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Abstract

Although thermoelectricity is considered an old subject, recently the research on ther-
moelectricity has been very active due to the desire to achieve a very efficient thermo-
electric device for energy generation from heat waste. Thanks to nanotechnology, this
effort is expected to be possible in the near future by miniaturization of solid-state
materials. The efficiency of a solid-state thermoelectric power generator is usually eval-
uated by the dimensionless figure of merit, ZT = S2σκ−1T , where S is the Seebeck
coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and T is the
absolute temperature. Traditionally, high ZT has been the only parameter pursued
to obtain good thermoelectric materials. However, the importance of maximizing the
power factor, PF = S2σ, can be recognized from the fact that when the heat source
is unlimited [PNAS 112 (2015) 3269], the ZT value is no longer the only parameter
to judge the thermoelectric efficiency. We thus would like to consider the issue of
maximizing PF as the main topic of this thesis, especially for semiconducting materi-
als which are basically better than insulating or metallic materials to maximize their
PF . We further consider semiconducting single wall carbon nanotubes (s-SWNTs) as
a good candidate of thermoelectric materials.

To optimize thermoelectric power factor PF of semiconducting materials, here
we theoretically investigate the interplay between the confinement length L and the
thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semi-
conducting materials. An analytical formula for the power factor is derived based
on the one-band model assuming nondegenerate semiconductors to describe quantum
effects on the power factor of the low dimensional semiconductors. The power factor
is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ
of the semiconductors. In this case, the low-dimensional semiconductors having L

smaller than their Λ will give a better thermoelectric performance compared to their
bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors
may give a higher power factor compared to the lower dimensional ones.

One step towards realizing high PF is be optimizing the thermopower (or the
Seebeck coefficient), especially for one-dimensional materials such as semiconducting
single wall carbon nanotubes (s-SWNTs). Since electrical properties are very sensi-
tive to each s-SWNTs structure. Therefore, we calculate the thermopower for many

v



s-SWNTs within a diameter range of 0.5–1.5 nm by using the Boltzmann transport
theory combined with an extended tight-binding model. We find that the thermopower
of the s-SWNTs increases as the tube diameter decreases. For the small s-SWNT with
diameter less than 0.6 nm, the thermopower can reach a value of 2000 V/K, which is
about 6–10 times larger than commonly used semiconducting materials in thermoelec-
tric applications. We derive a simple formula to reproduce the numerical calculation
and we find that the thermopower of the s-SWNTs has a band gap term, which ex-
plains the shape of the thermopower plot as a function of diameter. Interestingly, this
plot looks very similar to the so-called Kataura plot for optical transition for s-SWNTs,
showing the 2n + m family pattern. It should be noted that the Kataura plot was a
fundamental work based on the optical properties of SWNTs. Our results highlight
potential properties of small diameter s-SWNT as a one-dimensional thermoelectric
material with a large thermopower.
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Chapter 1

Introduction

1.1 Purpose of the study

More than 90% of the energy we use in daily life comes from thermal processes, such
as the heat engines in most of cars and power plants, in which more than half of the
energy is wasted in form of heat [1]. Research for recovering this waste heat are thus
of great interest, particularly at times when there is a high demand for renewable
energy with the necessity of reducing carbon emission. This research field is known
as thermoelectricity, which is a study of how one can convert waste heat directly
into electric energy [2, 3]. A good thermoelectric material is characterized by how
efficient electricity can be obtained for a given heat input, where two parameters are
usually evaluated: (1) power factor (PF = S2σ, where S is the thermopower and σ is
the electrical conductivity) and (2) thermoelectric figure-of-merit (ZT = PF × T/κ,
where PF is the power factor, T is the absolute temperature, and κ is the thermal
conductivity). [4, 5]. In applications where the heat source is essentially free (e.g.,
solar thermal, nuclear power, or waste-heat recovery from cars), the minimum overall
cost of generating power is achieved by operating at maximum PF . On the other
hand, when heat source is costly (e.g., fossil fuel combustion), obtaining as large ZT
as possible is important to reduce the cost of generating power [6].

A previous theoretical study by Hicks and Dresselhaus in 1993 predicted that the
smaller confinement length of a material, such as the thickness in thin films and the
diameter in nanowires, could increase the PF and the ZT of low-dimensional struc-
tures [7, 8]. However, there have been some recent experiments which showed that
PF of one-dimensional (1D) Si nanowires is still similar to that of the 3D bulk sys-
tem [9, 10], while other experiments on Bi nanowires show an enhanced PF value
compared to its bulk state [11]. The origin of the discrepancy that depends on ma-
terials is not explained yet. Therefore, the purpose of this thesis is to solve the issue
of maximizing themoelectric power factor in low-dimensional materials by considering
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2 Chapter 1. Introduction

an additional parameter of material to enhance the power factor. Moreover, we also
study a possibility of using semiconducting carbon nanotubes as a good candidate
of thermoelectric materials. Carbon nanotubes are selected in this thesis due to a
lot of variety of their geometrical structure which allows us to find excellent physical
properties that we desire [12].

1.2 Organization

This thesis is organized into five chapters. Chapters 1 and 2 form basic information
of this thesis. In Chapter 1, we explain the purpose and the background of the study.
In Chapter 2, we review the fundamentals of transport properties of low-dimensional
semiconductors and explain the methods we use in this study, the so-called one-band
and two-band models. We also give electronic structure of graphene and carbon nan-
otubes using extended tight-binding (ETB) approximation. The thermopower and the
electrical conductivity are calculate based on the one-band and two-band models. The
main results of this thesis are presented in Chapters 3 and 4. In Chapter 3, we show
calculation results for the thermoelectric power factor of low-dimensional materials.
In Chapter 4 we show calculated results for the thermopower of semiconducting single
wall carbon nanotubes (s-SWNTs). Finally, in Chapter 5, a summary of this thesis is
given.

1.3 General backgrounds

In this section, we review some important backgrounds in the thermoelectric field that
motivate the present work. We will examine the fundamental effects of thermoelec-
tricity including the Seebeck effect and the Peltier effect. Then, we show some general
concepts on thermoelectric devices, such as the power factor PF , the figure-of-merit
ZT , and the output power density Q. The problems to improve thermoelectric power
factor of low-dimensional semiconductor will also be discussed briefly.

1.3.1 Thermoelectric effects

Thermoelectric devices are designed based on two fundamental thermoelectric effects,
namely the Seebeck effect and the Peltier effect. The Seebeck effect was first observed
in 1821 by a German physicist, Thomas Johann Seebeck. It is thus not surprising
that the thermoelectric coefficient is called as the Seebeck coefficient S, but often
it is also referred to as thermoelectric power (TEP) or thermopower. All of these
names correspond to the same thermoelectric property of a material. Hereafter, for
convenience and simplicity, we will use the term thermopower for referring to the
Seebeck effect. The thermopower is defined by how much voltage difference, ∆V ,
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Figure 1.1: Seebeck effect illustration.

develops in response to the applied temperature gradient ∆T . The thermopower can
be mathematically expressed as

S = −∆V
∆T . (1.1)

The units of thermopower is volts per kelvin (V/K) in SI units.
The origin of the voltage in the Seebeck effect can be understood in the following

simple explanation. Imagine a semiconductor (or metal) wire whose one end is kept in a
cold source and the other in a hot source, as shown in Fig. 1.1. There is a high electronic
charge distribution at the hot edge based on the Fermi-Dirac distribution function. In
contrast, there is low electronic charge distribution at the cold edge. In addition, the
electronic charges at the hot edge have higher energy, especially kinetic energy (KE),
since the averaged value of KE = 3

2kBT for an ideal gas, where kB is the Boltzmann
constant and T is the absolute temperature. The electronic charges are thus very agile
than those at the cold edge. Therefore, by having a temperature gradient ∆T from an
edge of a semiconductor wire to its another edge, charge carriers (electrons or holes)
will flow from the hot edge to the cold edge, which generates a voltage difference ∆V
in the semiconductor wire [Fig. 1.1]. However, if the both electron and hole moves in
the same direction, we do not get the current. Thermoelectric devices are thus made
by two types (n-type and p-type) of semiconductor [Fig. 1.2].

The second thermoelectric effect, which is the inverse of the Seebeck effect, was
discovered in 1834 by a French watchmaker Jean Peltier. While the Seebeck effect
occurs in a single wire of conducting material, the Peltier effect is observed when two
different conductors are brought together at a junction. By passing a direct current
I through the two junctions, it can create a temperature difference. This efffect may
sound similar to Joule heating, which is the generation of heat by passing an electric
current through a metal, but in fact it is not. In Joule heating the current is only

Fig. 1.1: Fig/chapter1-fig1.pdf



4 Chapter 1. Introduction

Figure 1.2: Thermoelectric devices are shown, configured for (a) power generation (See-
beck effect) or (b) refrigeration (Peltier effect). Thermocouple is a simple thermoelectric
device including both the n-type and p-type semiconductors that are connected in series.
(c) State-of-the-art thermoelectric modules can contain up to several thousand individual
thermocouples. (Graphics of S. Williams, www.thermoelectrics.com.)

increasing the temperature in the material in which it flows. However, in Peltier effect
devices, a temperature difference is created, i.e., one junction becomes cooler and one
junction becomes hotter. Generation of heat Q occurs at the two junctions depending
on the direction of the electric current. The Peltier coefficient, Π, is defined by [13]

Π = −Q
I
. (1.2)

The units of the Peltier coefficients is the volts (V) in SI units. The Seebeck and
Peltier coefficients are related by the Kelvin relationship [13]

Π = ST, (1.3)

which can be derived by applying irreversible thermodynamics [13].
The Seebeck effect is the basis for power-generation devices and the Peltier effect

is the basis for many modern-day refrigeration devices. The devices are not using
only one semiconductor “legs”; they use two types (n-type and p-type) of semicon-
ductor that are connected in series (thermocouple), as shown in Figs. 1.2 (a) and (b).

Fig. 1.2: Fig/chapter1-fig2.pdf
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Negatively charged electrons carry electrical current in the n-type leg, whereas posi-
tively charged holes carry the current in the p-type leg. A thermoelectric module is
built up of an array of these couples, arranged electrically in series and thermally in
parallel [14], as shown in Fig. 1.2 (c).

1.3.2 Output power density Q and figure of merit ZT

Thermoelectric generators should be operated at maximum power or maximum ef-
ficiency. In applications where the heat source is essentially free (e.g., solar heat,
nuclear power, or waste-heat from cars), the minimum cost of generating total power
is achieved by operating at maximum power [6]. On the other hand, when heat source
is costly (e.g., fossil fuel combustion), the maximum efficiency is important to reduce
the cost of generating power. For maximizing power or efficiency, it is required that one
should optimize the electrical power density Q or the figure of merit ZT , respectively.

The electrical power Pout on the Joule heat delivered to the load [see in Fig. 1.2
(a)] is given by

Pout = I2RL, (1.4)

where I is the electric current and RL is the resistance of the load. The units of Pout is
the watt (W) in SI units. Within the constant property model approximation (CPM),
and ignoring thermal and electrical contact resistance, the current I is induced by the
Seebeck effect

I = S(Th − Tc)
RL +R

, (1.5)

where, S = Sp−Sn and R = Rp +Rn represent the Seebeck coefficient and resistivity
of the thermocouple (p-type and n-type legs) of the thermoelectric device. Th and Tc
are the temperatures at the hot and cold sites, respectively. It should be noted that S
and R are constants in the CPM, and Th and Tc are given by the boundary condition.
We can now determine the maximum output power as a function of RL from Eqs. (1.4)
and (1.5) by solving d(P )/d(RL) = 0. The maximum out power, Pmax, is found to be

Pmax = 1
4
S2(Th − Tc)2

R
, (1.6)

whereas the corresponding value for the load resistance is RL = R. The electrical
resistance of the thermocouple (R = hl/σA) can be written in terms of the thermo-
couple geometry (total cross-sectional area of n-type and p-type legs A = Ap + An

and leg length hl = hp = hn) and the electrical conductivity, σ = σpσn/(σp + σn), of
the thermocouple. Equation (1.6) can then be rewritten as

Pmax = 1
4hl

S2σ(Th − Tc)2A. (1.7)
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Equation (1.7) also contains the power factor PF = S2σ. This results in an expression
for out power density as

Q = Pmax

A
= 1

4hl
PF (Th − Tc)2, (1.8)

The units of Q is the watt per unit area of the thermocouple (W/m2). Equation (1.8)
shows that high PF is required for optimizing Q. It is note that decreasing the leg
length also increases the output power density.

Let us now consider the heat flow into the hot side, Pin, consists of three com-
ponents. They are: (1) the heat flow through the thermoelectric material due to the
thermal conductance of the material (Pcond), (2) the absorbed heat at the hot junction
due to the Peltier effect (PPelt), and (3) the heat that arrives at the hot side due to
Joule heating of the thermocouple under the assumption that half of this heat goes to
the hot side and half to the cold side (PJoule). We can write as

Pin = Pcond + PPelt − PJoule = κ
A

lh
(Th − Tc) + SITh −

1
2I

2R, (1.9)

where κ = κpκn/(κp + κn) is the thermal conductivity of the thermocouple (p-type
and n-type legs).

Since the output power and the input power are both known, the efficiency can be
computed. The efficiency η of a thermoelectric generation device is measured as the
ratio of output power delivered to the load (Pout) to the heat flow into the hot side of
the thermocouple (Pin).

η = Pout

Pin
. (1.10)

In the case of maximum of power output (Pmax), and substituting Eqs. (1.6) and (1.9)
into Eq. (1.10), η can be expressed as

η = Th − Tc
3Th + Tc

2 + 4
Z

. (1.11)

where Z is given by

Z = S2σ

κ
. (1.12)

The quantity Z is intrinsically determined by the physical properties of the thermo-
couple. However, RL = R (in the case of Pmax) is not the condition for maximizing
efficiency. If we denote m = RL/R and substituting Eqs. (1.4), (1.5), and (1.9) into
Eq. (1.10), then η is generally expressed as

η = Th − Tc
Th

m

1 +m

1 + 1 +m

ThZ
− Th − Tc

2Th(1 +m)

. (1.13)
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Figure 1.3: Evolution of the maximum ZT over time [Ref. [2]]. Materials for thermoelectric
cooling are shown as blue dots and for thermoelectric power generation as red triangles. The
material systems that have achieved ZT > 1 have been based on nanostructuring.

Now, η is a function of the temperatures at the hot and cold junctions, of Z, and of
m. By solving d(η)/d(m) = 0, the maximum possible efficiency is given by

ηmax = Th − Tc
Th

√
1 + ZT − 1

√
1 + ZT + Th

Tc

, (1.14)

whereas the corresponding value for m is m =
√

1 + ZT . The average temperature T
of the hot and cold side is defined by

T = Th + Tc
2 . (1.15)

The unit of Z is (1/K), but the commonly used combined quantity ZT is dimensionless.
It is then named the (dimensionless) figure-of-merit, which can be rewritten as

ZT = PF

κ
T, (1.16)

One realizes that the larger ZT is the higher efficiency. Equations (1.8) and (1.16)
show that increasing the PF value is important to enhance not only Q but also ZT
for power generation applications, respectively.

1.3.3 Low-dimensional thermoelectric energy conversion

Fig. 1.3: Fig/chapter1-fig3.pdf



8 Chapter 1. Introduction

The phenomenon of thermoelectricity was first observed by Thomas Johann Seebeck
who noticed that when a loop was made from wires using two dissimilar metals, a
voltage appeared between the junctions of the wires if one junction was hotter than
the other. For over a century thermocouples were made from metallic conductors
and though many different metals were investigated, efficiencies rarely exceeded 3%.
The voltage generated by the metallic thermocouples are relatively small and it is not
enough to make a practical thermoelectric generator. Following the development of
semiconductors in the 1950s, it was found that replacing the metal wires with bulk
semiconductors improved the efficiency of thermocouples by more than an order of
magnitude. The commercial solid-state power generation systems using bulk semicon-
ductors have long been the technology for the space missions, including the Voyager I
and II probes to the outer planets and, more recently, the Cassini mission to Saturn.
A big improvement, but normal thermoelectric technology would still cost too much
and consume too much electricity to replace that conventional generators in industry.

With the introduction of low-dimensional materials and concepts based on nanos-
tructuring, however, the thermoelectricity field has witnessed truly dramatic growth
over the past 25 years. Heremans et al. [2] have shown the evolution of the thermoelec-
tric efficiency, which is characterized by figure-of-merit ZT value, as a function of time
as shown in Fig. 1.3. It is important to note that some material systems that have
achieved high ZT values have been based on nanostructuring. A theoretical study
by Hicks and Dresselhaus in 1993 predicted the potential benefits of low-dimensional
materials to thermoelectrics in their seminal articles [7, 8] on the modeling of ther-
moelectric thin films and nanowires. In these structures, electrons are confined to
a physical space with lower dimensions, and the resulting density of states exhibits
sharp transitions with respect to energy, which is desirable for a high Seebeck coeffi-
cient. This quantum confinement effect was confirmed experimentally in 1996 using
PbTe/Pb1−xEuxTe, which exhibited a thermoelectric figure-of-merit value up to about
five times greater than that of the corresponding bulk value [15]. It is thus intrigu-
ing to evaluate thermoelectricity in low-dimensional semiconductors that might have
excellent thermoelectric performance, either theoretically or experimentally.

1.3.4 Importance of thermoelectric power factor

As has been explained before, the efficiency of a solid-state thermoelectric power gen-
erator is usually evaluated by the dimensionless figure of merit, ZT = S2σκ−1T , as
shown in Eq. (1.6). A fundamental aspect in the research of thermoelectricity is the
demand to maximize the ZT value by having large S, high σ, and low κ. However,
since the transport characteristics σ and κ are generally interdependent according to
the Wiedemann-Franz law, it has always been challenging for researchers to find ma-
terials with ZT > 2 at room temperature [3, 16]. Huge efforts have been dedicated
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to reduce κ using semiconducting materials with low-dimensional structures, in which
κ is dominated by phonon heat transport. For example, recent experiments using Si
nanowires have observed that κ can be reduced below the theoretical limit of bulk Si
(0.99 W/mK) because the phonon mean free path is limited by boundary scattering
in nanostructures [9, 10]. In these experiments, the reduction of the semiconducting
nanowire diameter is likely to achieve a large enhancement in thermoelectric efficiency
with ZT > 1 at room temperature [9, 10]. The success in reducing κ thus leads to the
next challenge in increasing the thermoelectric power factor PF = S2σ.

The importance of maximizing the PF can be recognized from the fact that when
the heat source is unlimited, the ZT value is no longer the only one parameter to
evaluate the thermoelectric efficiency. In this case, the output power density Q is
also important to be evaluated [4, 5]. The PF term appears in the definition of Q,
particularly for its maximum value, Qmax = PF (Th − Tc)2/4h` [Eq. (1.8)]. Since the
term (Th − Tc)2/4h` is given by the boundary condition, Q is mostly affected by PF .

Here we mention the definition of not PF but Q because some materials show
high ZT but low thermoelectric performance due to their small Q. For example, Liu
et al. [5] has compared two materials: PbSe (with maximum values of ZT = 1.3,
PF = 21 µW/cmK2) [18] and Hf0.25Zr0.75NiSn (ZT = 1, PF = 52 µW/cmK2) [18].
Both materials have similar cubic crystalline structure but the difference on their ther-
moelectric properties is obvious, as shown in Fig. 1.4 (a)–(e). First, the electrical con-
ductivity and thermal conductivity of PbSe are lower than those of Hf0.25Zr0.75NiSn
because of the intrinsic resonant bonding of PbSe [19]. Second, PbSe has stronger
temperature dependence of electrical conductivity and Seebeck coefficient compared
with Hf0.25Zr0.75NiSn. At a given hot side temperature (Th = 500 ◦C) and cold side
temperatures (Tc = 50 ◦C) with a leg length (h` = 2 mm) as the boundary condi-
tions, PbSe (Hf0.25Zr0.75NiSn) has thermoelectric efficiency η [Eq. (1.14)] of about
11% (10%), as shown in Fig. 1.4 (f).

If the thermoelectric efficiency is the only concern, PbSe is definitely better than
Hf0.25Zr0.75NiSn. However, Hf0.25Zr0.75NiSn has much higher output power (Q =
14.4 W/cm2) than that of the PbSe (Q = 5.4 W/cm2) at same boundary conditions
(Th = 500 ◦C, Tc = 50 ◦C, h` = 2 mm). From this information, we can see that
although PbSe has a larger ZT , its output power is smaller than Hf0.25Zr0.75NiSn.
Therefore, increasing the PF value is important to enhance not only ZT but also
Q for power generation applications. We thus would like to consider the issue of
maximizing PF as the main topic of this master thesis.

Fig. 1.4: Fig/chapter1-fig4.pdf



10 Chapter 1. Introduction

Figure 1.4: Comparison of thermoelectric properties between two reported thermoelectric
materials: open circles are Hf0.25Zr0.75NiSn [17] and open squares are PbSe [18]. (a)
Temperature-dependent electrical conductivity σ. (b) Temperature-dependent Seebeck coef-
ficient S. (c) Temperature-dependent power factor PF . (d) Temperature-dependent thermal
conductivity κ. (e) Temperature-dependent figure-of-merit ZT . (f) Output power as function
of efficiency.

1.3.5 Problems to improve thermoelectric power factor

Let us see some problems which arise when we want to improve thermoelectric power
factor of a semiconducting material. First, one of the method to increase the value
of thermoelectric power factor PF is the reduction of confinement length L, which
is defined by the effective size of the electron wave functions in the non-principal
direction for low-dimensional materials, such as the thickness in thin films or width
in nanowires. This method might be the most straightforward technique since it was
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proven to increase ZT [15, 10, 20, 11]. A theoretical study by Hicks and Dresselhaus
in 1993 predicted that the smaller confinement length can increase PF and ZT of
low-dimensional structures [7, 8], thanks to the quantum confinement effect to create
sharp features in the density of states. However, if we look at some previous works
more carefully into the subject of the confinement effects on the PF , there were some
experiments which showed that the PF values of Si nanowires is still similar to that
of the bulk values [9, 10], while other experiments on Bi nanowires show an enhanced
PF values compared to its bulk state values [11]. This situation indicates that there is
another parameter that can be compared with the confinement length. We will show
in this thesis that the thermal de Broglie length Λ is a key parameter that defines the
quantum effects in thermoelectricity. In order to show these effects, we investigate the
quantum confinement effects on the PF for typical low-dimensional semiconductors.
By comparing the confinement length with the thermal de Broglie length, we discuss
the quantum effects and the classical limit on the PF , from which we can obtain an
appropriate condition to maximize the power factor.

Second, one step towards realizing a high PF value is by optimizing the ther-
mopower S (or the Seebeck coefficient), especially for one-dimensional materials such
as semiconducting single-wall carbon nanotubes (s-SWNTs). As a low-dimensional
material, SWNTs were considered to be promising for thermoelectric materials due to
their one-dimensional electronic properties which depend on their geometrical struc-
ture [21, 22, 23]. Recent experiments [23, 24] have shown that s-SWNT network is
capable of S values about 100–200 µV/K. However, the s-SWNT network samples have
complex geometrical and electronic structures. The potential thermoelectric properties
might have been lost because of connection between different tubes [21]. Such s-SWNT
network samples consist of a collection of SWNTs with different diameters and chi-
ralities, parameters to which the electronic structure is very sensitive [12]. Therefore,
the thermopower values of the SWNT network samples were mainly attributed to S of
both metallics and semiconductors, which might be a result of the increasing their ther-
mopower. In this thesis, we will focus on evaluating the thermopower theoretically for
a single s-SWNT with many diameters, and thus to maximize the SWNT thermopower
and to suggest a new route for obtaining a larger PF for SWNTs. By calculating the
thermopower of all individual s-SWNTs within a diameter range from 0.5 nm to 1.5 nm,
we will show that, for tube diameters less than 0.6 nm, the thermopower of s-SWNTs
can be as large as 2000 µV/K at room temperature, which is much large compared
with the thermopower of bundled SWNTs, which is about 100–200 µV/K [23, 24].
From this result, we believe that there is still plenty of room to improve the PF of
carbon nanotubes. For a more practical purpose, we also give an analytical formula
to reproduce our numerical calculation of the s-SWNT thermopower, which forms a
map of the s-SWNT thermopower. The calculated thermopower map could be useful
for obtaining information on the s-SWNT chirality with a desired thermopower value
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and thus it offers promise for using specially prepared s-SWNT samples to guide the
direction of future research on the thermoelectricity.



Chapter 2

Theoretical methods

Physical properties of low-dimensional semiconductors, graphene, and single wall car-
bon nanotube are reviewed in this chapter. The discussion includes a description
of the effective mass theorem, the band structure, and the density of state for the
low-dimensional semiconductors. Then one-band model and two-band model for ther-
moelectricity are discussed based on the Boltzmann transport theory. The transport
coefficients such as thermopower (or Seebeck coefficient) and electrical conductivity
within the Boltzmann transport formalism are also discussed with in a tight-binding
framework.

2.1 Energy band structure of low-dimensional structures

2.1.1 Effective mass theorem

Finding location of a particle in real space and its momentum at the same time is
a fundamental variables in transport problem. To do that, the concept of a wave
packet is necessary. A wave packet is a linear combination of the Bloch eigenstates,
which have a finite spread both in the momentum and real space, for small region
in the Brillouin zone (BZ). It is suitable for investigate properties of electrons and
holes located very close to the band extrema points such as bottom of the conduction
band (CB) or the top of the valence band (VB). Therefore, a wave packet is created
by taking a linear combination of the Bloch eigenstates around such points in the
k-space. The eigenstates of solid are Bloch functions for the nth energy band with the
wavevector k

φnk(r) = eik · runk(r), (2.1)

where unk is periodic function of the unit cell. The wave packet ψ(r) can be written
in terms of the Bloch states with over the whole BZ as

ψ(r) =
∑
n

∑
k

A(k)φnk(r) =
∑
n

∫ d(k)
2π A(k)φnk(r). (2.2)

13
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We now make two approximation:

1. The wavefunctions from only one band play in the wave packet. We can thus
drop the sum over n in Eq. (2.2).

2. The wavevectors from a small region around k0 = 0 are important in this single
band, and correspondingly expand the Bloch functions in Eq. (2.1)

φnk(r) = eik · runk(r) ≈ un0e
ik · r = φn0(r)eik · r. (2.3)

With these approximations, the wave packet in Eq. (2.2) can be rewritten as

ψ(r) =
∑
n

∫ d(k)
2π A(k)φnk(r) = φn0(r)

∫ d(k)
2π A(k)eik · r = φn0(r)F (r), (2.4)

where the integral term is identified as the Fourier transform from the weights A(k) in
k-space to F (r) in real space. The real-space function F (r) is called as the envelope
function. Since the weights A(k) have a value in small region of ∆k in the reciprocal
space, the wave packet has a large spread in real space with ∆r ∼ 1/∆k. F (r) is
typically a smooth function spreading over several lattice constants.

When we apply the periodic Hamiltonian, H0, of the crystal, let us start with the
Bloch-eigenfunctions of H0 to know the behavior of the wave packet

H0φnk(r) = En(k)φnk(r), (2.5)

and the Schrödinger equation for the wave packet is given by

H0ψ(r) =
∫ d(k)

2π A(k)En(k)φnk(r). (2.6)

It follows from Bloch’s theorem that En(k) is a periodic function in the reciprocal
lattice. Therefore, En(k) can be expanded by the Fourier series in the real space as

En(k) =
∑
Rl

Enle
ik ·Rl , (2.7)

where the Rl are lattice vector. Now consider Eq. (2.7) by replacing k by the differ-
ential operator −i~∇, we obtain

En(−i~∇) =
∑
Rl

Enle
iRl · ~∇. (2.8)

Now consider the effect of the operator −i~∇ on an arbitrary function f(r). Since
eRl · ~∇ can be expanded in a Taylor series as

eRl · ~∇f(r) =
[
1 + Rl · ~∇+ 1

2!(Rl · ~∇)(Rl · ~∇) + . . .

]
f(r)

= f(r) + Rl · ~∇f(r) + 1
2RlαRlβ

∂2

∂rα∂rβ
f(r) + . . .

= f(r + Rl) . (2.9)
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Thus when we apply operator −i~∇ to a Bloch state, we get

En(−i~∇)φnk(r) =
∑
Rl

Enlφnk(r + Rl)

=
∑
Rl

Enle
ik ·Rleik · runk(r) = En(k)φnk(r). (2.10)

Substituting Eqs.(2.3) and (2.10) into Eq. (2.6), we get

H0ψ(r) ≈ φn0(r)En(−i~∇)
∫ d(k)

2π A(k)eik · r = φn0(r)En(−i~∇)F (r), (2.11)

where F (r) is called as the envelope function [cf. Eq. (2.4)]. Now, instead of the
periodic potential Hamiltonian, if we use another potential [H0+V (r)], the Schrödinger
equation for wavepacket becomes

[H0 + V (r)]ψ(r) = Eψ(r). (2.12)

Substituting Eqs.(2.4) and (2.11) into Eq. (2.12) yields

φn0(r)En(−i~∇)F (r) + V (r)φn0(r)F (r) = Eφn0(r)F (r). (2.13)

Then we obtain
[En(−i~∇) + V (r)]F (r) = E F (r), (2.14)

where the Bloch functions do not appear at all. Eq. (2.14) is called the Luttinger
equation [25]. Furthermore, we assume that the energy band structure E(k) of the
semiconductor is known either from the results of a theoretical calculation or from
the analysis of experimental results. Thus we can write the energy around the point
k0 = 0 in terms of the effective mass m∗. Let us assume that the conduction band
(CB) of the semiconductor in the vicinity of the band “minimun” at k0 = 0 has the
simple analytic form

E(k) ≈ ~2k2

2m∗ . (2.15)

For the present discussion, the E(k) is assumed to be isotropic in k; this typically
occurs in cubic semiconductors with the band extrema at k0 = 0. The operator
En(−i~∇) thus becomes

E(−i~∇) ≈ − ~2

2m∗∇
2. (2.16)

Substituting Eq.(2.16) into Eq. (2.14), the Schrödinger equation takes the simplified
form [

~2

2m∗∇
2 + V (r)

]
F (r) = E F (r), (2.17)

Eq. (2.17) is called the effective mass equation. The Schrödinger equation has been
re-cast into a much simpler problem of a particle of effective mass m∗ moving in a
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D
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E

Figure 2.1: Density of states of bulk semiconductors.

potential V (r). The effective mass m∗ contains the information about the energy band
structure and the crystal potential. In practical, the solution to the effective mass
equation is much easier to carry out than the solution to the original Schrödinger
equation.

2.1.2 Three-dimensional semiconductors

A three-dimensional (3D) semiconductor (or bulk semiconductor) in the absence of
crystal fields, V (r) = 0, and thus the solution of the effective mass equation [Eq. (2.17)]
yields the envelope function as

F (r) = 1√
V
eik · r, (2.18)

where V = LxLyLz is the crystal volume, and E(k) given by

E(k) = ~2

2

(
k2
x

m∗xx
+

k2
y

m∗yy
+ k2

z

m∗zz

)
, (2.19)

where kx = n2π/Lx, ky = n2π/Ly, kz = n2π/Lz (n = 0,±1,±2, . . .). Since Lx,
Ly, and Lz are a macroscopic length in the 3D system, the quantization is almost
continues. Hereafter, kx, ky and kz can be assumed continuous.

For an isotropic system, m∗xx = m∗yy = m∗zz = m∗, Eq. (2.19) thus becomes

E(k) = ~2k2

2m∗ . (2.20)

The volume of single quantum mechanical state in the 3D k-space is (2π)3/LxLyLz =
8π3/V . Thus the number of filled states in a sphere in the 3D k-space is

N(k) = 2
4
3πk3

8π3/V
= V k3

3π2 (2.21)

Fig. 2.1: Fig/chapter2-fig1.pdf
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where the factor of two accounts for the freedom of spin. The density per unit energy
is then obtained as

dN
dE =

(
dN
dk

)(
dk
dE

)
=
(

3V k2

3π2

)(
2m∗

2~2k

)
= V

2π2

(
2m∗

~2

)
k (2.22)

Since k = (2m∗E/~2)1/2 from Eq. (2.20), the density of state (DOS) per unit volume
and per unit energy [in unit of m−3J−1] for the 3D semiconductor is given by

g3D(E) = 1
V

dN
dE = 1

2π2

(
2m∗

~2

)3/2
E1/2. (2.23)

DOS of the 3D system is shown in Fig. 2.1.
For a anisotropic system in the case of a multi-ellipsoidal energy surfaces, we

introduce a new wavectors k′ as a new effective mass m′ as

kx =
(
m∗xx
m′

)1/2
k′x, ky =

(
m∗yy
m′

)1/2

k′y, kz =
(
m∗zz
m′

)1/2
k′z. (2.24)

Then Eqs. (2.20) and (2.21) become as

E = ~2k′2

2m′ , (2.25)

and

N = V k3

3π2 =
(
m∗xxm

∗
yym

∗
zz

m′3

)1/2
V k′3

3π2 (2.26)

From Eqs. (2.22) and (2.23), m′ is eliminated, and DOS for the 3D anisotropic system
is

g3D(E) = 1
V

dN
dE = 1

2π2

(
2m∗d
~2

)3/2
E1/2, (2.27)

where m∗d = (m∗xxm∗yym∗zz)1/3, which is called the effective mass for density of states.
Most energy band structures for the 3D semiconductors have ellipsoidal energy surfaces
including longitudinal m∗l and transverse effective masses m∗t . Therefore, the density
of states effective mass is m∗d = (m∗lm∗t

2)1/3.

2.1.3 Two-dimensional semiconductors

A two-dimensional (2D) semiconductor (or quantum well) is formed upon sandwiching
a thin film of semiconductor between two other materials, or a ultrathin semiconductor
in a vacuum. For example, a thin film of GaAs (typically < 20 nm) can be sandwiched
between two AlxGa1−xAs layers, as shown in Fig 2.2 (a). As sandwich structure, a
potential difference exists at the interface in the both of the conduction band and
valence band, called the band-edge offset. For electrons in the conduction band, the

Fig. 2.2: Fig/chapter2-fig2.pdf
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Conduction 
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Figure 2.2: (a) A quantum well can be formed by sandwiching one material (GaAl) between
two material (AlxGa1−xAs). (b) A quantum well can be formed by ultrathin material (MoS2)
in the vacuum.

band-edge offset of the conduction band, ∆Ec, provides a potential barrier to from a
quantum well. Similarly, the band-edge offset of the valence band, ∆Ev, provides a
potential well for holes. A atomic layer material such as MoS2 in a vacuum can be
modeled as an infinitely deep potential well, as shown in Fig. 2.2 (b). We assume that
the lengths (Lx, Ly) of the thin film are macroscopic length in the xy plane, and the
thickness (Lz) is quantum confined in the z direction (Lz � Lx, Ly). The potential
well (with reference to the conduction band-edge Ec0) is written as

V (x, y, z) =


0 if z < 0

0 if z > Lz

−∆Ec if 0 ≤ z ≤ Lz

(2.28)

for model in Fig. 2.2 (a), or

V (x, y, z) =


0 if z < 0

0 if z > Lz

∞ if 0 ≤ z ≤ Lz

(2.29)

for model in Fig. 2.2 (b).
Using the effective mass equation in Eq. (2.17) with this potential, we obtain the

envelope function as

Fnz (x, y, z) = φ(x, y)χnz (z) =
(

1√
A
ei(kxx+kyy)

)
·χnz (z), (2.30)

where nz = 1, 2, 3, . . . is the quantum number, and A = LxLy is the area along the
xy plane. If the quantum well is assumed to be infinitely deep [e.g. Fig. 2.2(b)], the
z component of the electron quasi-momentum is quantized to

knz = 2π
λ

= π

Lz
nz, (2.31)
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Figure 2.3: Energy band structure and DOS of a two-dimensional quantum well.

where λ is wavelength of the waves that satisfy nz(λ/2) = Lz. From simple particle
in a box model in quantum mechanics, the normalized z component of the envelope
function is

χnz (z) =
√

2
Lz

sin πnz
Lz

z. (2.32)

The energy band structure which is the set of energy eigenvalues is obtained from the
effective mass equation, given by

E(kx, ky, nz) = ~2

2

(
k2
x

m∗xx
+

k2
y

m∗yy

)
+ ~2

m∗zz

(
πnz
Lz

)2
, (2.33)

which is separated into a free-electron component in the xy plane and a quantized
component in the z direction. Therefore, the energy band structure of the 2D system
including multiple energy subbands. Each subband is indexed by the quantum number
nz = 1, 2, 3, . . ., as shown in Fig 2.3.

For an isotropic system, m∗xx = m∗yy = m∗zz = m∗, Eq. (2.33) thus becomes

E(kxy, nz) = ~2kxy
2m∗ + ~2

m∗

(
πnz
Lz

)2
, (2.34)

where k2
xy = k2

x + k2
y. The area of each quantum mechanical state in the 2D k-space

is (2π)2/LxLy = 4π2/A. Thus, the number of states in a circle for each of nz values is

N(kxy) = 2
πk2

xy

4π2/A
= Akxy

2π (2.35)

Fig. 2.3: Fig/chapter2-fig3.pdf
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Figure 2.4: (a) Model of a one-dimensional quantum wire. (b) Energy band structure and
DOS of the quantum wire.

where k2
xy = k2

x + k2
y. Then the density of states (DOS) per unit area and per unit

energy [in unit of m−2J−1] for the 2D semiconductor is given by

g2D(E) = 1
A

dN
dE = 1

A

(
dN
dkxy

)(
dkxy
dE

)
= m∗

π~2 . (2.36)

In the quantum well, each subband labeled by nz is an ideal 2D system, and each
subband contributes to the total DOS, as shown in Fig 2.3. Thus, the DOS of the
quantum well is

gQWell(E) = m∗

π~2

∑
nz

θ(E − Enz ), (2.37)

where θ(x) is the step function, and Enz = (~2/m∗)(πnz/Lz)2 [cf. Eq. (2.34)].
For a anisotropic system, then similar to the 3D system situation, the DOS of the

2D system gives

g2D(E) =
(m∗xxm∗yy)1/2

π~2 , (2.38)

which depends on the effective masses m∗xx and m∗yy of the xy plane.

2.1.4 One-dimensional semiconductors

A one-dimensional (1D) semiconductor (or quantum wire) is formed either litho-
graphically (top-down approach), or by direct growth in the form of semiconduct-
ing nanowires or nanotubes (bottom-up approach). In a quantum well, the carriers
(electrons or holes) are confined in one direction, and they are free to move in two
other directions. While, in a quantum wire, the carriers are free to move freely in

Fig. 2.4: Fig/chapter2-fig4.pdf
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one direction only, and two other directions are confined. We assume that the 1D
system has a length (Lz) along the z direction, and the system is confined in the xy
plane (Lx, Ly � Lz), as shown in Fig 2.4 (a). Then, the solution of the effective mass
equation in Eq. (2.17) yields the envelope function

Fnx,ny (x, y, z) = χnx(x) ·χny (y) ·
(

1√
Lz
eikzz

)
, (2.39)

where nx, ny = 1, 2, 3, . . . are the quantum numbers, and the energy eigenvalues are
given by

E(nx, ny, kz) = E(nx, ny) + ~2k2
z

2m∗zz
. (2.40)

If the confinement in the xy plane is expressed by an infinite potential, the electron
quasi-momentums are quantized to

knx = π

Lx
nx, kny = π

Ly
ny, (2.41)

where nx, ny = 1, 2, 3, . . .. The envelope function in Eq. (2.39) can be rewritten as

Fnx,ny (x, y, z) =
(√

2
Lx

sin πnx
Lx

x

)
·

(√
2
Ly

sin πny
Ly

y

)
·
(

1√
Lz
eikzz

)
, (2.42)

and Eq. (2.40) is explicitly given by

E(nx, ny, kz) = ~2

2m∗xx

(
πnx
Lx

)2
+ ~2

2m∗yy

(
πny
Ly

)2
+ ~2k2

z

2m∗zz
. (2.43)

Energy band structure including multiple subbands is thus formed. For each eigen-
value E(nx, ny) with the quantum numbers nx, ny = 1, 2, 3, . . ., the subband has a
dispersion as a function of kz,

E(kz) = ~2k2
z

2m∗zz
, (2.44)

and the number of states in the wire is given by

N(kz) = 2 2kz
2π/Lz

= 2Lzkz
π

. (2.45)

Then for each pair of nx, ny values, the density of states (DOS) per unit length and
per unit energy [in unit of m−1J−1] for the 1D system is given by

g1D(E) = 1
Lz

dN
dE = 1

Lz

(
dN
dkz

)(
dkz
dE

)
= 1
π

(
2m∗zz
~2

)1/2
E−1/2. (2.46)

Due to multiple subbands, the 1D van Hove singularity of the DOS peaks appear at
every eigenvalue E(nx, ny). Since there are two quantum numbers involved (nx, ny),
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Figure 2.5: (a) The unit cell of graphene in real space contains two carbon atoms A and B,
and two lattice vectors a1 and a2. (b) The Brillouin zone of graphene contains two reciprocal
lattice vectors b1 and b2, and the high-symmetry points K, K′, M and Γ.

some eigenvalues can be degenerate. Thus, the peak height and position appear at
irregular intervals. The DOS for the quantum wire can be written as

gQWire(E) = 1
π

(
2m∗zz
~2

)1/2 ∑
nx,ny

(
E − E(nx, ny)

)−1/2
, (2.47)

which is shown in Fig 2.4 (b).

2.2 Graphene and carbon nanotube

2.2.1 Graphene unit cell

Graphene is a single atomic layer of carbon atoms in a two-dimensional (2D) hon-
eycomb lattice. The graphene sheet is generated from the dotted rhombus unit cell
generated by the lattice vectors a1 and a2, which are defined in (x, y) coordinate as

a1 = a

(√
3

2 ,
1
2

)
, a2 = a

(√
3

2 ,−1
2

)
, (2.48)

where a =
√

3aCC is the lattice constant for the graphene, and aCC ≈ 0.142 nm is
the nearest-neighbor carbon-carbon atom distance. Figure 2.5 (a) shows the unit cell
that contains two carbon atoms A and B by open and solid dots, respectively.

The reciprocal lattice vectors b1 and b2 are related to the real lattice vectors a1

and a2 according to the definition

ai ·bj = 2πδij , (2.49)

where δij is the Kronecker delta. From Eqs. (2.48) and (2.49), b1 and b2 are given by

b1 = 2π
a

(
1√
3
, 1
)
, b2 = 2π

a

(
1√
3
,−1

)
. (2.50)

Figure 2.5 (b) shows the first Brillouin zone as a shaded hexagon, where Γ (center),
K, K′ (hexagonal corners), and M (center of edges) denote the high symmetry points.

Fig. 2.5: Fig/chapter2-fig5.pdf
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Figure 2.6: (a) Geometry of a (4, 2) SWNT viewed as an unrolled graphene sheet with the
graphene unit vectors a1 and a2. The shaded rectangle OPHQ is a one-dimensional unit cell
of the (4, 2) SWNT. OP and OQ define the chiral vector Ch = (4, 2) and the translational
vector T = (4,−5), respectively. The chiral angle θ is the angle between a1 and Ch. (b)
Perspective view of the (4, 2) SWNT in three dimensional space.

2.2.2 Carbon nanotube unit cell

Carbon nanotube is one-dimensional (1D) cylindrical structure made of carbon, which
is non-Bravais lattice. A single wall carbon nanotube (SWNT) can be thought of as
a sheet of graphene rolled into a cylinder. As shown in Fig. 2.6 (a), the unit cell
of a SWNT is expressed by the two vectors including the chiral vector Ch and the
translational vector T. Ch is defined as the circumference of a SWNT, while the T is
determined by a vector perpendicular to Ch in the direction of the nanotube axis.

The chiral vector Ch can be written in terms of the unit vectors of graphene a1

and a2,
Ch = na1 +ma2 ≡ (n,m), (2.51)

where (n,m) is a pair of integer indices with 0 ≤ |m| ≤ n. Since Ch determines
the circumference of the SWNT, it is straightforward to obtain the relations for the
circumferential length L and the diameter dt as

L = |Ch| = a
√
n2 + nm+m2,

dt = L

π
= a
√
n2 + nm+m2

π
. (2.52)

The chiral angle θ is the angle between Ch and a1, with values of θ in the range of
0 ≤ |θ| ≤ 30◦. cos θ can be obtained by taking the inner product of Ch and a1, thus

Fig. 2.6: Fig/chapter2-fig6.pdf
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relating θ to the chiral index (n,m) can be expressed as

cos θ = Ch ·a1

|Ch||a1|
= 2n+m

2
√
n2 + nm+m2

. (2.53)

The translation vector T, then similar to Ch, can be written in terms of a1 and
a2,

T = t1a1 + t2a2 ≡ (t1, t2), (2.54)

where t1 and t2 are integers, and its are obtained from the condition Ch ·T = 0
because T is perpendicular to Ch

t1 = 2m+ n

dR
, t2 = −2n+m

dR
, (2.55)

where dR is the greatest common divisor of (2m+n) and (2n+m). The length of the
translation vector, T , is then given by

T = |T| =
√

3 L
dR
. (2.56)

The area of SWNT unit cell is defined as the rectangular area determined by two
vector Ch and T. This area is given by the magnitude of the vector product of Ch

and T. Since the area of the hexagonal unit cell in the graphene is |a1 × a2|, the
number of hexagons per SWNT unit cell, N , is obtained by

N = |Ch ×T|
|a1 × a2|

= 2(n2 + nm+m2)
dR

. (2.57)

We note that each hexagon contains two carbon atoms [Fig. 2.5 (a)]. Thus there are
2N carbon atoms in each SWNT unit cell. The geometry of the SWNT is shown in
Fig. 2.6 (b). The SWNT can then be classified according to its (n,m) or θ values.
This classification is based on the symmetry of the SWNT. There are three types
of SWNT: (a) zigzag nanotube corresponds the the case of m = 0 or θ = 0◦, (b)
armchair nanotube corresponds to the case of n = m or θ = 30◦, (c) all other (n,m)
or θ correspond to chiral nanotubes. We note that the hexagonal symmetry of the
honeycomb lattice, we thus need to consider only 0 ≤ |m| ≤ n or 0 ≤ θ ≤ 30◦ for
chiral nanotubes.

Since the 1D unit cell of a SWNT in real space is expressed by two vector Ch and
T [Fig. 2.6 (b)], the corresponding vectors in reciprocal space are the vectors K1 along
the tube circumference and K2 along the tube axis. Expressions for K1 and K2 are
obtained from their relations with Ch and T as

Ch ·K1 = 2π, T ·K1 = 0,

Ch ·K2 = 0, T ·K2 = 2π. (2.58)

Fig. 2.7: Fig/chapter2-fig7.pdf
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Figure 2.7: Reciprocal space of the graphene sheet with reciprocal lattice unit vectors b1 and
b2. Parallel equidistant lines represent the cutting lines for the (4, 2) SWNT labeled by the
cutting line index µ from 0 to 27. The vectors K1 and K2 in reciprocal space correspond to
Ch and T in real space, respectively.

It follows,
K1 = 1

N
(−t2b1 + t1b2), K2 = 1

N
(mb1 − nb2), (2.59)

where b1 and b2 are the reciprocal lattice vector of graphene. The N line segments
with length of K2 and the separation of K1 construct the 1D Brillouin zone of the
SWNT shown in 2D k-space of graphene, which we call as “cutting lines” [12], as
shown in Fig. 2.7. The allowed wavevector k of a SWNT is

k = µK1 + k
K2

|K2|
, (2.60)

where µ = 0, 1, . . . , N − 1 is the “cutting lines” index, and k is the range of −π/T <

k < π/T (T = |T| is length of the translation vector). The length of K1 and K2 are
given by

|K1| =
2π
L

= 2
dt
, |K2| =

2π
T
. (2.61)

For example, the unit cell of the (4, 2) SWNT contains N = 28 hexagons. Therefore,
the first Brillouin zone of the (4, 2) SWNT consists of 28 cutting lines labeled by the
cutting line index µ from 0 to 27, as shown in Fig. 2.7.

2.2.3 Electronic properties of SWNTs

The electronic energy dispersion relations of SWNTs are derived from those of a
graphene sheet. The tight-binding model is reviewed here, starting from a simple
tight-binding (STB) model. In a later section, we further develop an extended tight-
binding (ETB) model that gives a good agreement with some optical spectroscopy
measurements as well as with first principles density function theory calculations.

The electronic energy dispersion relations of graphene are obtained by solving the
single particle Schrödinger equation

HΨb(k, r, t) = i~
∂

∂t
Ψb(k, r), (2.62)
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where H = T + V (r) is single-particle Hamiltonian, T = p2/2m is the kinetic energy
operator, p = −i~∇, ∇ is the gradient operator, ~ is Planck’s constant, m is the elec-
tron mass, V (r) is the periodic potential, Ψb(k, r, t) is the one-electron wavefunction,
where b is the band index, k is the electron wavevector, r is the spatial coordinate, t is
time, and i is imaginary unity. The electron wavefunction Ψb(k, r, t) is approximated
by a linear combination of atomic orbitals (LCAO) in terms of Bloch functions as

Ψb(k, r, t) = exp
(
− iEb(k)t/~

)∑
so

Cbso(k)Φ(k, r)

Φ(k, r) = 1√
Nu

Nu∑
u

exp(ikRus)Φ(k, r)
, (2.63)

where Eb(k is the one-electron energy, Cbso(k) is the Bloch amplitude, Φ(k, r) is the
Bloch wavefunction, Φ(k, r) is the atomic orbital, Rus is the atomic coordinate, the
index u = 1, 2, . . . , Nu spans all the Nu unit cells in a graphene sheet (Nu = N for
a SWNT), the index s = A, B labels the tow inequivalent atoms in the unit cell, and
the index o = 1s, 2s, 2px, 2py, 2pz enumerates the atomic orbitals of a carbon atom.

The Schrödinger equation for the Bloch amplitudes Cbso(k) can be written in the
matrix form ∑

so

Hs′o′so(k)Cbso(k) =
∑
so

Eb(k)Ss′o′so(k)Cbso(k), (2.64)

where the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices are given by
Hs′o′so(k) =

Nu∑
uu′ss′

exp
(
ik(Rus −Ru′s′)

) ∫
φ∗o′(r−Ru′s′)Hφo(r−Rus)dr

Ss′o′so(k) =
Nu∑
uu′ss′

exp
(
ik(Rus −Ru′s′)

) ∫
φ∗o′(r−Ru′s′)φo(r−Rus)dr

,

(2.65)
and the index u′ labels the unit cell under consideration. The orthonormality condition
for the electron wavefuction of Eq. (2.63) becomes∫

Ψb′∗(k, r, t)Ψb′(k, r, t)dr =
∑
s′o′

∑
so

Cb
′∗

s′o′(k)Ss′o′so(k)Cbso(k) = δb′b, (2.66)

where δb′b is the Kronecher delta function. To evaluate the integrals in Eq. (2.65), the
effective periodic potential V (k) in the single-particle Hamiltonian H of Eq. (2.62)
is expressed by a sum of the effective spherically-symmetric potentials U(r −Ru′′s′′)
centered at the atomic sites Ru′′s′′

V (r) =
∑
u′′s′′

U(r−Ru′′s′′). (2.67)

The Hamiltonian matrixHs′o′so(k) then contains the three-center integrals that involve
two orbitals φ∗o′(r − Ru′s′) and φo′(r − Rus) at two different atomic sites Ru′s′ and
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Figure 2.8: Electronic dispersion relations of a graphene given by Eq. (2.71) with STB pa-
rameters t = −3.033 eV, s = 0.129, and ε = 0 eV (a) throughout the entire first Brillouin
zone shown in Fig. 2.5 (b) and (b) along the high-symmetry directions in the first Brillouin
zone. The Fermi level is shown by the dotted line at zero energy.

Rus, while the potential U(r − Ru′′s′′) originates from a third atomic site Ru′′s′′ .
On the other hand, the overlap matrix Ss′o′so(k) contains two-center integrals only.
Neglecting the three-center integrals in Hs′o′so(k), the remaining two-center integrals
in both Hs′o′so(k) and Ss′o′so(k) can be parameterized as functions of the interatomic
vector R = Rus−Ru′s′ . The symmetry and relative orientation of the atomic orbitals
φ∗o′(r) and φo(r) as follow

εo =
∫
φ∗o(r)Hφo(r)dr

to′o(R) =
∫
φ∗o′(r)

(
T + U(r) + U(r−R)

)
φo(r−R)dr

so′o(R) =
∫
φ∗o′(r)φo(r−R)dr

, (2.68)

where εo is the energy of atomic orbital. The transfer to′o(R) and the overlap so′o(R)
integrals depend on the relative orientation of the atomic orbitals o′ and o with respect
to the interatomic vector R. A numerical calculation of parameters εo, to′o(R), and
so′o(R) defines the non-orthogonal tight-binding model. Within the orthogonal tight-
binding model, so′o(R) is set to zero (unity) for R 6= 0 (R = 0).

2.2.4 Simple tight-binding model

Within the framework of the simple tight-binding (STB) model, we neglect the σ (2s,
2px, 2py) molecular orbitals and the long-range atomic interactions in the π (2pz)
molecular orbitals. The STB model thus has three parameters including the atomic
orbital energy ε2p, the transfer integral tππ(aCC), and the overlap integral sππ(aCC),
where aCC is the nearest-neighbor interatomic distance. Thereafter we refer to these
parameters as ε, t, and s, respectively, for simplicity.

Fig. 2.8: Fig/chapter2-fig8.pdf
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The unit cell contains two atoms, A and B, [Fig. 2.5 (a)] each of which has three
nearest-neighbors (R = aCC) of the opposite atom type. The absence of nearest-
neighbor interactions within the same A or B sublattice gives the diagonal Hamiltonian
and overlap matrix elements, HAπAπ = HBπBπ = ε2p and SAπAπ = SBπBπ = 1
independent of the transfer t and overlap s integrals. For the HAπBπ and SAπBπ

matrix elements, the interatomic vector R from atom A to its three nearest-neighbors
are given by (a1 + a2)/3, (a1 − 2a2)/3, and (a2 − 2a1)/3, where a1 and a2 are the
lattice vectors in Eq. (2.48). Substituting these vectors from Eq. (2.64), one can obtain
HAπBπ = tf(k) and SAπBπ = sf(k), where f(k) is sum of the phase factors over the
nearest-neighbors given by

f(k) = exp
(
i
kxa√

3

)
+ exp

(
−i kxa

2
√

3
+ i

kya

2

)
+ exp

(
−i kxa

2
√

3
− ikya2

)
. (2.69)

Since the interatomic vectors R have the opposite signs, HBπAπ = tf∗(k) and SBπAπ =
sf∗(k). The Schrödinger equation Eq. (2.64) can be written as(

ε2p tf(k)
tf∗(k) ε2p

)(
CbAπ(k)
CbBπ(k)

)
= Eb(k)

(
1 sf(k)

sf∗(k) 1

)(
CbAπ(k)
CbBπ(k)

)
. (2.70)

Solving this secular equation yields the energy eigenvalues

Ev(k) = ε+ tω(k)
1 + sω(k) , Ec(k) = ε− tω(k)

1− sω(k) , (2.71)

where the band index b = v, c indicates the valence and conduction bands, t < 0, and
ω(k) is the absolute value of the phase factor f(k), i.e.,

ω(k) =
√
f∗(k)f(k) =

√
1 + 4 cos

√
3kxa
2 cos kya2 + 4 cos2 kya

2 (2.72)

Fitting the dispersion relations of valence and conduction bands in Eq. (2.71) to the
energy values obtained from an first-principles calculations for graphene [26] yields
the values of the transfer t = −3.033 eV and overlap s = 0.129 integrals, after setting
the atomic orbital energy equal to zero of the energy scale, ε = 0 eV. Figures 2.8 (a)
and (b) show the dispersion relations of the graphene using the STB with the above
parameters throughout the entire first Brillouin zone and along the high symmetry
directions in the first Brillouin zone, respectively.

The band structure of a graphene in Fig. 2.8 (b) shows linear dispersion relations
around K and K′ points near the Fermi level. The electron wavevector around the
K point in the first Brillouin zone can be written in the form kx = ∆kx and ky =
−4π/(3a) + ∆kx, where ∆kx and ∆ky are small compared with 1/a. Substituting this
wavevector into Eq. (2.72), we can obtain ω =

√
3

2 a∆k, where ∆k =
√

∆k2
x + ∆k2

y

is the distance from the electron wavevector to the K point. Substituting ω into
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Figure 2.9: (a) Condition for metallic or semiconducting SWNT is related to the ratio of the
length of vector ΓK to that of ΓY, if the ratio is an integer, metallic SWNT is obtained. (b)
Three possible configurations of the cutting lines in the vicinity of the K point depending on
the value of mod (2n + m, 3). From left to right, the nanotube type is M- (metallic), S1-
(semiconducting), and S2- (semiconducting) SWNT, respectively.

Eq. (2.71) yields the electronic dispersion relations in the valence and conduction
bands near K point as

Ev(∆k) = ε−
√

3
2 (εs− t)a∆k, Ec(∆k) = ε+

√
3

2 (εs− t)a∆k, (2.73)

which are linear in ∆k. The linear dispersion relations near the Fermi level imply that
the effective mass approximation used for semiconductors with parabolic energy bands
is not applicable to a graphene. Instead, the π electrons in a graphene mimic massless
particles whose behavior is described by the relativistic Dirac equation. Besides, the
linear dispersion relations increase the mobility of the conducting π electrons in a
graphene compared to conventional semiconductors [27].

Now the electronic structure of a SWNT can be derived from the energy dispersion
calculation of graphene in Eq. (2.71). Since the allowed wavevectors k (the cutting
lines) around the SWNT circumference become quantized, the energy dispersion rela-
tions (EbSWNT) of the SWNT are given by the corresponding energy dispersion relations
(Eb2D) of a graphene along the cutting lines. Using the cutting lines from Eq. (2.60),
we can obtain the energy dispersion relations of the SWNT as

EbSWNT(µ, k) = Eb2D

(
µK1 + k

K2

|K2|

)
, (2.74)

where µ = 0, 1, . . . , N−1 and −π/T < k < π/T . For a particular (n, m) SWNT, if a
cutting line passes through K or K′ points of the Brillouin zone of graphene, where the
valence and conduction bands touch to each other, the band structure of the SWNT
have a zero band gap, they thus become metal. However, if a cutting line does not
pass through K or K′ points, the band structure of the SWNT have a finite band gap,
they thus become semiconductor.

As shown in Fig. 2.9 (a), SWNT can be either metallic or semiconducting, de-
pending on whether one of the cutting lines crosses the K point or not, respectively.

Fig. 2.9: Fig/chapter2-fig9.pdf
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(a) (b)

Figure 2.10: (a) The electronic dispersion relations of a graphene with the cutting lines (the
dotted lines) for a semiconducting (4, 2) SWNT. (b) The electronic dispersion relations of
the (4, 2) SWNT when different cutting lines are folded together into the 1D Brillouin zone.
The length of the 1D Brillouin zone is given by 2π/T . (c) The density of electronic states
(DOS) of the (4, 2) SWNT. The sharp spikes in the DOS typical for 1D systems are known
as Van Hove singularities [28].

Considering the the projection of the vector ΓK pointing towards the K point on the
K1 direction normal to the cutting lines. Choosing the right top corner of the shaded
hexagon in Fig. 2.9 (a) gives ΓK = (2b1 + b2)/3. Using the expression for K1 in
Eq. (2.59), we then find the projection ΓK ·K1)/|K1| = (2n + m)/3. If (2n + m)/3
is an integer (i.e. mod (2n + m, 3) = 0), (ΓK has an integer number of K1 com-
ponents, so that one of the cutting lines crosses the K point, and the SWNT turns
out to be metal. If (2n + m)/3 is a fractional number, namely 1/3 or 2/3 (i.e.
mod (2n + m, 3) = 1 or 2), none of the cutting lines crosses the K point and the
SWNT becomes semiconductor. Fig. 2.9 (b) shows three types of SWNTs depending
on the value of mod (2n + m, 3), which are referred to as M-, S1-, and S2-SWNT,
respectively.

The electronic structure of SWNTs comprise 2N energy bands which originate from
Nhex segments of cutting lines with each cutting line gives bonding π and anti-bonding
π∗ bands. Energy dispersion relation thus is plotted as a function of quasi-continuous
k wavevector along K2. Figure 2.10 (a) and (b) show the cutting lines of the semi-
conducting (4, 2) SWNT with their corresponding energy dispersion. The electronic
density of states (DOS), g(E), is defined by the number of available electronic states
for a given energy interval on units of states/1C-atom/eV. As discussed in Sec. 2.1,
in the one-dimensional (1D) SWNT, g(E) ∝ (E − E0)−1/2 diverges at some points
known as Van Hove singularity points (VHS). Figure 2.10 (c) shows the DOS of the
semiconducting (4, 2) SWNT. Vanishing DOS at the Fermi level EF = 0 eV indicates
that the (4, 2) SWNT is a semiconductor.

Fig. 2.10: Fig/chapter2-fig10.pdf
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Figure 2.11: (a) Kataura plot of transition energies for metallic (closed dots) and semi-
conducting type I (open dots) and type II (marked dots) SWNTs based on the extended
tight-binding (ETB) model [29]. (b) Comparison between the ETB calculations with the
photoluminiscence empirical fit (crosses) [30].

2.2.5 Extended tight-binding model

Even though simple tight-binding (STB) model gives a good understanding towards
electronic property of SWNTs, recent measurements of Eii energy by photoluminis-
cence and resonance Raman spectroscopy indicate that the STB calculation is not
sufficient to interpret the experimental results of many SWNTs [31, 30]. To clarify the
origin of this problem, we reconsider the limitations of the STB model discussed pre-
viously. Within the STB model, the long-range atomic interactions and the effect of
the curvature of the cylindrical surface of a SWNT are both neglected. The long-range
atomic interactions are known to change the electronic energy band structure of the
graphene and SWNTs. On the other hand, if we consider the effect of curvature, the π
orbitals are mixed with the σ orbitals. Furthermore, the π−σ rehybridization suggests
that the geometrical structure of a small diameter SWNT deviates from the rolled up
graphene. A geometrical structure optimization must thus be performed to allow for
atomic relaxation to equilibrium positions. This in turn affects the Eii energies of the
small diameter SWNTs in the experimental results [31, 30]. In the case of large diame-
ter SWNTs, however, the σ molecular orbitals are irrelevant because the surface is flat
and thus the π and σ molecular orbitals are orthogonal to each other. Therefore, the
STB model is now extended by including the long-range atomic interactions and the σ
molecular orbitals, and by optimizing the geometrical structure. The resulting model
is referred to as the extended tight-binding model (ETB). Within the framework of
the ETB model, we use the tight-binding parametrization determined from density-

Fig. 2.11: Fig/chapter2-fig11.pdf
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Figure 2.12: Schematic dependence of thermoelectric properties on charge-carrier concentra-
tion.

functional theory (DFT) employing the local-density approximation (LDA) and using
a local orbital basis set [32]. The ETB model is developed by Samsonidze et. al [29].
Figure 2.10 (a) show the calculated ETB for Eii of the SWNTs as a function of inverse
diameter, which is often referred to as the Kataura plot [33]. By comparing it to the
photoluminiscence empirical fit [30] we found that the results observed in the photolu-
miniscence studies is closely reproduced by the ETB approximation. The ETB model
thus provides the proper chirality and the diameter dependence for the Eii of the
SWNTs. We note that E11 value is band gap for the semiconducting SWNT, which is
important parameter to study the transport properties in the semiconducting SWNT.

2.3 Thermoelectric transport

In this section we discuss some of the thermoelectric transport properties for the
semiconductors. Thermoelectric problem is generally interdependent between three
parameters: the thermopower S, the electrical conductivity σ, and thermal conductiv-
ity κ, consists of constitutes the electronic κe and lattice κl contributions to thermal
conductivity (κ = κe + κl). As discussed in Chapter 1, to obtain the high figure-
of-merit ZT = S2σκ−1T and the high output power density Q = 1

4hlS
2σ(Th − Tc)2,

thermoelectric materials should have a large S, large σ, and small κ. Unfortunately,
there is difficult to find the materials that unusual combination of transport prop-
erties can be gained. For example, metals such as copper have large σ but small S
and large κ due to a large electron concentration. Diamond, which is a insulator, has
large S but small σ and large κ, the latter being due to a large lattice contribution.
These materials properties are summarized in Fig. 2.12, which illustrates that the
thermoelectric power factor PF = S2σ can be maximized for doped semiconductors.

Fig. 2.12: Fig/chapter2-fig12.pdf
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Figure 2.13: Illustration of trajectories in position-momentum space. Carriers move along a
trajectory according to Newton’s laws. Scattering changes the carrier’s momentum, but does
not affect its position.

Therefore, studying the transport properties for the semiconductors is important to
improve the thermoelectricity.

An intrinsic semiconductor at T = 0 has no carriers and therefore there is no
transport of carriers under the influence of external fields. However at finite tem-
peratures there are thermally excited carriers. For finite electric fields, the electrical
conductivity depends on the product of the carrier density and the carrier mobility.
To the extent that electrons can be considered as particles, the electrical conductivity,
the electronic contribution to the thermal conductivity are expressed by solving the
Boltzmann equation.

2.3.1 Boltzmann transport formalism

A distribution function f(r,k, t) is the probability of occupation of a carrier (electron
or hole) at time t + dt at r + dr with wavevector lying between k, k + dk. Under
equilibrium (i.e. no external electric or magnetic field and no thermal gradients), the
distribution function is found from quantum-statistical analysis to be given by the
Fermi-Dirac function for fermions

f0(E) = 1

1 + e
E(k)−µ(r)
kBT (r)

, (2.75)

where E(k) is the energy of the electron, µ(r) is the chemical potential, T (r) is the
absolute temperature as a function of position r, and kB is the Boltzmann constant.
It is known that the transport properties of solids are closely related to the energy
dispersion relations E(k) in these materials and in particular to the behavior of E(k)
near the Fermi energy.

Fig. 2.13: Fig/chapter2-fig13.pdf
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Under an external perturbation such as an electric field or a thermal gradients, the
carriers in a semiconductor move and change momentum in its trajectory [r(t), k(t)].
Figure 2.13 show several trajectories in position-momentum space. Consider a carrier
at position A′ on trajectory 2 at time t, which before were at position A at time t−dt.
There are three processes under a carrier moving from A to A′: the diffusion, the effect
of external forces and the collisions.

Let us take a fixed k, one can say that the carriers in the small volume dr at
position r at time t are those who were at the position r− vdt at time t− dt, where
v = dr/dt is the velocity of a carrier. The probability of occupation of a carrier
at time t is the probability of occupation of a carrier at time t − dt earlier. So
f(r,k, t) = f(r− vdt,k, t− dt) = f(r,k, t− dt)− v∂f∂r dt. We can write this as

∂f

∂t

∣∣∣∣
diffusion

= −v∂f
∂r . (2.76)

Likewise at a fixed position r, one can say that the carriers of wavevector k are
those who had wavevector k− ∂k

∂t dt at time t−dt. So f(r,k, t) = f(r,k− ∂k
∂t dt, t−dt) =

f(r,k, t− dt)− ∂k
∂t

∂f
∂k dt. We can write this as

∂f

∂t

∣∣∣∣
fields

= −∂k
∂t

∂f

∂k . (2.77)

Finally, we obtain the Boltzmann equation as

∂f

∂t
= ∂f

∂t

∣∣∣∣
diffusion

+ ∂f

∂t

∣∣∣∣
fields

+ ∂f

∂t

∣∣∣∣
collisions

= −v∂f
∂r −

∂k
∂t

∂f

∂k + ∂f

∂t

∣∣∣∣
collisions

. (2.78)

Boltzmann equation is usually solved using following two approximations:

1. The perturbation due to external fields and forces is assumed to be small so that
the distribution function can be linearized and written as

f = f0 + f1, (2.79)

where f0(E) is the equilibrium distribution function in Eq. (2.75), while f1(r,k)
is the perturbation term.

2. The collision term in the Boltzmann equation is written in the relaxation time
approximation (RTA) so that the system returns to equilibrium uniformly

∂f

∂t

∣∣∣∣
collisions

= −f − f0

τ
= −f1

τ
, (2.80)

where τ is the relaxation time and in general is a function of wavevector k,
i.e., τ = τ(k). The physical interpretation of τ is the time associated with the
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rate of return to the equilibrium distribution when the external fields or thermal
gradients are turned off. We consider a system when the fields are turned off
at t = 0 (i.e. no diffusion and no effect of forces and fields), the Boltzmann
equation in Eq. (2.78) becomes

∂f

∂t
= ∂f

∂t

∣∣∣∣
collisions

= −f − f0

τ
, (2.81)

which has solutions
f(t) = f0 +

(
f(0)− f0

)
e−t/τ , (2.82)

where f0 is the equilibrium distribution and f(0) is the distribution function at
time t = 0. This result suggests that any perturbation in the system will decay
exponentially by a characteristic time constant τ .

With these approximations, the Boltzmann equation in Eq. (2.78) can be rewritten
as

∂(f0 + f1)
∂t

= −v∂(f0 + f1)
∂r − ∂k

∂t

∂(f0 + f1)
∂k − f1

τ
. (2.83)

When the distribution function reaches a steady state and considered uniform systems
so that there is no gradient of f1 with respect to r, k, and t, then Eq. (2.83) can be
rewritten as

f1

τ
= −v∂f0

∂r −
∂k
∂t

∂f0

∂k . (2.84)

Using the definition of the electric force F = ~dk/dt = qE , where q = ±e is the unit
carrier charge and E is the electric field. The Boltzmann equation is then obtained as

f1

τ
= −v

(
∂µ

∂r
∂f0

∂µ
+ ∂T

∂r
∂f0

∂T

)
− qE

~

(
∂E

∂k
∂f0

∂E

)
. (2.85)

Substituting Eq.(2.75) and using the definition of the velocity v = 1/~(∂E/∂k) into
Eq. (2.85), we get

f1 = τv∂f0

∂E

(
∇µ+ E − µ

T
∇T − qE

)
. (2.86)

Eq. (2.86) is the solution of the Boltzmann equation and it applies equally well for
holes and electrons in a semiconductor.

2.3.2 One-band model

The number of charge carriers per unit volume in the range of energy from E to
E+ dE is f1g(E)dE, where f1 is the occupation probability of a carrier that given by
Eq. (2.86), and g(E) is the density of state (DOS). Because the carriers, with charge
q = −e for the electron and q = +e for the hole, move in the ith direction with a
velocity vi, the electric current density J is given by

J =
∫
qvf1g(E)dE. (2.87)
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Since E−µ represents the total energy transported by a carrier, the flux of the energy
W is given by

W =
∫

(E − µ)vf1g(E)dE. (2.88)

By inserting Eq.(2.86) into Eq.(2.87), we find that

J =
∫
qvτv∂f0

∂E

(
∇µ+ E − µ

T
∇T − qE

)
g(E)dE, (2.89)

and
W =

∫
(E − µ)vτv∂f0

∂E

(
∇µ+ E − µ

T
∇T − qE

)
g(E)dE. (2.90)

To find an expression for the electrical conductivity, we set a zero temperature
gradient ∇T = 0 and a zero carrier concentration gradient ∇µ = 0, so that the
electrical conductivity tensor σ is expressed by

σ = J
E

=
∫
−q2vτv∂f0

∂E
g(E)dE. (2.91)

Using the definition of the electric field E = −∇ϕ(r) and the chemical potential
µ(r) = Φ−qϕ(r), where Φ is the electrochemical potential, and ϕ(r) is the electrostatic
potential energy, Eq. (2.88) can be rewritten as

J =
∫
qvτv∂f0

∂E

(
∇Φ + E − µ

T
∇T
)
g(E)dE. (2.92)

For the thermopower, we set a non-zero temperature gradient ∇T 6= 0, when the
circuit is open and no electric current flows (i.e. J = 0 in Eq. (2.92)), then we obtain
the thermopower tensor S from Eq. (2.92) as

S = −∇V
∇T

= −1
q

∇Φ
∇T

= 1
qT

∫
qvτv∂f0

∂E
(E − µ)g(E)dE∫

qvτv∂f0

∂E
g(E)dE

. (2.93)

The electronic thermal conductivity tensor κe can be found with no current flows
(i.e. J = 0). Using Eq. (2.90), we get

κe = − W
∇T

= − 1
T

[∫
vτv∂f0

∂E
(E − µ)2g(E)dE

+

(∫
vτv∂f0

∂E
(E − µ)g(E)dE

)2

∫
vτv∂f0

∂E
g(E)dE

]
. (2.94)

All of the integrals that appear in Eqs. (2.91), (2.93), and (2.94) have the same
general form. They may be expressed conveniently as

Lα =
∫
−q2vτv∂f0

∂E
(E − µ)αg(E)dE. (2.95)
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Thus, the transport coefficients σ, S, and κe within the one-band model can be written
in terms of the integrals Lα as

σ = L0, (2.96)

S = 1
qT

L1

L0
, (2.97)

κe = 1
q2T

(
L2 −

L2
1
L0

)
. (2.98)

The calculation of Eq. (2.95) requires knowledge of the carrier velocity v(E) of the
energy band, the relaxation time τ(E), and the density of state g(E), which defined for
any semiconductors (Eqs. (2.27), (2.36), and (2.46) for 3D, 2D, and 1D, respectively).

v2(E) = 2E
m∗D

, (2.99)

τ(E) = τ0

(
E

kBT

)r
, (2.100)

g(E) = 1
L3−D2D−1πD/2Γ

(
D
2
) (2m∗

~2

)D/2
ED/2−1, (2.101)

where D = 1, 2, 3 denotes the dimension of the material, m∗ is the effective mass of
electrons or holes, r is a characteristic exponent, τ0 is the relaxation time constant,
and L is the confinement length for a particular material dimension.

Substituting Eqs. (2.99)-(2.101) into Eq. (2.95) yields

Lα = −4q2τ0(m∗)D/2−1

DL3−D(2π)D/2~DΓ(D2 )(kBT )r

×
∫
∂f0

∂E
Er+D/2

[
Eα −

(
α

1

)
Eα−1µ+

(
α

2

)
Eα−2µ2 + . . .

]
dE, (2.102)

where (
α

n

)
= Cαn = α!

n!(α− n)! for 0 ≤ n ≤ α, (2.103)

which is a specific positive integer known as a binomial coefficient. The integrals term
in Eq. (2.102) can be simplified using the product rule as∫

∂f0

∂E
EjdE = f0E

j
∣∣∞
0 − j

∫
f0E

j−1dE = −j
∫
f0E

j−1dE. (2.104)

Then using the reduced band energy ξ = E/kBT and the reduced chemical potential
η = µ/kBT , so that∫

∂f0

∂E
EjdE = −j(kBT )j

∫
f0ξ

j−1dξ = −j(kBT )jFj−1, (2.105)

where
Fj =

∫
f0ξ

jdξ, (2.106)
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which is called the Fermi-Dirac integral. Inserting Eq. (2.105) into Eq. (2.102) we get
after some calculation

Lα = −4q2τ0(m∗)D/2−1(kBT )D/2+α

DL3−D(2π)D/2~DΓ(D2 )

[
−(r + D

2 + α)Fr+D/2+α−1

+η
(
α

1

)
(r + D

2 + α− 1)Fr+D/2+α−2

−η2

(
α

2

)
(r + D

2 + α− 2)Fr+D/2+α−3 + . . .

]
, (2.107)

where η denotes the reduced chemical potential. Substituting Eq. (2.107) with α = 0
and 1 into Eqs. (2.96) and (2.97) we obtain the following formula for σ and S as

σ = L0 =
4q2τ0(m∗)D/2−1(kBT )D/2

(
r + D

2
)

DL3−D(2π)D/2~DΓ(D2 )
Fr+D/2−1, (2.108)

and

S = 1
qT

L1

L0
= −kB

q

(
η −

d
2 + r + 1
d
2 + r

×
Fd/2+r

Fd/2+r−1

)
. (2.109)

Now we consider the nondegenerate semiconductors that is applicable when η � 0.
In this case, the Fermi level lies within the band gap, we can thus use an approximation

Fj =
∫
f0ξ

jdξ =
∫ 1
eξ−η + 1ξ

jdξ

≈
∫ 1
eξ−η

ξjdξ = eη
∫
e−ξξjdξ = eηΓ(j + 1), (2.110)

where Γ(j) =
∫
e−ξξjdξ is the Gamma function. Eqs. (2.108) and (2.109) become

σ =
4q2τ0(m∗)D/2−1(kBT )D/2

(
r + D

2
)

Γ(D2 + r)
DL3−D(2π)D/2~DΓ(D2 )

eη, (2.111)

and

S = −kB

q

(
η −

d
2 + r + 1
d
2 + r

×
Γ(D2 + r + 1)

Γ(D2 + r)

)
. (2.112)

Using the recursion formula Γ(j + 1) = jΓ(j), Eq. (2.112) can be simply written as

S = −kB

q

(
η − D

2 − r − 1
)
. (2.113)

It is conventional to describe κe in terms of the Lorenz number L, which defined as
L = κe/σT . Then, from Eqs. (2.96) and (2.98),

L = 1
(qT )2

(
L2

L0
− L

2
1
L2

0

)
=
(
kB

q

)2(
r + D

2 + 2
)
. (2.114)
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We see that L is independent of the Fermi energy, but depends on the exponent r and
the dimension D in Eq. (2.100) for the nondegenerate semiconductors.

Now we turn to the degenerate semiconductors when η/kBT � 0. This means
that the Fermi level lies above the conduction-band bottom for electrons or below
the valence-band top for holes. In this case, the conductor is metallic. Thus, the
Fermi-Dirac integral can be expressed in the form of a rapidly converging series

Fj =
∫
f0ξ

jdξ = − 1
j + 1

∫
∂f0

∂ξ
ξj+1dξ

= − 1
j + 1

∫
∂f0

∂ξ

[
ηj+1 +

(
j

1

)
ηj(ξ − η) +

(
j

2

)
ηj−1(ξ − η)2 + . . .

]
dξ

= ηj+1

j + 1 + jηj−1π
2

6 + j(j − 1)(j − 2)ηj−3 7π4

360 + . . . .

(2.115)

The electrical conductivity of the degenerate semiconductor is found by inserting only
the first term in Eq. (2.115) into Eq. (2.108),

σ = 4q2τ0(m∗)D/2−1(kBT )D/2

DL3−D(2π)D/2~DΓ(D2 )
ηr+D/2. (2.116)

On the other hand, if only the first term in Eq. (2.115) is used, the thermopower
in Eq. (2.109) would be zero, which is consistent with the fact that most metals
have negligibly small values of the thermopower. To obtain a nonzero value for the
thermopower, the first two terms of Eq. (2.115) are used. Then we obtain

S = kB

q

π2

3

(
r + D

2
)

η
. (2.117)

The first two terms are also needed to obtain the Lorenz number, which is given by

L = π2

3

(
kB

q

)2
= 2.44× 10−8 WΩK−2. (2.118)

This shows that the Lorenz number is constant for strongly degenerate system and, in
particular, it should not depend on the scattering mechanisms or the dimensional ma-
terials. These features agree with the well-established Wiedemann-Franz-Lorenz law
which states that the ratio of the electronic contribution of the thermal conductivity
to electrical conductivity of a metal is proportional only to the absolute temperature,
and does not depend on materials.

2.3.3 Multi-band effect

In 1D nanowire with large width or 2D layer with large thickness, there are many
energy subbands that need to be taken into consideration due to the degeneracy of
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the multiple carrier pockets at the conduction band and valence band extrema for
a given energy (see Figs. 2.3 and 2.4). For a low-dimensional system, besides the
degeneracy effect, quantum confinement also introduces band splitting, and results
in a set of subbands that comes from a single band of the bulk materials. In such
a case, the one-band model does not work well to describe the thermoelectricity of
the low-dimensional systems. Therefore, contributions from all of the subbands with
band extrema that fall within a few kBT window around the Fermi energy need to be
included for the calculation of S, σ, and κe. For a multi-band system, Eqs. (2.96)-(2.98)
needs to be replaced by sum Lα,total =

∑
b Lbα of contributions from each subband b,

and the quantities of transports coefficients, we finally get

σtotal =
∑
b

Lb0, (2.119)

Stotal = 1
qT

∑
b

Lb1∑
b

Lb0
, (2.120)

κe,total = 1
q2T


∑
b

Lb2 −

(∑
b

Lb1

)2

∑
b

Lb0

 . (2.121)

The important example is to find the optimum thermopower values of semi-metal
or narrow-gap semiconductors in which there are significant contributions from both
the electrons in the conduction band and holes in the valence band. Another example
is found when there are comparable numbers of carriers of the same sign with different
effective masses, such as the light and heavy holes in p-type silicon. We now consider
the thermopower of multi-band to find the optimum thermopower values. We assumed
that there are two bands (one band from the conduction band and another one band
from the valence band) that make a significant contribution in the thermopower. We
thus obtain thermopower of two-band from Eqs. (2.119) and (2.120)

S = σnSn + σpSp
σn + σp

, (2.122)

where σn,p and Sn,p are the electrical conductivity and thermopower of the electron
(q = −e) and hole (q = +e) for the one-band model, respectively. For the nonde-
generate semiconductors, substituting σn,p in Eq. (2.111) and Sn,p in Eq. (2.113) into
Eq. (2.122) yields

S = kB

e

(
ηn −

D

2 − r − 1
)
σn
σp
−
(
ηp −

D

2 − r − 1
)

σn
σp

+ 1
. (2.123)
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Figure 2.14: Thermopower S of two bands as a function of the chemical potential µ and the
energy band gap Eg (A = 1, r = −1/2, and D = 3).

where σn/σp =
(
m∗n/m

∗
p

)D/2−1
eηn−ηp = Aeηn−ηp , with A =

(
m∗n/m

∗
p

)D/2−1, where
m∗n and m∗p are the effective masses for electron and hole of conduction band and va-
lence band, respectively. Here we have ηn−ηp = 2µ/(kBT ) and ηn+ηp = −Eg/(kBT ),
where µ is the Fermi level and Eg is the energy band gap. The thermopower of the
nondegenerate semiconductors within the two-band approximation can then be written
in terms of µ, Eg, r, D, and A from Eq. (2.123) as

S = kB
e

(
µ

kBT
− Eg

2kBT
− r − D

2 − 1 + Eg/kBT + 2r +D + 2
Ae2µ/kBT + 1

)
. (2.124)

If we suppose for the moment that A is equal to unity, S will be zero when the
Fermi level is at the center of the energy gap (µ = 0). On the other hand, as the
Fermi level moves just a few kBT toward the conduction band or valence band edges,
the ratio of the electron to hole concentration becomes very large or very small and
the thermopower is dominated by the contribution from one carrier or the other, as
shown in Fig. 2.14. Therefore, the optimum thermopower is clearly quite close to S
from one carrier at µ = 0 or ηn,p = −Eg/2kBT , which is

Sopt = kB

q

(
Eg

2kBT
+ D

2 + r + 1
)
∼ Eg

2qT . (2.125)

We note that S in Eq. (2.113) is used in this case because the Fermi level lies within
the energy band gap (i.e. the nondegenerate semiconductors). For a more practical
argument for designing thermoelectric material, we can determine a condition to obtain
an optimized Fermi level, which satisfies dS(µopt)/dµ = 0. In practice, we will discuss
the optimized Fermi level and the optimized thermopower for many semiconducting
carbon nanotubes with both analytical and numerical calculations in Chapter 4.

Fig. 2.14: Fig/chapter2-fig14.pdf





Chapter 3

Power factor of low-dimensional
semiconductors

In this Chapter, we give an analytical formula for the optimum PF value which
can show the interplay between the quantum confinement length and the thermal de
Broglie wavelength in low-dimensional semiconductors (see an illustration in Fig. 3.1).
We apply the one-band model (see in Chapter 2) with the relaxation time approxima-
tion (RTA) to derive the analytical formula for the PF of nondegenerate semiconduc-
tors. The justification for the one-band model with the RTA was already given in some
earlier studies, which concluded that the model was accurate enough to predict the
thermoelectric properties of low dimensional semiconductors, such as semiconducting
carbon nanotubes (s-SWNTs) [34], Bi2Te3 thin films [7], and Bi nanowires [7, 35].
To obtain the PF formula in this work, we use similar analytical expressions for the
Seebeck coefficient S and the electrical conductivity σ based on one-band model which
were derived in Chapter 2.

3.1 Optimum power factor of non-degenerate semiconductors

As discussed earlier in Chapter 2, the thermopower (or the Seebeck coefficient) S and
the electrical conductivity σ are given, respectively, by Eqs. (2.111) and (2.113) (see
Ref. [34])

S = −kB

q

(
η − r − D

2 − 1
)
, (3.1)

and

σ =
4q2τ0

(
r + D

2
)

(kBT )D/2Γ(r + D
2 )

DL3−D(2π)D/2~DΓ(D2 )
(m∗)D/2−1eη, (3.2)

where D = 1, 2, 3 denotes the dimension of the material, q = ±e is the unit carrier
charge, T is the average absolute temperature, m∗ is the effective mass of electrons

Fig. 3.1: Fig/chapter3-fig1.pdf
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Figure 3.1: An illustration of the interplay between the quantum confinement length L and
the thermal de Broglie wavelength Λ in low-dimensional materials.

or holes, τ0 is the relaxation time coefficient, r is a characteristic exponent of the
energy-dependent relaxation time τ(E) (see below), L is the confinement length for
a particular material dimension, Γ(t) =

∫∞
0 xt−1e−xdx is the Gamma function, η =

ζ/kBT is the dimensionless chemical potential (while ζ is defined as the chemical
potential measured from top of the valence energy band in a p-type semiconductor),
kB is the Boltzmann constant, and ~ is the Planck constant. From Eqs. (3.1) and (3.2),
the thermoelectric power factor can be written as

PF ≡ S2σ = A(η − C)2eη, (3.3)

where A (in units of W/mK2) and C (dimensionless) are given by

A = 4τ0k2
B

L3m∗

(
L

Λ

)D (r + D
2
)

Γ
(
r + D

2
)

D Γ
(
D
2
) , (3.4)

and
C = r + D

2 + 1, (3.5)

respectively, with Λ = (2π~2/kBTm
∗)1/2 is known as the thermal de Broglie length,

which is a measure of the thermodynamic uncertainty for the localization of a parti-
cle of mass m∗ with the average thermal momentum ~(2π/Λ) [36]. In Eq. (3.2) we
consider an isotropic system in which the carrier relaxation time is assumed to follow
a power law dependence on energy, i.e., τ(E) = τ0(E/kBT )r [37, 38]. Note that the
characteristic exponent, r, depends on the scattering mechanisms and the relaxation
time coefficient, τ0, has the units of time. For example, when the acoustic phonon scat-
tering is considered to be the dominant scattering mechanism, then r = +0.5, r = 0,
and r = −0.5 are typical values for D = 1, 2, 3 three materials, respectively [37, 38].
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Figure 3.2: The power factor as a function of the reduced chemical potential η.

For a given τ(E), the carrier mobility is defined by

µ = q〈〈τ(E)〉〉
m∗

, (3.6)

where
〈〈τ(E)〉〉 ≡ 〈Eτ(E)〉

〈E〉
, (3.7)

where 〈x〉 =
∫∞

0 xe−E/kBTdE is a canonical average of x. Here, the quantity 〈〈τ(E)〉〉
is introduced to make an energy-dependent relaxation time. When we insert τ(E) in
power law form as τ(E) = τ0[E(k)/kBT ]r in Eq. (3.7), we find

〈〈τ(E)〉〉 = τ0

∫∞
0 (k2/2m∗kBT )re−k2/2m∗kBTk4dk∫∞

0 e−k2/2m∗kBTk4dk
. (3.8)

With the substitution, y = k2/2m∗kBT ,

〈〈τ(E)〉〉 = τ0

∫∞
0 yr+3/2e−ydy∫∞

0 y3/2e−ydy
. (3.9)

After recalling the definition of the Gamma function, Γ(t) =
∫∞

0 xt−1e−xdx, we can
rewrite Eq. (3.7) as

〈〈τ(E)〉〉 = τ0
Γ
( 5

2 + r
)

Γ
( 5

2
) . (3.10)

From Eqs. (3.4), (3.6) and (3.10), the term A of the power factor can be rewritten
as

A = 4µk2
B

qL3

(
L

Λ

)D (r + D
2
)

B
(
r, 5

2
)

DB
(
r, D2

) , (3.11)

Fig. 3.2: Fig/chapter3-fig2.pdf
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where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function. We can now determine the
optimum power factor as a function of η from Eq. (3.3) by solving d(PF )/dη = 0.
The optimum power factor, PFopt, and the corresponding value for the reduced (or
dimensionless) chemical potential, ηopt, are given, respectively, by

PFopt = 16µk2
B

qL3

(
L

Λ

)D (r + D
2
)

B
(
r, 5

2
)

DB
(
r, D2

) er+D/2−1, (3.12)

and
ηopt = r + D

2 − 1. (3.13)

Figure 3.2 shows the power factor as a function of the dimensionless chemical
potential η. Since η is measured from the top of the valence band, ηopt < 0 (ηopt > 0)
corresponds to a condition in which the Fermi energy is located inside (outside) the
energy band gap. Here we assume that the energy gap is much larger than kBT for
the non-degenerate semiconductors. For example, in the 1D system, if r and D are
taken to be 0 and 1, respectively, Eq. (3.13) gives ηopt = − 1

2 which means that ηopt

is located around 1
2kBT below the top of the valence band. Since the values of the

characteristic exponent r in the description of τ(E) are ranging from −0.5 to 1.5 for
various scattering processes [37, 38, 39, 40], we find that the range of the ηopt values
would be (−1, 1), (− 1

2 ,
3
2 ), and (0, 2) for the 1D, 2D, and 3D systems, respectively.

Therefore, the small ηopt value will make position of the Fermi energy very close
(within a few kBT ) to the valence band edge for the p-type semiconductor [41]. It
is noted that for an n-type semiconductor, we can redefine η or ζ to be measured
from the bottom of the conduction band. We should be careful that if we consider 1D
and 2D systems having quite large confinement length L such that many subbands
contribute to the transport properties, the electronic density-of-states would resemble
the 3D system [42]. In such a case, the one-band model does not work well to describe
the thermoelectricity because several subband energies fall within a few kBT window
around the Fermi energy, which is beyond the scope of this work.

3.2 Effect of energy-dependent relaxation time on power
factor

Next, we discuss some cases where the optimum power factor PFopt may be enhanced
significantly. Fig. 3.3 shows PFopt as a function of the characteristic exponent r for
the 1D, 2D, and 3D systems, in which the values of r range from −0.5 to 1.5 for various
scattering processes [37, 38]. In these examples, we consider a typical semiconductor,
n-type Si, at room temperature and high-doping concentrations on the order of 1018

cm−3. The thermal de Broglie wavelength and the carrier mobility are set to be

Fig. 3.3: Fig/chapter3-fig3.pdf



3.3. Quantum and classical size effects on power factor 47

-��� ��� ��� ��� ���
�����
�����
�����
�����
�����
�����
�����
�����

r

1D (L = 2 nm)
3D

PF
op

t (
W

/m
K2

)
2D (L = 4.5 nm)

C
RT

A

1D (L = 4.5 nm)2D (L = 2 nm)
2D (L = 7 nm)

1D (L = 7 nm)

Figure 3.3: Optimum power factor as a function of characteristic exponent for the 1D, 2D,
and 3D systems. The thermal de Broglie wavelength is set to be Λ = 4.5 nm (for n-type Si)
and the mobility is µ = 420 cm2/Vs. The confinement length L is varied for the 1D and 2D
systems, each for L = 2 nm, L = Λ (4.5 nm), and L = 7 nm. The value of r = 0 corresponds
to the constant relaxation time approximation (CRTA).

Λ = 4.5 nm and µ = 420 cm2/Vs, respectively. We note that the scattering time
assumed under the constant relaxation time approximation (CRTA) corresponds to
r = 0, and thus 〈〈τ(E)〉〉 ≡ τ0 [43]. As shown in Fig. 3.3, PFopt increases with
increasing r for all the 1D, 2D, and 3D systems. The effect of the characteristic
exponent r on the 3D system is stronger than that of the 1D and 2D systems. Based
on Eq. (3.12) and Fig. 3.3, PFopt increases with decreasing L which corresponds to
the confinement effect for the 1D and 2D systems. It is noted in Fig. 3.3 that PFopt

in the 3D system does not depend on L as shown in Eq. (3.12) with D = 3. However,
the qualitative behaviour between r and PFopt is not much affected by changing L
since r and L are independent of each other in Eq. (3.12).

3.3 Quantum and classical size effects on power factor

Figure 3.4 shows PFopt as a function of confinement length L and thermal de Broglie
wavelength Λ for the 1D, 2D, and 3D systems. The mobility is set to be µ = 420
cm2/Vs for all systems and the scattering rate may be proportional to be the density
of final states. The assumption of proportionality of the scattering rate with respect to
the density of states, the scattering rate corresponds to r = +0.5, r = 0 and r = −0.5
for 1D, 2D, and 3D systems, respectively [38]. The curves in the left and middle
panel of Fig. 3.3 particularly show a L−2 and L−1 dependence of the power factor for
1D and 2D systems, respectively [Eq. (3.12)]. These results are in good agreement
with the model by Hicks and Dresselhaus [7, 8]. It is important to point out that

Fig. 3.4: Fig/chapter3-fig4.pdf
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Figure 3.4: Optimum power factor PFopt as a function of confinement length L and thermal
de Broglie wavelength Λ for (a) 1D, (b) 2D, and (c) 3D systems.

the dependence of PFopt on Λ also needs to be considered. For an ideal electron gas
under the trapping potential, the thermodynamic uncertainty principle may roughly
be expressed as ∆P/P ×∆V/V ≥ (D3/2/

√
2π)Λ/L, where P and V are the pressure

and volume of the system, respectively (see in Appendix A). The uncertainty principle
ensures that when the confinement length is comparable with the thermal de Broglie
wavelength, i.e., L ≤ (D3/2/

√
2π)Λ, the P and V cannot be treated as commuting

observables. In this case, the quantum effects play an important role in increasing
PFopt for nanostructures. For the 1D system [Fig. 3.4 (a)] PFopt starts to increase
significantly when L is much smaller than Λ, while for the 2D system [Fig. 3.4 (b)]
PFopt starts to increase significantly when L is comparable to Λ. As for the 3D
system [Fig. 3.4 (c)], PFopt increases with decreasing Λ for any L values. Therefore,
a nanostructure having both small L and Λ (while L is also much smaller than its Λ)
will be the most optimized condition to enhance PF .

Now we can compare our model with various experimental data. In Fig. 3.5, we
show PFopt (Eq. (3.12)) as a function of L/Λ for different dimensions (1D, 2D, and
3D systems). The PFopt values are scaled by the optimum power factor of a 3D
system, PF 3D

opt. From Eq. (3.12), we see that the ratio PFopt/PF
3D
opt merely depends

on L/Λ and D. Hence, PF from various materials can be compared directly with the
theoretical curves shown in Fig. 3.5. The experimental data in Fig. 3.5 are obtained
from the PF values of 1D Bi nanowires [11], 1D Si nanowires [10], 2D Si quantum
wells [44], and two different experiments of 2D PbTe quantum wells labeled by PbTe–
1 and PbTe–2 [45, 46]. Here we use fixed parameters for the thermal de Broglie
wavelength of each material: ΛBi = 32 nm, ΛSi = 4.5 nm, and ΛPbTe = 5 nm. We
also set some PF values for 3D systems: PF 3D

Bi = 0.002 W/mK2 [11], PF 3D
Si = 0.004

Fig. 3.5: Fig/chapter3-fig5.pdf
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Figure 3.5: PFopt/PF
3D
opt as a function of L/Λ for different dimensions. The L/Λ axis is given

using a logarithmic scale. Theoretical results for 1D, 2D, and 3D systems are represented
by dashed, dotted, and solid lines, respectively. Asterisks, pentagons, diamonds, circles, and
triangles denote experimental results for 1D Si nanowires [10], 1D Bi nanowires [11], 2D Si
quantum wells [44], 2D PbTe–1 quantum wells [45], and 2D PbTe–2 quantum wells [46],
respectively. For the experimental results, we set the thermal de Broglie wavelength of
each material as: ΛBi = 32 nm, ΛSi = 4.5 nm, and ΛPbTe = 5 nm. We also have the
following PF values for 3D systems: PF 3D

Bi = 0.002 W/mK2 [11], PF 3D
Si = 0.004 W/mK2 [47],

PF 3D
PbTe−1 = 0.002 W/mK2 [45], and PF 3D

PbTe−2 = 0.003 W/mK2 [46].

W/mK2 [47], PF 3D
PbTe−1 = 0.002 W/mK2 [45], and PF 3D

PbTe−2 = 0.003 W/mK2 [46],
which are necessary to put all the experimental results into Fig. 3.5.

We find that the curves in Fig. 3.5 demonstrate a strong enhancement of PFopt in
1D and 2D systems when the ratio L/Λ is smaller than unity (or L < Λ). In contrast,
if L is larger than Λ, the bulk 3D semiconductors may give a larger PFopt value than
the lower dimensional semiconductors, as shown in Fig. 3.5 up to a limit of L/Λ ≈ 2.
We argue that such a condition is the main reason why an enhanced PF is not always
observed in some materials although experimentalists have reduced the size of material.
For example, in the case of 1D Si nanowires, where we have ΛSi ∼ 4.5 nm, we can see
that the experimental PF values in Fig. 3.5 are almost the same as the PF 3D

opt. The
reason is that the diameters (supposed to represent L) of the 1D Si nanowires, which
were about 36–52 nm in the previous experiments [9, 10], are still too large compared
with ΛSi. It might be difficult for experimentalists to obtain a condition of L < Λ for
the 1D Si nanowires. In the case of materials having larger Λ, e.g., Bi with ΛBi ∼ 32
nm, the PF values of the 1D Bi nanowires can be enhanced at L < Λ, which is already
possible to achieve experimentally [11]. Furthermore, when L � Λ, it is natural to
expect that PFopt of 1D and 2D semiconductors resemble PF 3D

opt as shown by some
experimental data in Fig. 3.5. It should be noted that, within the one-band model, we
do not obtain a smooth transition of PFopt in Fig. 3.5 from the lower dimensional to
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Figure 3.6: Thermal de Broglie wavelength as a function of effective mass m∗/m0 (m0 is the
mass of a free electron) for several different temperature values.

the 3D characteristics for large L because we neglect contributions coming from many
other subbands responsible for the appearance of the 3D density of states [42].

So far, we have used the confinement length L as an independent parameter in
Eq. (3.12). However, for extremely thin films or nanowires, L is expressed by two
components as L = L0 + ∆L, where L0 is the thickness of the material and ∆L is
the size of the evanescent electron wavefunction beyond the surface boundary. Within
the box of L0 the electron wavefunction is delocalized, approximated by the linear
combination of plane waves, while within ∆L the electron wavefunction is approxi-
mated by evanescent waves. For a single-layered material, e.g., a hexagonal boron
nitride (h-BN) sheet, L0 ≈ 0 so that L ≈ ∆L = 0.333 nm [48]. As for ultra-thick
1D nanowires or 2D thin films, we have L� ∆L, and thus the confinement length is
mostly determined by the size of the material such as L ≈ L0. Creating a 1D channel
from a 2D material by applying negative gate voltages on two sides of the 2D material
can be an example to engineer the confinement length [49]. However, unlike L, which
can be controlled by engineering techniques within the same material, the thermal de
Broglie wavelength Λ is temperature-dependent and intrinsic for each material. As
shown in Fig. 3.6, we can see that Λ decreases (∝ T−1/2 or m∗−1/2) with increasing
temperature T or with increasing effective mass m∗, which indicates that the PFopt

[∝ (L/Λ)D] of nondegenerate semiconductors would be enhanced at higher T or at
larger m∗ (smaller Λ). This result is consistent with the experimental observations
for the PF values of Si and PbTe, which are monotonically increasing as a function
of temperature [10, 47, 50]. It should be noted that Λ is not necessarily independent
of L and D because the term m∗ may be altered by varying L or by changing D.

Fig. 3.6: Fig/chapter3-fig6.pdf
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This fact might contribute to the small discrepancy between the PF values from our
theory and those from experiments since we set Λ as a fixed quantity upon variation
of L in 1D and 2D systems (see Fig. 3.5). For the 3D system, the theoretical values
(PF 3D

Bi = 0.0019 W/mK2 and PF 3D
Si = 0.0044 W/mK2) are in good agreement with

the experimental data (PF 3D
Bi = 0.002 W/mK2 [11] and PF 3D

Si = 0.004 W/mK2 [47]).





Chapter 4

Thermopower of semiconducting
single wall carbon nanotubes

In this Chapter, we show the thermopower (or Seebeck coefficient) of many semicon-
ducting single wall carbon nanotubes (s-SWNTs) by using the Boltzmann transport
formalism combined with an extended tight-binding model. We also derive an analyt-
ical formula to reproduce the numerical calculation of the thermopower and we find
that the thermopower of a given s-SWNT is directly related with its energy band gap.
The formula explains the dependence of the thermopower as a function of tube diam-
eter. We find that the thermopower of s-SWNTs increases with decreasing the tube
diameter. The large thermopower values may be attributed to the one dimensionality
of the nanotubes and to the presence of large energy band gaps of the small-diameter
s-SWNTs.

4.1 Model and computational details

To utilize the single wall carbon nanotubes (s-SWNTs) as a main material in future
thermoelectric devices, we consider a model shown in Fig. 4.1, in which two identical
s-SWNTs, one with p-type and the other with n-type doping, are connected in parallel.
Each s-SWNT should maintain its electronic charge distribution in the nonequilibrium
state, for example, by a temperature gradient along the tube axis. By having their
temperature gradient ∇T from an edge of each s-SWNT to its other edge, charge
carriers (electrons or holes) will flow with velocity v from the hot edge with tempera-
ture Thot to the cold edge with temperature Tcold. The carrier distribution f0, which
depends on the electronic energy ε and chemical potential µ, is modified as a func-
tion of ε, following the Boltzmann transport formalism. Within such a process, an
electric voltage ∇V can be generated. It is also known from earlier studies that the

Fig. 4.1: Fig/chapter4-fig1.pdf
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Figure 4.1: Schematic model of a thermoelectric device using two identical s-SWNTs, one
with p-type and the other with n-type doping. The temperature gradient between the two
edges of each nanotube generates an electric current.

electron-phonon interaction is the main factor determining the electrical conductivity
of SWNTs [51, 52, 53], in which the so-called twisting (TW) phonon mode with a long
wavelength gives the dominant contribution to the electron-phonon interaction. In
particular, Jiang et al. showed that the relaxation time from the electron scattering
with the TW phonon mode is independent of the electron energy [53]. Therefore, here
we make the assumption that the thermopower from the Boltzmann transport equa-
tion can be obtained by applying the relaxation time approximation (RTA) and we
may even treat the relaxation time as a constant. Under the RTA, the thermopower
or Seebeck coefficient S is expressed by Eq. (2.93) (see in Chapter 2)

S = 1
qT

∫
qvτv∂f0

∂E
(E − µ)g(E)dE∫

qvτv∂f0

∂E
g(E)dE

. (4.1)

where q = ±e is the unit carrier charge, T = (Thot + Tcold)/2 is the average absolute
temperature, v is the carrier velocity, τ is the carrier relaxation time, g(E) is the
density of state (DOS), and µ is the chemical potential.

We employ both numerical and analytical methods to obtain S from Eq. (4.1). In
the full numerical approach, we can use the BoltzTraP code [54], which is a widely-
used package to calculate some thermoelectric properties, such as the thermopower
and electrical conductivity. A necessary input for the BoltzTraP code is the electronic
energy dispersion E(k) for all bands (multiband structure) (see in Appendix B). The
BoltzTraP code also adopts a constant τ , which is fitted to the case of s-SWNTs. While
the BoltzTraP code is actually sufficient for obtaining the thermopower from Eq. (4.1),
we cannot discuss the physics of the thermopower of s-SWNTs without having an
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explicit formula for the thermopower that depends on some physical parameters, such
as the SWNT energy band gap and geometrical structure. Therefore, we also solve
Eq. (4.1) analytically by considering the valence band and the conduction band closest
to the Fermi level, known as the two-band model [13, 55]. The derivation of the
analytical formula is explained in detail in Chapter 2.

As the input for the BoltzTraP code, we calculate the energy dispersion E(k) within
the extended-tight binding (ETB) model which was developed in our group [29]. The
ETB model takes into account long-range interactions, SWNT curvature corrections,
and geometrical structure optimizations, which are sufficient to reproduce the exper-
imentally observed energy band gaps of the SWNTs [29, 56]. The SWNT structure
in our notation is denoted by a set of integers (n,m) which is a shorthand for the
chiral vector Ch = na1 +ma2 [Eq. (2.51)], where a1 and a2 are the unit vectors of an
unrolled graphene sheet (see in Chapter 2). The chiral vector Ch defines the circum-
ferential direction of the tube, giving the diameter dt. Another vector perpendicular
to Ch defines the tube axis, which is called the translational vector T [Eq. (2.54)]. The
chiral and translational vectors thus represent the tube unit cell. In the BoltzTraP
calculation, we use a 20 nm×20 nm×|T| supercell, where |T| (in nm) is the length of
the translational vector. A large supercell length in the x- and y-directions is chosen so
as to guarantee the one-dimensionality of the SWNTs. Since the thermopower in the
BoltzTraP code is expressed in terms of a tensor [54], the corresponding thermopower
tensor component for a given s-SWNT is Szz, which is the thermopower along the
tube axis direction. Other tensor components are negligible.

4.2 Effects of temperature and chemical potential on
thermopower of s-SWNTs

In Fig. 4.2, we show a first example of the thermopower calculation result for an
(11, 0) s-SWNT. The thermopower (Szz) is plotted versus chemical potential and tem-
perature. We see that the thermopower is higher at the lower temperature because
S ∝ 1/T in Eq. (4.1). The maximum thermopower obtained for the (11, 0) SWNT is
about 1420 µV/K, which is already large for a purely individual s-SWNT compared
to that for bundled SWNTs with S of around 100–200 µV/K [21, 23]. Next, we can
also plot the thermopower at a specific temperature to see the chemical potential
dependence of the thermopower. In Fig. 4.3, we show the thermopower versus chem-
ical potential for three different s-SWNT chiralities: (11, 0), (12, 4), and (15, 5), at
T = 300 K. The solid lines in Fig. 4.3 represent the numerical results. For all chi-
ralities, the optimum value of the thermopower, indicated by a maximum (minimum)
along the negative (positive) axis of the chemical potential, arises due to the p-type

Fig. 4.2: Fig/chapter4-fig2.pdf
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Figure 4.2: Thermopower as a function of chemical potential and temperature for an (11, 0)
s-SWNT.
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Figure 4.3: Thermopower as a function of chemical potential for (11, 0), (12, 4), and (15,
5) at T = 300 K. Solid lines are obtained from the numerical calculation based on Eq. (4.1)
while dashed lines are obtained from the analytical formula given in Eq. (4.2).

(n-type) characteristics of the s-SWNTs, which is consistent with a recent experimen-
tal observation [23]. The dependence of the thermopower on the chemical potential
implies that it is possible to tune the thermoelectric properties of the s-SWNTs by
applying a gate voltage, giving p-type and n-type control over the thermopower.

In order to understand the numerical results of thermopower, we have derived
an analytical formula for the thermopower within the two-band model [13, 55]. It
note that the thermopower is linear function with the chemical potential within only
one band, the contribution of two bands is thus required to get the optimum of the

Fig. 4.3: Fig/chapter4-fig3.pdf
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Figure 4.4: Coefficient A =
(
m∗n/m

∗
p

)−1/2 for s-SWNTs plotted as a function of the SWNT
diameter. SI and SII tubes correspond to the SWNTs having mod (2n + m, 3) = 1 and 2,
respectively. Solid lines connect SWNTs with the same 2n+m value.

thermopower in the s-SWNTs. In the Chapter 2, the thermopower (or the Seebeck
coefficient) S based on two-band model are given by Eq. (2.124) (see Ref. [34])

S = kB
e

(
µ

kBT
− Eg

2kBT
− r − D

2 − 1 + Eg/kBT + 2r +D + 2
Ae2µ/kBT + 1

)
. (4.2)

where e is the elementary electric charge, µ is the chemical potential, Eg is the band
gap, r is the characteristic exponent which depends on the scattering mechanisms, and
D = 1, 2, 3 denotes the dimension of the material. The coefficient A is expressed by

A =
(
m∗e
m∗h

)D
2 −1

, (4.3)

where m∗e and m∗h are the effective masses for electron and hole of conduction band
and valence band, respectively.

We now finally have all the information needed to derive the thermopower SCNT

of the s-SWNTs. Since s-SWNTs are one-dimensional (1D), we have D = 1 and
A = (m∗e/m∗h)−1/2. The electron and hole effective masses m∗e,h in the s-SWNTs can
be calculated using the effective mass formula

m∗ = ~2
(

d2E

dk2

)−1

, (4.4)

where E(k) is the electronic energy dispersion within the extended tight binding (ETB)
model [29]. We can obtain A as a function of diameter, as can be seen in Fig. 4.4,
in which we show A within a diameter range of 0.5–1.5 nm. In this diameter range,
we have A ≈ 1. With such an approximation, and also assuming that the carrier

Fig. 4.4: Fig/chapter4-fig4.pdf
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relaxation time is the constant relaxation time approximation (CRTA) [43] (which
gives r = 0), the thermopower of s-SWNTs is then given by

SCNT = kB

e

(
µ

kBT
− Eg

2kBT
− 3

2 + Eg/kBT + 3
e2µ/kBT + 1

)
. (4.5)

The Eg values adopted in Eq. (4.5) are obtained from previous ETB results [29]. We
note that the reason why we put r = 0 is that the electron relaxation time τ in the s-
SWNTs is determined mainly by the electron-phonon interaction with the TW phonon
mode, where the relaxation time is taken to be independent of the electron energy [53].
Therefore, we can write τ ≡ τ0 under the CRTA or equivalently r = 0.

The dashed lines in Fig. 4.3 represent the fit of the numerical results of the ther-
mopower using Eq. (4.5) for three different s-SWNT chiralities. The analytical formula
[Eq. (4.5)] fits to the numerical results near µ = 0. In particular, the two optimum
thermopower values (maximum and minimum for p-type and n-type doping, respec-
tively) can be well-reproduced in that region, which implies that the energy bands near
the Fermi level give the strongest contribution to the thermopower of s-SWNTs. The
analytical results deviate from the numerical results at larger |µ| far from the optimum
thermopower because the two-band model is no longer valid at a higher doping level.
However, for the discussion in this paper, the two-band model is already sufficient
to describe the thermopower of s-SWNTs since we will mainly focus on the optimum
values of the thermopower.

For a more rigorous argument, we determine a condition to obtain an optimized
chemical potential µopt from Eq. (4.5), which satisfies

dSCNT(µopt)/dµ = 0. (4.6)

We then obtain

µopt = kBT

2 ln
(
Eg
kBT

+ 2±
√( Eg

kBT
+ 2
)2
− 1
)
, (4.7)

where the + and − signs define the n-type and p-type contributions, respectively.
From Eq. (4.7), we can say that the µopt values will move more distant from µ = 0 as
Eg becomes larger than kBT , as shown in Fig. 4.5 (a). However, due to the presence
of the logarithmic term, µopt is very slowly changing as a function of Eg when Eg is
much larger than kBT . This behavior can be seen in Fig. 4.5 (b), in which we show the
Eg dependence of µopt. For the dt range of 0.5–1.5 nm, the s-SWNTs have Eg values
of about 1.58 eV down to 0.46 eV. In this case, Eg is about 17–61 times larger than
kBT for T = 300 K. With those Eg values, we then obtain 0.046 < |µopt| < 0.062 eV
at a constant T = 300 K [see Fig. 4.5 (b)], which implies that the change in µopt in this
case is only about 16 meV although the change in Eg is as large as about 1.12 eV for

Fig. 4.5: Fig/chapter4-fig4.pdf
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Figure 4.5: The optimized chemical potential µopt plotted as a function of the energy band
gap of s-SWNTs. In panel (a), we scale the chemical potential and the band gap by kBT/2
and kBT , respectively, as described by Eq. (4.7). In the case of (b), we set a constant T = 300
K and vary Eg, while in (c) we set a constant Eg = 0.913 eV, which is the energy band gap
value of an (11, 0) s-SWNT, and vary the temperature.

the same dt range. At room temperature, controlling the doping level or the chemical
potential is thus useful to give us the optimum thermopower for the s-SWNTs under
consideration. On the other hand, by decreasing T for a given Eg, we can also decrease
µopt, as shown in Fig. 4.5 (c), which is required to obtain the optimum thermopower.
It should be noted that in Fig. 4.5 (c) we intentionally set a constant Eg = 0.913 eV
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Figure 4.6: (a) Optimum thermopower Sopt
CNT values for all s-SWNTs within the diameter

range of 0.5–1.5 nm plotted as a function of SWNT diameter. The temperature is set constant
at 300 K. Numerical results from BoltzTraP are denoted by circles, while analytical results
from Eqs. (4.2)-(4.7) are denoted by plus symbols. (b) The Kataura plot showing the family
pattern of the SWNT band gap as a function of diameter. Solid lines are a guide for the eyes,
connecting SWNTs with the same family number 2n+m. The SI and SII tubes correspond
to the SWNTs having mod (2n+m, 3) = 1 and 2, respectively.

for simplicity although the s-SWNT band gaps in the realistic case may decrease as a
function of temperature by about 3% when we increase T from 200 K to 800 K [57].

4.3 Diameter-dependent thermopower of s-SWNTs

Fig. 4.6: Fig/chapter4-fig5.pdf
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Using both the numerical calculation by BoltzTraP and our analytical formula SCNT,
it is now possible for us to plot the thermopower of s-SWNTs over a broad range of dt
by taking the optimum value of the thermopower. In the case of the analytical formula,
we define the optimum thermopower Sopt

CNT from Eqs. (4.2) and (4.7), as follows

Sopt
CNT = SCNT(µ = µopt). (4.8)

In Figs. 4.6 (a-b), we show the optimum thermopower values of many s-SWNTs with
0.5 ≤ dt ≤ 1.5 nm compared with their corresponding band gaps as a function of
diameter. In Fig. 4.6 (a), we plot the optimum thermopower calculated from the
BoltzTrap simulation (denoted by circles) and from Sopt

CNT (denoted by plus symbols)
on the same scale. We can see that the two methods show a good agreement. From
Fig. 4.6 (a), the thermopower of s-SWNTs is also found to increase as the tube diameter
dt decreases. For some s-SWNTs with dt < 0.6 nm, such as those with 2n+m = 13,
i.e. the (5, 3) and (6, 1) s-SWNTs, the thermopower can reach a value more than
2000 µV/K. These thermopower values are about 6–10 times larger than those found
in common thermoelectric materials [9, 10, 20, 58].

The larger thermopower for smaller-diameter s-SWNTs can be explained by the
relation of SCNT with Eg as shown in Eq. (4.2) and by the fact that Eg ∝ 1/dt [59].
The one-dimensional character of the SWNT electronic DOS may also enhance the
thermopower [7, 8]. Here, we should note that the thermopower of s-SWNTs as a
function of diameter shows the nanotube family pattern, in which the different SWNTs
with the same 2n+m can be connected and they make a clearly distinct branch for
mod (2n + m, 3) = 1 and mod (2n + m, 3) = 2, known as the nanotube SI and SII
family branches, respectively [59]. This behavior is very similar to that found in the
band gap as a function of diameter shown in Fig. 4.6 (b), which is often referred to as
the Kataura plot [59, 33, 30]. This result also suggests that the measurement of the
thermopower of a single chirality s-SWNT sample might be able to predict an exact
band gap value of the s-SWNT. In fact, the band gap is directly connected to the
thermopower as can be seen in the SCNT formula [Eq. (4.2)].

4.4 Comparison between numerical and analytical methods

To verify the accuracy of the Sopt
CNT in fitting the numerical results of the s-SWNT

thermopower, we show in Fig. 4.7 the difference of the thermopower obtained from
the analytical and numerical calculations in terms of the error percentage. This error
percentage variable is defined by the difference in the thermopower calculated by using
the Sopt

CNT formula with respect to the numerical results for each s-SWNT diameter.
We obtain the error values ranging from −2% to 4% for both p-type and n-type s-
SWNTs. The error values increase with the increase of the tube diameter because

Fig. 4.7: Fig/chapter4-fig6.pdf
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Figure 4.7: The percentage error, or the discrepancy between the analytical and the numerical
results of the thermopower calculations for each s-SWNT, is plotted versus the SWNT diam-
eter. The discrepancy increases linearly with increasing the SWNT diameter, as indicated by
the fitted dashed lines.

Eg ∝ 1/dt and also because the formula for SCNT [Eq. (4.2)] was derived by assuming
s-SWNTs as non-degenerate semiconductors. Therefore, larger band gaps or smaller
diameter s-SWNTs should be more accurately fitted by our SCNT approximation.



Chapter 5

Conclusions

In this thesis, we have discussed theoretical calculation for the thermoelectric proper-
ties of low-dimensional semiconductors. Calculations have been performed particularly
for the thermoelectric power factor of the 1D, 2D, and 3D systems based on the one-
band model and the thermopower of individual s-SWNTs with many diameters using
the Boltzmann transport formalism combined with the extended tight-binding model.
In order to understand the transport properties in thermoelectricity such as the electri-
cal conductivity, the electronic thermal conductivity, and the thermopower, we need a
detailed knowledge of the electronic structure, the carrier velocity of the energy band,
the relaxation time, and the density of state. In this thesis, we have developed both
numerical and analytical calculations for the thermopower and the power factor of
low-dimensional semiconductors. Our finding can then be divided into two parts as
follows.

Quantum effects on thermoelectric power factor of low-dimensional
semiconductors

We have shown that the largest power factor PF values might be obtained for low-
dimensional systems by decreasing both the confinement length L and the thermal de
Broglie wavelength Λ while keeping L < Λ. Depending on the dimension of materials,
there is a different interplay between L and Λ to enhance the power factor. A simple
analytical formula [Eq. (3.12)] based on the one-band model has been derived to de-
scribe the quantum effects on the PF in 1D, 2D, and 3D systems. We would suggest
to experimentalists to check the trade-off between L and Λ in order to enhance PF
for different dimensions of their semiconductors.
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Diameter dependence of thermoelectric power of semiconducting
carbon nanotubes

We have shown the theoretically predicted behavior of the thermopower of many s-
SWNTs within a diameter range of 0.5–1.5 nm. We derive a simple formula to calculate
the thermopower of s-SWNTs from their band gap, which enables us to predict the opti-
mum thermopower values. The optimum thermopower value of an individual s-SWNT
(p-type or n-type) can be larger than 2000 µV/K at room temperature for diameters
less than 0.6 nm, such as the (5, 3) and (6, 1) s-SWNT. Our results highlight potential
properties of small diameter s-SWNTs as a one-dimensional thermoelectric material
with a giant thermopower. With the recent advances in the fabrication methods for
specific small diameter s-SWNTs, we expect that the further potential development of
s-SWNT thermoelectric devices could be realized in the near future.



Appendix A

Thermodynamic uncertainty
principle

Let us consider an ideal gas moving at random in a trapping potential. We assume
that the space of the potential as a container of the volume V ∼ LD, where L is the
confinement length (or potential size) and D = 1, 2, 3 denotes the dimension of the
system. The classical system means that the position of the wall in the container is
well defined: it is the point at which the particle is reflected back into the container,
also known as the classical turning point. On the other hand, in a quantum system,
the particle is reflected before reaching the classical turning point or tunnels past the
uncertainty principle turning point. That means that L has an uncertainty ∆L due
to the uncertainty principle that results in uncertainty of volume ∆V . We can use the
law of ideal gas to define the pressure (i.e., the force of gas atoms per unit area) as

P = 2pρv, (A.1)

where p is the component of momentum normal to the wall, ρ is the gas density, v is
the averaged velocity of gas, and ρv is the number of collisions. In quantum mechanics,
the Heisenberg’s uncertainty principle is explained as

∆p∆L ≥ ~
2 , (A.2)

where ~ is the Planck constant. After substituting Eq. (A.1), the Eq. (A.2) can be
rewritten as

∆P∆L ≥ ~ρv. (A.3)

Since the equations of state for the ideal gas is expressed as PV = NkBT , where N is
the total number of particles, T is the temperature of the gas, and kB is the Boltzmann
constant, the gas density can take the form ρ = P/kBT . In addition, the velocity of
the particle in the Boltzmann distribution can be given as

v2 = DkBT

m∗
, (A.4)
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where m∗ is the effective mass of the particle. Inserting these quantities into Eq. (A.3)
gives

∆P
P

∆L
L
≥
√
D

2π
Λ
L
, (A.5)

where Λ = (2π~2/kBTm
∗)1/2 is defined by the thermal de Broglie wavelength of a

particle. Since the volume V is proportional to LD, then we get

∆P
P

∆V
V
≥ D3/2
√

2π
Λ
L
, (A.6)

This is the generalized thermodynamic uncertainty principle for an ideal gas. This
means that when L is comparable with Λ, L ≤ (D3/2/

√
2π)Λ, the pressure and the

volume cannot be treated as commuting observable. In other words, the system be-
comes the quantum system.



Appendix B

Calculation programs

There are several programs used to perform the thermoelectric calculation. All the
necessary programs can be found under the following directory in FLEX workstation:

~nguyen/for/00master/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detailed
explanations about how to use the programs are given in the 00README file in each
subdirectory of ROOT.

BoltzTraP code

Directory: ROOT/boltztrap-1.2.5/

Main Program: BoltzTraP.F90

Boltzmann Transport Properties (BoltzTraP) [54] is a program for calculating the
semi-classic transport coefficients. It can be obtained from www.icams.de/boltztrap.
Here we use BoltzTraP v1.2.5 to calculate the thermopower of a single s-SWNTs with
many diameters.

BoltzTraP uses several input and output files:
Input :

• IN.intrans: Input parameters.

• IN.struct: The lattice geometry and point group elements.

• IN.energy: Energy eigenvalues on a k-mesh.

Output :

• OUT.transdos: Density of states (DOS).
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• OUT.engre: Interpolated eigenvalues.

• OUT.condtens: Thermopower S (V/K), electrical conductivity σ/τ (1/(Ωms)),
and electronic thermal conductivity κe (W/(mKs)) tensors are written as a func-
tion of chemical potential µ (Ry) and temperature T (K).

Extended tight-binding model

Directory: ROOT/ETB-band/

Main Program: ETB-band.f90

This program calculates the electronic structure of s-SWNTs within the extended
tight-binding method and it also makes the input files for the BoltzTraP code.

Input :

• (m, m): The integer indices of SWNT (see Eq. (2.51) in Chapter 2).

Output :

• CNT.intrans: Input parameters of SWNT for the BoltzTraP code.

• CNT.struct: The lattice geometry and point group elements of CNT.

• CNT.energy: Energy eigenvalues on a k-mesh in the format of the BoltzTraP
code.

Mathematica notebooks

We use Mathematica software to plot utilities for some analytical formula in the one-
band and the two-band models.

Power factor

Directory: ROOT/math/powerfactor

Main Program: PF-LG.nb, G-m.nb

PF-LG.nb is the mathematica code for plotting Figs. 3.3, 3.4, and 3.5, respectively, in
Chapter 3. G-m.np is the mathematica code for plotting Fig. 3.6 in Chapter 3.
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Thermopower

Directory: ROOT/math/thermopower

Main Program: cnt11-0-3D.nb, thermo-cnt-etb.nb,
mass-A.nb, opt.nb, thermopower-full.nb

cnt11-0-3D.nb, thermo-cnt-etb.nb, mass-A.nb, opt.nb, thermopower-full.nb
are the mathematica codes for plotting Figs. 4.2, 4.3, 4.4, and 4.5, respectively, in
Chapter 4.
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