvFωα and b = −2kv2
Fq. The integration depends on α. We start

with α = −1, there are two possibilities of ω, ω > vFq and ω < vFq. For first

case, we consider ω > vFq. In this case, if we consider −a > |b|, we arrive at

quadratic inequality of ω2 − v2
Fq

2 − 2kvFω + 2kv2
Fq < 0. We will obtain constraint

on k, that is k > ω+vFq
2vF

. If we consider a > |b|, we arrive at quadratic inequality of

ω2−v2
Fq

2−2kvFω−2kv2
Fq > 0 and we will obtain constraint on k, that is k < ω−vFq

2vF
.

For second case, we consider ω < vFq. In this case, we always have a < |b| for

every k value, however, we can have −a > |b|. This gives us quadratic inequality of

ω2−v2
Fq

2−2kvFω+2kv2
Fq < 0. This gives us k < ω+vFq

2vF
. The results of integration

for case of −a > |b| and a > |b| are given in Eq. (A.21) and (A.22).

We now look at α = 1. For first case ω > vFq, we always have a > |b|

for every k value. For second case ω < vFq, we always have a < |b| for every

k value, however, we can have −a > |b|. This gives us quadratic inequality of
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ω2−v2
Fq

2 +2kvFω+2kv2
Fq < 0. Therefore, we have contraint on k to be k < ω+vFq

2vF
.

The results of integration for case of −a > |b| and a > |b| are given in Eq. (A.21)

and (A.22).

The constraints on k yield the step function in Eq. (2.54) and (2.55). This step

function will determine the boundary of integration on k.





Appendix B

Plasmon Dispersion and Damping

Constant

B.1 Plasmon dispersion and damping constant formula

Here we will give more detailed derivation of Eq. (3.2) and (3.3) in chapter (3). From

Eq. (3.2), plasmon dispersion relation can be obtained and from Eq. (3.3), damping

constant of plasmon can be obtained. Both of them actually come from Eq. (3.1). The

zeroes of Eq. (3.1) are the solutions of plasmon. The zeroes of Eq. (3.1) should satisfy

1 =
e2

2ε0q
Π0g(q,Ω− iγ) , (B.1)

Where SP can occur at ω = Ω − iγ of Eq. 3.1. What we need to do is to separate

Eq. B.1 into real and imaginary parts. We define that

fp =
e2

2ε0q
Π0g(q, ω) . (B.2)

We can seperate the fp into real and imaginary parts.

Re fp + i Im fp =
e2

2ε0q
Re Π0g(q, ω) + i

e2

2ε0q
Im Π0g(q, ω) . (B.3)

Taking Taylor expansion of Re Π0g(q, ω) around ω = Ω− iγ, we will have

Re fp + i Im fp =
e2

2ε0q
Re Π0g(q,Ω− iγ) +

e2

2ε0q

[
∂Re Π0g(q,Ω− iγ)

∂ω

]
ω=Ω−iγ

× (ω − Ω + iγ) + i
e2

2ε0q
Im Π0g(q, ω) . (B.4)
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From Eq. (B.4), we can separate the the fp into real and imaginary parts. We

assume that γ � Ω.

Re fp =
e2

2ε0q
Re Π0g(q,Ω) +

e2

2ε0q

[
∂Re Π0g(q, ω)

∂ω

]
ω=Ω

(ω − Ω) . (B.5)

Im fp =
e2

2ε0q
Im Π0g(q,Ω) + γ

e2

2ε0q

[
∂Re Π0g(q, ω)

∂ω

]
ω=Ω

. (B.6)

At ω = Ω− iγ(γ � Ω), we have Re fp = 1 and Im fp = 0. From this, we can have

Eq. (3.2) and (3.3) from Eq. (B.5) and (B.6), respectively. We just take the absolute

value of γ.

B.2 Plasmon dispersion plot

In plotting the plasmon disperison relation, we make use of scaling of frequency and

wave vector. The energy (hence the frequency) is scaled with respect to Fermi energy

(EF) and wave vector is scaled with respect to Fermi wave vector (kF).

The plot of polarization and dielectric function (Figure 2.7, 2.6, 2.7) are function

of ~ω
EF

and q
kF

. To plot them, the expression of polarization should be scaled.

We assume that W = ~ω
EF

and Q = q
kF

. First we scale the real part of polarization

in Eq. (2.56).

ReΠ0g(Q,W ) =
EF

π~2v2
F

[
− 2 +

Q2

4

θ(W −Q)√
W 2 −Q2

{
g

(
W + 2

Q

)
− θ

(
W −Q

2
− 1

)
g

(
W − 2

Q

)
+ θ

(
1− W +Q

2

)
g

(
2−W
Q

)}

− Q2

4

θ(Q−W )√
Q2 −W 2

{
θ

(
W +Q

2
− 1

)
×
(
f(1)− f

(
2−W
Q

))
+ θ

(
Q−W

2
− 1

)
×
(
f(1)− f

(
W + 2

Q

))}]
. (B.7)
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The value of real part of polarization depends on EF. However if we want to plot

the real part of dielectric function, the value does not depend on EF.

Re ε(Q,W ) =1− e2

2ε0q
× EF

π~2v2
F

[
− 2 +

Q2

4

θ(W −Q)√
W 2 −Q2

{
g

(
W + 2

Q

)
− θ

(
W −Q

2
− 1

)
g

(
W − 2

Q

)
+ θ

(
1− W +Q

2

)
g

(
2−W
Q

)}

− Q2

4

θ(Q−W )√
Q2 −W 2

{
θ

(
W +Q

2
− 1

)
×
(
f(1)− f

(
2−W
Q

))
+ θ

(
Q−W

2
− 1

)
×
(
f(1)− f

(
W + 2

Q

))}]

=1− e2

2Qε0π~vF
× [−2 + ...] . (B.8)

The scaling of imaginary part of polarization is shown as follows.

ImΠinter
0g (Q,W ) =− Q2EF

4π~2v2
F

θ(W −Q)√
W 2 −Q2

[
{f(1)− f(−1)} θ

(
W −Q

2
− 1

)
+

{
f(1)− f(

2−W
Q

)

}
θ

(
1− W −Q

2

)
θ

(
W +Q

2
− 1

)]
.

(B.9)

ImΠintra
0g (Q,W ) =− Q2EF

4π~2v2
F

θ(W −Q)√
W 2 −Q2

[{
g

(
W + 2

Q

)
− g(1)

}
θ(W − 1)

× θ
(

1− Q−W
2

)
+

{
g

(
W + 2

Q

)
− g(1)

}
θ(1−W )

× θ
(

1− Q−W
2

)
θ

(
Q+W

2
− 1

)
+

{
g

(
Q+ 2

Q

)
− g

(
2−W
Q

)}
θ(1−W )

× θ
(

1− Q+W

2

)]
. (B.10)
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The value of imaginary part of polarization depends on EF. However if we want

to plot the imaginary part of dielectric function, the value does not depend on EF.

Im ε(Q,W ) =
e2

2ε0q
× Q2EF

4π~2v2
F
× ...

=
Qe2

8πε0~vF
× ... (B.11)

The polarization has unit of (eVÅ2
)−1, while the dielectric function has no unit.
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Calculation Program

The expression of dielectric function and conductivity are obtained analytically. There-

fore, the programs here are used to plot them. The programs will generate the data

files (*.dat), and the data files should be plotted using gnuplot or xmgrace.

All the necessary programs can be found under the following directory in FLEX

workstation:

~shoufie/for/grapplas/

C.1 Plasmon dispersion plot, gamma and tau

Program : gamma.f90

Inputs :

range of q and w can be changed. Here we set the range to be 3. q and w here are Q

and W defined in Appendix B. Because everything is normalized to EF, so there is no

input of EF. Everything is for doped case.

Outputs :

1. Real part of dielectric function : the data file is rev.dat. It should be plotted

using gnuplot. It will plot Real part of dielectric function as colored plot as function

of Q and W. Definition of Q and W explained in Appendix B.
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2. Plasmon dispersion plot : the data file is plasmondis.dat. It should be plotted

using xmgrace. It will plot W as function of Q.

3. Gamma (damping constant) : the data file is gamma.dat. It should be plotted

using xmgrace. It will plot ~γ/EF as function of Q. So both of x and y axis are

dimensionless.

4. Tau (lifetime) : the data file is tau.dat. It should be plotted using xmgrace. It

will plot τEF/~ as function of Q. Both of x and y axis are dimensionless.

C.2 Imaginary part of polarization and dielectric function

Program : dopedim.f90

Inputs :

range of q and w can be changed. Here we set the range to be 3. q and w here are

Q and W defined in Appendix B. For plotting the imaginary part of polarization, the

EF = 1 eV. For imaginary part of dielectric function, everything is normalized to EF.

Everything is for doped case.

Outputs :

1. Imaginary part of polarization : the data file is imgdop.dat. It should be

plotted using gnuplot. It will plot the imaginary part of polarization as colored plot

as function of Q and W. Definition of Q and W explained in Appendix B. For plotting

the imaginary part of polarization, the EF = 1 eV.

2. Imaginary part of dielectric function : the data file is rim.dat. It should be

plotted using gnuplot. It will plot the imaginary part of dielectric function as colored

plot as function of Q and W.

C.3 Absorption, Reflection, Transmission

This program is used to obtain the Absorption, Reflection, Transmission (ART) prob-

abilities as function of angle of incident.

Program : RTanalytic.f90
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Inputs :

Dielectric constants of medium 1 and 2 are defined as eps1 and eps2. EF is defined

as ef and frequency as f. The range of incident angle is theta. Everything should be

in SI unit.

Output :

1. ART : the data file is RT-a.dat. It should be plotted in xmgrace. It will plot

the ART probabilities as function of angle of incident.

2. Absorption only : the data file is Absorb-a.dat. It should be plotted in xmgrace.

It will plot the absorption probability only as function of angle of incident.

C.4 Absorption spectrum

Program : speksingle.f90

Inputs :

Dielectric constants of medium 1 and 2 are defined as eps1 and eps2. EF is defined

as ef. The range of frequency and incident angle is f and theta. Everything should be

in SI unit.

Output :

The absorption spectrum : the data file is Spectra-single.dat. It should be plotted

using gnuplot. It will plot the absorption spectrum as colored plot as function of

frequency and angle of incident.

C.5 Dispersion spectrum

Program : dispersionsingle.f90

Inputs :

Dielectric constants of medium 1 and 2 are defined as eps1 and eps2. EF is defined

as ef. The range of angular frequency and wave vector of EM wave parallel to graphene

is w and q. Everything should be in SI unit.
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Output :

The absorption spectrum : the data file is dispersion.dat. It should be plotted

using gnuplot. It will plot the absorption spectrum as colored plot as function of

angular frequency and wave vector of EM wave parallel to graphene.
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