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Chapter 1

Introduction

1.1 Purpose of the study

Raman scattering is a powerful technique to investigate physical properties of graphene

and the related systems such as few-layers graphene and graphene nano-ribbons [1,

2, 3]. The phenomena arise from the interactions and interplays between electron,

photon, and phonon in these materials enable scientists to probe and characterize

various properties, among others: the edge type, defect, disorder, strain, and number

of layers in system [1, 2, 3, 4, 5]. In the tip-enhanced Raman spectroscopy (TERS), a

nanoscale metallic tip of a scanning probe microscopy device is placed few nanometers

above the sample, in which the Raman signal is enhanced due to the stong localization

of electric �eld in the vicinity of the tip, known as near-�eld enhancement [6, 7, 8, 9].

The application of TERS on graphene combines the versatility of Raman spectroscopy

with the capability to obtain high spatial resolution beyond di�raction limit [10, 11,

12]. Some e�orts to provide quantitative descriptions of TERS as the function of tip

near-�eld enhancement, tip distance and orientation relative to the sample plane of 2D

systems in general and graphene in particular have been available in references [13]

and [10], respectively. However, the properties of optical transition of electron in

graphene a�ected by near-�eld from the tip is not yet investigated even though the

theoretical analysis is essential for explaining the observed Raman spectra of graphene

TERS. The purpose of this study is to investigate the e�ect of electric near-�eld

localization and enhancement in the vicinity of tip on the optical transition of electron

1



2 Chapter 1. Introduction

in graphene as well as to understand the origin of the the enhanced Raman spectra in

TERS of graphene.

1.2 Organization of the Thesis

This master thesis is organized as follows. The remaining part of Chapter 1 provides

the background for the thesis. In Chapter 2, the calculation methods of near-�eld

enhancements in nanoparticles are presented along the electron-photon matrix element

which describes light-matter interactions in graphene. The calculation of near-�eld

enhancement around the metallic tips of various size and shape is given Chapter 3,

continued by the discussion on the near-�eld enhancement e�ect on the electron-near-

�eld matrix element of monolayer graphene in Chapter 4. Finally, in Chapter 5 we

conclude the results obtained in the thesis.

1.3 Background

Here some basic concepts to understand this thesis are presented.

1.3.1 Far- and Near- Electromagnetic Fields

The optical responses of material irradiated by visible light such as scattering and

absorption are generally obtained by solving the Maxwell Equations for the corre-

sponding system. For any homogenous material with simple shapes e.g. sphere and

cyllinder whose size is comparable to the wavelength of light λ, the analytical treat-

ment of this scattering problem is known as the Mie theory [6, 14]. Based on the

distance from the material, the total electromagnetic �elds (summation of incoming

and scattered �elds) consist of two terms: the far-�eld and near-�eld. Far-�eld is

de�ned as the propagating �eld at distance signi�cantly large from the material, in

contrast to the near-�eld which is de�ned as the localized �eld in the vicinity of the

material [6].

To illustrate spatial dependences of the properties of electromagnetic �elds, let

us consider the case of an oscillating electric-dipole which radiates electromagnetic

wave with wave vector k = 2π
λ . The dipole is placed in a homogenous medium whose

relative permittivity εm. The corresponding magnetic �eld H and electric �eld E can
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(a) (b)

Figure 1.1 Illustration for LSP mechanism in metallic nano-sphere when its size is (a) much
smaller (b) comparable to or larger than the wavelength of the excitation [17]1.

be written as [15, 16]:

H =
ck2

4π

(
r̂× p

)eikr
r

(
1− 1

ikr

)
; (1.1)

E =
1

4πεmε0

(
k2(r̂× p)× r̂e

ikr

r
+ [3r̂(r̂ · p)− p]

[
1

r3
− ik

r2

]
eikr

)
, (1.2)

where p and r̂ are dipole moment and unit vector in the direction of particular point

P, respectively, and r is the distance from the origin to P. In the far-�eld zone de�ned

as kr � 1, the terms ∝ 1
r is much larger than the rest terms, therefore Eqs. (1.1) and

(1.2) are expressed as follows [16]:

H =
ck2

4π

(
r̂× p

)eikr
r

; (1.3)

E =

√
µ0

εmε0
(H× r̂), (1.4)

while in the near-�eld zone, i.e. kr � 1, we can select the dominating terms ∝ 1
r2 and

∝ 1
r3 from Eqs. (1.1) and (1.2), which reduce to [16]:

H =
ick

4π

(
r̂× p

) 1

r2
; (1.5)

E =
1

4πεmε0r3
[3r̂(r̂ · p)− p]. (1.6)

Eqs. (1.5) and (1.6) show that in the near-�eld zone the electric �eld is predominant,

since the magnitude of magnetic �eld is small and ultimately vanishes in the static case,

i.e. kr → 0 [16]. It is also concluded that the electric near-�eld does not propagate

since it does not consists of the propagation term eikr, and quickly decays as the

distance r increases because its dependence to the factor 1
r3 . The near-�eld localization

and enhancement around nanoparticles and nano-tips as response of irradiating light

is discussed in the next Sub-chapter.



4 Chapter 1. Introduction

Figure 1.2 Mie theory calculations of the extinction (red), scattering (blue) and absorption
(black) of the Au spherical nanoparticle of radius 25 nm (left) and 50 nm (right) [23].

1.3.2 Near-Field Enhancement in Nanostructures

Metallic nanostructures whose spatial dimensions are signi�cantly smaller than the

wavelength of irradiating light such as nanoparticles and nano-tips have been studied

with special interest in the �elds of nano-optics and plasmonics, since they exhibit

a prominent e�ect, namely electric near-�eld enhancement compared with the inci-

dent light in their vicinity [6, 18, 16, 19, 20]. One of the mechanism responsible for

this phenomenon is that the oscillation of electric �eld from the incoming electromag-

netic wave periodically displaces free electrons cloud from the surface of the metallic

nanostructure along polarization direction of the electric �eld, which in return gen-

erates a localized response �eld with a greater magnitude compared with irradiating

light [21, 17, 22]. The phenomenon of the electric �eld-driven electron oscillation in

metallic nanostructures is also termed as the localized surface plasmon (LSP).

In Fig. 1.1, we illustrate LSP mechanism for the case of spherical nanoparticle.

When the radius of sphere is much smaller than wavelength of the light, electric �eld

is distributed uniformly along the particle and therefore the electron cloud oscillates

coherently, resulting the dipole excitation [21, 17] as shown in (a). However, in the

case when the size of nanoparticle is comparable to or larger than wavelength of the

light, the distribution of the electric �eld in nanoparticle is no longer uniform and thus

the electron cloud oscillates incoherently, which generates higher order excitations, e.g.

quadrupole and octopole excitations [21, 17], as given in (b). The dipole and higher-

modes excitations in the spherical nanoparticle will be discussed more thoroughly in

Chapter 2.
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Figure 1.3 Induced charge density (σ) for the case of electric �eld is polarized (a) parallel
and (b) perpendicular to the tip axis [7].

The near-�eld enhancements around nanoparticles are usually calculated in the

terms of a variable termed extinction cross section. Extinction cross section σext

is expressed as the summation of the scattering and absorption cross sections, σsca

and σabs. For the small spherical nanoparticle of radius a and relative permittivity

εr = ε1+iε2 surrounded by medium whose dielectric constant is ε0εm, the cross sections

are mathematically given as follows [23]:

σsca =
24π3v2εm

λ4

(ε1 − εm)2 + ε2
2

(ε1 + 2εm) + ε22
, (1.7)

σabs =
18πvεm

3/2

λ

ε2
(ε1 + 2εm) + ε22

, (1.8)

σext =σsca + σabs, (1.9)

where λ� a is the wavelength of the light and v is the volume of individual nanopar-

ticle. An example of the Mie theory calculations on the wavelength dependence of

extinction cross section for the individual Au spherical nanoparticle is given by the

Fig. 1.2, in which the peaks are observed in the range of λ=500-550 nm. In the

Chapter 2, we shall show that the cross sections are closely related to the near-�eld

enhancements inside and outside nanoparticle, that is, if the three cross-sections are

high, so are the near-�eld enhancements.

In the case of metallic nano-tip, other than LSP, accumulation of electric charge in
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(a) (b)

Figure 1.4 Calculation of the near-�eld in vicinity of Au tip of 5 nm radius in water irradiated
by monochromatic waves with λ = 810 nm, for electric �eld polarizations (a) perpendicular
and (b) parallel relative to the tip's axis . The successive lines of the E2 countour in the
�gure di�ers by factor 2. The near-�eld in (b) is almost rotationally symmetric in the vicinity
of the tip [18].

the sharp end of tip (tip apex) is the main factor which contributes to the near-�eld

enhancement in its vicinity [7]. The phenomenon of charge accumulation associated

with the sharpness in nanostructure geometry is called electrostatic lightning-rod

e�ect [24, 20]. In Fig. 1.3 we illustrate induced surface charge density in the vicinity of

metallic tip for two di�erent electric �eld polarizations of incoming light, which shows

large (small) charge accumulation as the electric �eld is polarized parallel (perpen-

dicular) to the tip axis. Consequently, maximum near-�eld enhancement is obtained

when the electric �eld is polarized parallel to the axis, otherwise the enhancement is

signi�cantly weaker [22, 24]. In Fig. 1.4 we show the contrasting di�erence of near-�eld

enhancements for the two considered cases, i.e. when the electric �eld polarizations

of radiating light are perpendicular and parallel relative to the tip axis, from which

it is inferred that near-�eld enhancement for the parallel polarization is much larger

compared to the perpendicular polarization.

The magnitude of near-�eld enhancement factor, of which in this work is de�ned as

the absolute value of ratio between induced near-�eld E and incident �eld from light

E0, |E/E0|, is largely depends on the material of nano-tip as well as the wavelength

of incident light. In Fig. 1.5 we depict two instances of the calculated near-�eld

enhancement around metallic nano-tips made of two di�erent materials. In (a), Pt

nanotips is irradiated by an electromagnetic wave of wavelength of 808 nm, while in
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Figure 1.5 Near-�eld enhancement in the vicinity of (a) Pt tip irraddiated by the light of
wavelength 808 nm [25], and (b) W tip illuminated by light of wavelength 800 nm [26]. In
each case the nano-tips are placed in vacuum and the polarization direction of electric �eld
is perpendicular to the tip axis.

(b), a conical W tip of radius R=10 nm and opening angle α=15 degree is illuminated

by light whose wavelength is 800 nm. The magnitude of near-�eld enhancements in (a)

and (b) are around 9.55 and 6.2, respectively. Near-�eld enhancement from Au nano-

tips as the function of its geometrical parameters and the wavelength of illuminating

light shall be discussed in Chapter 3, along with the reproduction of calculated results

depicted in Fig. 1.5.

1.3.3 Brief Review on Graphene

We brie�y review some properties of graphene because the main subject of this work is

the near-�eld e�ect on the optical transition in the corresponding material. Graphene

is a single-atom thick material in which carbon atoms are arranged in two-dimensional

hexagonal honeycomb lattice. Since its isolation and characterization by Novoselov et

al. in 2004 [27], graphene has emerged to become a mainstream research topic in

the �eld of condensed-matter physics and material science due to its unique physical

properties and the promising technological applications [28]. Some examples of these

properties including very high electrical conductivity, tremendous mechanical strength,

and the linear electronic energy dispersion where the e�ective mass of the electron

becomes zero [29, 30, 31, 32].
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Figure 1.6 (a) STM image of graphene on graphite substrate. The length of blue scale bar
is 500 pm [32]. (b) The unit cell and (c) Brillouin zone, and (d) Electronic energy dispersion
of graphene. Zoom: the Dirac cone around K point [31].

The scanning tunneling microscopy (STM) image of graphene on graphite substrate

with atomic resolution is presented in Fig. 1.6(a). The unit cell of graphene which

consists of two atoms A and B is given in (b). The unit vectors in the real space are

a1 = a
2 (3,
√

3) and a2 = a
2 (3,−

√
3), where a =| a1 |=| a1 |= 2.46

◦
A and aCC ≈ 1.42

◦
A

is the length of nearest-neighbor vectors δ1, δ2, and δ3 [31]. In (c), we depict the

Brillouin zone of graphene showing high symmetry points Γ, M, and K. The reprocical

lattice vectors of graphene are b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√

3) [31]. The tight-

binding electronic energy dispersion of graphene is shown in (d). The region around K

and K' points in the Brillouin zone where the electronic energy is a linear function of

wave vector is known as the Dirac cone. In this region electron behaves as a massless

relativistic particle traveling with speed about 300 times smaller than the speed of

light [30, 31].

In Chapter 4, we employ the tight-binding graphene wave function to calculate the

electron interaction with the near-�eld scattered from Au nano-tip irradiated by the

visible light. The interaction determines the properties of electron optical transition

and absorption in graphene.
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Figure 1.7 Raman processes: (a) �rst-order anti-Stokes, (b) �rst- (c) second-order Stokes
process. Straight and wiggly lines indicate electron-photon and electron-phonon interactions,
respectively [33].

1.3.4 Raman Spectroscopy of Graphene

Along with graphite and carbon nanotubes, graphene forms a family of carbon materi-

als sharing similar characteristic of possessing sp2 orbital [34]. Monolayer graphene is

the simplest structure of these materials, thus it becomes a perfect prototype material

to study the properties of sp2 carbon family [34]. The most superior characterization

tool of sp2 carbon allotropes in the terms of both simplicity and versatility is provided

by Raman spectroscopy [1], which is based on the inelastic scattering of visible light

through interactions involving electrons and phonons in materials, known as Raman

scattering or Raman e�ect. The Raman shift ∆ω, which is de�ned as the di�erence

between frequency of incident light (ωi) and scattered light (ωs), ∆ω = ωi − ωs can

be positive or negative, the former (later) is known as Stokes (anti-Stokes) process.

Generally, anti-Stokes signal is weaker than the Stokes signal, and therefore usually

only Stokes signal is considered in Raman characterization [34]. In graphene, Raman

scattering process involves the electron-photon and electron-phonon interactions, de-

scribed as follows: 1) electron from valence band undergoes optical transition to the

conduction band by absorbing photon, followed by 2) creation of phonon(s), and �-

nally 3) electron is de-excited to its initial state by emitting photon. In the �rst-order

Raman scattering momentum of the emitted phonon is zero (q = 0), while phonon

with non-zero momentum (q 6= 0) is emitted in the second-order Raman scattering, as

schematically depicted in Fig. 1.7.

A comparison of Raman spectra of graphene with several other sp2 carbon al-

lotropes is presented in Fig. 1.8. The Raman signature of sp2 carbon allotropes is
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Figure 1.8 Raman spectra of graphite, three-layers graphene (3LG), monolayer graphene
(1LG), disordered graphene, graphene oxide, and nano graphene [35].

G-band peak at Raman shift of ∼1580cm−1, which is attributed to the �rst-order

Raman scattering [34]. The second order Raman scattering gives rise to the G'-band

peak (∼2700cm−1), while D-band peak (∼1350cm−11) is only observed in the presence

of defect in the structure [34]. It is noteworthy that the Raman shift of G' peak is

approximately twice of the D peak, and for this reason some authors label the former

peak as 2D band [5]. In Chapter 2, quantum description of how electron in graphene

interacts with photon is described with time-dependent perturbation theory.

1.3.5 Tip-Enhanced Raman Spectroscopy of Graphene

Tip-enhanced Raman spectroscopy (TERS) is one of the novel technique to charac-

terize materials, and have been extensively applied to study sp2 carbons including

graphene [11, 36, 37, 38], carbon nanotubes [7], graphene nanoribbons [39], and C-

60 [40]. In the experimental set-up of TERS, a metallic nano-tip of scanning probe

microscopy device is placed near the sample of the characterized material to achieve

two goals: 1) to obtain high spatial resolution beyond di�raction limit, and 2) to

enhance the Raman signal in the near-�eld regime [7].
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(a) (b) (c) (d)

Figure 1.9 (a) Bottom, (b) side, and (c) top illuminations geometry in TERS. The green
and red wiggly arrows illustrate incoming and scattered Raman signals, respectively [8]. (d)
SEM image of Ag-coated Si AFM tip. The size of the tip is 20 nm [9].

Fig. 1.9(a)-(c) shows some common con�gurations of TERS based on the direction

of incoming light relative to the positions of the sample and tip, i.e. bottom, side, and

top illuminations. The three con�gurations can be applied in TERS that is based on

atomic force microscopy (AFM), while in the scanning-tunneling microscopy (SEM)-

based TERS, side illumination (b) is often used [9]. Side illumination produces large

near-�eld enhancement around the tip using p-polarized light compared to the bottom

illumination geometry (a) [8]. This fact is consistent to the polarization dependence

of near-�eld enhancement around the tip as previously discussed. An instance of SEM

image of Ag-coated Si AFM tip is given in (d). The tip used in TERS is usually cone-

shaped with the radius of curvature around 10 to 30 nm at tip apex [8], and can be

fabricated economically by electrochemical etching [41]. In Chapter 3, we shall show

that the enhancement is also determined by the shape of the tip other than its radius

of curvature.

Here we present an instance of TERS measurement of monolayer graphene using

Au-coated tip and excitation wavelength 532 nm in the top illumination geometry.

The e�ect of the tip on the Raman spectrum of graphene is given by Fig. 1.10(a),

showing the enhancement of D, G, and 2D bands intensity when the tip is approached

to the sample. The con�rmation of the signal enhancement is in (b), which depicts the

substraction of the Raman spectra acquired when the tip is approached and rectracted.

In chapter 4, we present a microscopic picture based on time-dependent perturba-

tion theory to explain of how the near-�eld around the tip enhances the optical matrix

element, which is a variable describing the coupling of electromagnetic �eld with the

electron.



12 Chapter 1. Introduction

(a) (b)

Figure 1.10 (a) The monolayer graphene's Raman spectra measured when the tip is ap-
proached and retracted (b) The subtraction of Raman spectrum given in (a) [37].

1.3.6 Coupling Between Near-Field and Electron in Graphene

Here we review a recent progress on the theoretical work on the coupling between near-

�eld and electron in graphene, because we shall shows that the corresponding work

seems to con�rm the results obtained independently in this thesis in around the same

time. Very recently, Mueller and Reich [42] provide a microscopic theory of optical

absorption in graphene enhanced by square lattices of plasmonic nanoparticles. By

employing the tight-binding graphene wave function, they analytically calculate the

interaction of graphene with the electrostatic potential of an individual nanoparticle

φpl(r) by the electron-plasmon matrix element Mel−pl [42]:

Mel−pl = −e
2
〈Ψc(kc)|φpl(r)|Ψv(kv)〉, (1.10)

where k is electron wave vector and e is the elementary charge, while indices v and

c indicate the valence and conduction band, respectively. Because of the periodicity

the nanoparticles, they are able to extract the Fourier components of the electron-

plasmon matrix element, and show that the near-�eld induces the non-vertical optical

transition in the electron, which indicate the change of electron wave vector in the

transition from valence to conduction bands as illustrated by Fig. 1.11(a). In their

work, the change of electron wave vector are discrete, given by [42]:

kc − kv = (∆kx,∆ky) =
2π

∆R
(mx,my), mx,my ∈ Z, (1.11)

where ∆R is the spacing distance between nanoparticles. They also show that the

nodes of electron-plasmon is determined by its wave vector change in the Brillouin
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Figure 1.11 (a) Sketch of non-vertical optical transition of electron in graphene (b) Electron-
plasmon matrix element around K point. Top: for severalmx andmy=0. Bottom: for several
my and mx=1 [42].

zone, as given in (b). In the Chapter 4, by employing a rather di�erent theoretical

approach, we argue that localized near-�eld from the tip which is non-periodic, also

implies non-vertical optical transition of electron in graphene. The e�ect of the change

of electron wave vector is then observed as nodes in the absorption spectra.





Chapter 2

Methods

2.1 The Optical Properties of Noble Metals

2.1.1 Drude and Drude-Lorentz Models

The optical properties of materials depend on the response of the electrons by their

interaction with radiating light. Understanding the properties are essential to explain

why noble metals such as Au and Ag are mainly utilized in the context where the

plasmonic e�ects are one of the primary interests, e.g. in the near-�eld spectroscopy.

The mathematical descriptions of how electrons in the materials interact with the

electric �eld of electromagnetic waves are provided by two well-known models: 1) the

Drude model for free electrons, and 2) the Drude-Lorentz model for the case in which

electrons are restricted by an internal restoring force. Although these models only

give the picture of the interactions in a simpli�ed system, they present some insightful

accounts on optical properties of the real materials.

The electrically neutral system of electron gas and the positive ions is called plasma.

In the Drude model, metals or doped semiconductors are regarded as plasma where

the valence electrons freely move around the positive ion cores [43]. In such materials,

the presence of an electromagnetic wave induces the oscillation an electron which

experiences no restoring force. The Equation of motion of the electron is given as

follows:

me
d2x(t)

dt2
+meΓ

dx(t)

dt
= −eE(t), (2.1)

15
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where x(t) and me are the displacement and e�ective mass of electron, respectively.

To provide more realistic description of the electrons in metals and semiconductors, it

is assumed that the e�ective mass me incorporates some aspects of the band structure

[16]. The �rst and second terms of in the left-hand side of the Eq. (2.1) correspondingly

represent forces from an accelerated electron and damping of the medium proportional

to a constant Γ, which is interpreted as the inverse of the averanged collision time

between electron and the positive ion cores (also called relaxation time) τ , i.e. Γ = 1
τ .

For the electron gas in the room temperature, τ is approximately in order of 10−14

s, which corresponds to Γ =100 THz [16, 43]. By regarding that the displacement is

time-harmonic, that is x(t) = x0e
−iωt with ω being frequency of the electromagnetic

wave, thus Eq. (2.1) becomes

−ω2x(t)− iωΓx(t) =
−eE(t)

me
. (2.2)

We can express the displacement x(t) as a function of electric �eld E(t) as

x(t) =
eE(t)

me

1

ω2 + iΓω
. (2.3)

The displacement of N electrons generate the macroscopic polarization

P = −Nex, (2.4)

which in return contributes to the electric displacement D given by

D = εrε0E = ε0E+P. (2.5)

By combining Eqs. (2.3)-(2.5), a simple expression of relative permittivity of electron

gas εr de�ned by Eq. (2.5) can be written as

εr(ω) = 1− ωp
2

ω2 + iΓω
, (2.6)

where ωp is called the plasma frequency, de�ned by

ωp ≡

(
Ne2

ε0me

) 1
2

. (2.7)

When we write the relative permittivity as the summation of its real and imaginary

parts, εr = ε
(1)
r + iε

(2)
r , we get from Eq. (2.6):

ε(1)
r (ω) =1− ωp

2

ω2 + Γ2
; (2.8)

ε(2)
r (ω) =

ωp
2Γ

ω(ω2 + Γ2)
. (2.9)
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In the lightly-damped system compared with angular frequency ω in which ω � Γ,

the relative permittivity is therefore

εr(ω) ≈ 1− ωp
2

ω2
. (2.10)

It is informative to compare the relative permittivity εr with another important phys-

ical property of a material a�ected by a time-varying external electric �eld, the optical

conductivity σ(ω). By expressing the Equation of motion for electron in the term of

time-harmonic velocity v(t) = v0e
−iωt, we have

−iωv(t) + Γv(t) =
−eE(t)

me
. (2.11)

The velocity of electron v and conductivity σ are related to the current density J as

follows:

J = −Nev = σE. (2.12)

By using Eqs. 2.11 and 2.12, the optical conductivity is given by

σ(ω) =
Ne2

me

1

Γ− iω
=

σ0

1− iωτ
, (2.13)

where σ0 = Ne2τ
me

is de�nition of the conductivity. By comparing Eqs. (2.6) and (2.13).

The relative permittivity εr can be equivalently expressed as

εr(ω) = 1 + i
σ(ω)

ε0me
. (2.14)

The result from Eq. (2.10) describes the permittivity of free electron gas where

εr → 1 as the frequency of electromagnetic wave ω becomes much larger than the

plasma frequency ωp. For the noble metals (Au, Ag, Cu, and Pt), a modi�cation

on Eq. (2.6) is required in order to describe relative permittivity in the region ω >

ωp where the optical response is dominated by the free s electrons, because highly

polarized environment is created by the �lled d-band close to the Fermi surface [16].

The background polarization due to the positive in cores P∞ = ε0(ε∞ − 1)E should

be added into Eq. (2.5). Hence the modi�ed relative permittivity is given by

εr = ε∞ −
ωp

2

ω2 + iΓω
, (2.15)

where the value of background polarization ε∞ that can be de�ned by taking the limit
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Figure 2.1 Real and imaginary parts of Au relative permittivity from Drude model (solid
line) �tted to the experimental data from [44] (dots) [16].

of ω →∞ is usually within the range of 1-10 [16]. As for ε∞, the constants Eq. (2.15)

are adjusted to the data obtained from an experiment. An instance of this semi-

empirical εr determination for the case of Au is depicted by Fig. 2.1, from which it is

inferred that the model already deviates from the experimental result in the boundary

between near-infrared and visible regions around 2 eV. For photon energy around 4

eV, which corresponds to the near-ultraviolet regime, a peak appears in the real part

of relative permittivity, while sudden increase of value is observed in its imaginary

part. These behaviors are attributed to the interband transition of electrons which

occurs when the energy of electromagnetic wave is su�ciently high [16], otherwise

only intraband transition is possible [45]. Both intraband and interband transitions

occur because a radiating electromagnetic wave transfers its energy and momentum to

the electron. The optical properties of electron undergoes interband transition can be

described by the Drude-Lorentz model [16, 46, 47], where the Equation of motion

of bound electron is presented as follows:

me
d2x(t)

dt2
+meΓ

dx(t)

dt
+meω

2
0x(t) = −eE(t). (2.16)

By the similar mathematical arguments perviously applied to get at Eq. (2.15), the

Drude-Lorentz relative permittivity is derived as

ε(L)
r = ε(L)

∞ −
N (L)e2

m
(L)
e ε0

1

(ω2 − ω2
0) + iΓ(L)ω

, (2.17)

where the superscript-(L) is added to some constants in order to distinguish from the

ones contained in the Drude model. The real and imaginary parts of the Drude-Lorentz
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relative permittivity are given by

ε(1)(L)
r (ω) =ε(L)

∞ −
N (L)e2

m
(L)
e ε0

ω2 − ω2
0

(ω2 − ω2
0) + Γ(L)2

ω2
; (2.18)

ε(2)(L)
r (ω) =

N (L)e2

m
(L)
e ε0

Γ(L)ω

(ω2 − ω2
0) + Γ(L)2

ω2
. (2.19)

The result from Eq. (2.19) is a Lorentzian function which is maximum when ω = ω0,

and consequently the constant ω0 is regarded as the resonant frequency.

For many purposes, the summation of the Drude and the Drude-Lorentz terms

is used as the �tting function to estimate the relative permittivity of noble metals

at a particular optical frequency. However, assessing the optical properties of nano-

materials require the modi�cation of both models, because the collision of electrons

at surface boundary of nanoparticles which is pronounced in nano-scale regime should

be considered. The discussion on size-dependence of relative permittivity is presented

in the next sub-section.

2.1.2 Size E�ect of the Relative Permittivity

In the the Drude and the Drude-Lorentz models previouly reviewed, it is assumed that

in the materials, the travelling electrons constantly scatter only with the backgroud

ion cores or other electrons. The averaged time required before the next collision

(or relaxation time) τ determines the damping constant Γ by the inverse relation.

In more complex systems where defects, phonons, etc. may present, τ should be

modi�ed because their presence a�ects the movement of electron by the additional

collisions. The modi�cation of τ which accounts the total collisions of electron with

the constituents in material is given by the Matthiessen rule [17], written as

1

τ
=

1

τ0
+

1

τd
+

1

τph
+ ..., (2.20)

where τd and τph are consecutively the relaxation times due to the electron collisions

with defect and phonon, while τ0 is the intrinsic relaxation time in the bulk material.

In the nanoscale, the collision of electron with the surface boundary of material must

be included especially in the case where the material size is smaller than the mean-

free-path of electron (For Au and Ag, the corresponding �rst-principles calculation

values are 37.7 and 53.3 nm, respectively [48]). By using the analogy of Matthiessen
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rule, the modi�ed damping constant which includes the electron-surface collision is

given by

Γ = Γ0 + Γs. (2.21)

In general, the surface damping constant Γs is expressed as a function of Fermi ve-

locity vF, e�ective distance traversed by electron before scattering in the presence of

the surface of nano-structure whose length is L, and a dimensionless constant A, as

follows [49, 50, 51, 52, 53, 46, 54, 17]:

Γs = A
vF
L
. (2.22)

The obtained value of L varies depending on the theoretical approach [49, 50, 51, 55,

52, 53]. Based on geometric probability calculation, an expression of L applicable

to any convex-shaped nanostructure is related to its volume V and surface area S

by [50, 46, 17]:

L =
4V

S
. (2.23)

For Au nanoparticles, there are several available �tting values of A, which falls

in the range of 0 6 A 6 1 [52, 46, 54] and di�ers according to the interface be-

tween the particle and the surrounding medium [51, ?]. The physical meaning of A

is thought to be the fraction of electron-surface scattering events that are totally in-

elastic [51]. Eqs. (2.21)-(2.23) are therefore applied to account damping coe�cient

due the electron-surface collision which can not be neglected in nanoscale materials.

We choose to use A = 0.33 as the best �tting value for an individual Au nanoparticle

optical absorption [46], while Fermi velocity vF = 1.41× 1015nm s−1 [55] is employed

for any relevant calculation.

In Fig. 2.2, we illustrate the di�erences between relative permittivity of Au bulk

and spherical nanoparticles whose radiuses 20, 10, and 5 nm in the visible region. From

the �gure, it is inferred that the real part of relative permittivity does not signi�cantly

increase with descreasing the radius of nanoparticle, while its imaginary part increases

quickly especially for the long wavelength regime. We shall show later that one of the

required conditions of the occurence of plasmonic resonance in small nanoparticle is

zero imaginary part of relative permittivity, which is macroscopically related to the

enhanced optical absorption [43].
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Figure 2.2 Calculated relative permittivity of Au bulk and spherical nanoparticles of radius
20, 10, and 5 nm. The Drude �tting parameters are adapted from reference [56] .

2.2 Electromagnetics within the Quasi-static Approximation

Electromagnetic problems are generally classi�ed into two main types: the emission

and the excitation problems [6]. The calculation of the near-�eld enhancement factor

for a given nanostructures is one of the example of the later case, which follows when

a nanoparticle interacts with incident electromagnetic �elds. The �eld that is gen-

erated by nanoparticle generally can be obtained by solving the Maxwell equations.

Here we assume that the domain of calculation consists of non-magnetic, isotropic,

and homogenous media with the relative permittivity εm(r, ω). For time-harmonic

electromagnetic �elds E(r, t) = E(r)e−iωt and B(r, t) = B(r)e−iωt, we have

∇ ·H =0, (2.24)

∇ ·D =0, (2.25)

∇×E =iωB, (2.26)

∇×B =µ0J− iωµ0ε0εmE. (2.27)

Apart from the Maxwell Equations (2.24)-(2.27), the following boundary conditions is

applied at the interface of medium 1 and medium 2 by assuming no surface magnetic
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�eld or charge:

n̂× (E1 −E2) =0; (2.28)

n̂ · (D1 −D2) =0, (2.29)

where n̂ is the unit vector normal to the interface. For an arbitrary vector F, we

apply the identity ∇× (∇×F) = ∇(∇ ·F)−∇2F on both Eqs. (2.26) and (2.27). By

substituting J as a linear function of E as given by Eq. (2.12), hence

−∇2E =
ω2

c2

(
εm +

iσ

ε0ω

)
E; (2.30)

−∇2B =
ω2

c2

(
εm +

iσ

ε0ω

)
B, (2.31)

The expression εm + iσ
ε0ω

is none other than the optical conductivity provided by

Eq. (2.14). By de�ning the complex wave vector k̃ = ω
c

√
εm, Eqs. (2.30) and (2.31)

can be written in more simpli�ed forms as

∇2E+ k̃2E =0, (2.32)

∇2B+ k̃2B =0. (2.33)

The Eqs. (2.32) and (2.33) are known as the Helmholtz Equations. The analytical so-

lutions of the Helmholtz Equations describing the scattering of electromagnetic waves

by homogenous sphere and cylinder which take forms the in�nite series of vector spher-

ical harmonics (VSH) [6], are provided by formalism of the Mie thory. In the context

of near-�eld spectroscopy, the Mie theory is used to describe the plasmonic properties

of individual nanoparticle whose size is less or equal to the wavelength of light, which

is commonly approximated as a sphere [21, 6], and therefore for nano-structures with

non-spherical shapes, its utility is rather limited. Thorough discussions on mathemat-

ical details of the Mie theory are contained in some works, e.g. references [6, 14].

In this work, the calculation of the near-�eld enhancement is performed within

the framework the quasi-static approximation (QSA). In the QSA the propagation

of the electromagnetic �elds around the material are treated to be instaneous, which

is satis�ed by letting the speed of light in the Maxwell equations towards in�nity

(c → ∞), and thus the retardation e�ects of the �elds are neglected [6, 57]. In other

words, the external electric �eld from the electromagnetic wave is regarded as spatially
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static �eld with time-harmonic dependence, and the frequency e�ect of electromagnetic

wave on the material is incorporated in its complex optical relative permittivity [6].

The mathematical formulation describing the excitation problems given by Eqs. (2.24)-

(2.29) reduce into a simpler form as follows [6]:

∇×E = 0,

∇ ·D = 0,

n× (E1 −E2) = 0,

n · (D1 −D2) = 0.

(2.34)

The consequence of this approximation is that the calculation of electric �eld can be

performed by solving the Laplace equation instead of the full electromagnetic problems.

Because of the scalar properties of the Laplace Equation, the solutions of the QSA

are much easier to acquire, and therefore QSA is useful to describe the interaction

of electromagnetic waves with a body whose spatial dimension is signi�cantly smaller

than the wavelength of the light λ, such as the near-�eld excitation in the nanoparticle

or nanostructure (in the order of few-tens nm) as a response of the irradiation by visible

light (λ ≈ 390−700 nm), which is justi�ed since the propagation of electric of the light

around the nano-materials can be regarded as instaneous which in return generates

negligible retardation e�ects. In the following sub-section, we apply QSA formulation

given by Eq. (2.34) in the case of a small spherical particle exposed external electric

�eld from an electromagnetic wave.

2.2.1 Near-Field Enhancement around Spherical Nanoparticle

In order to illustrate the properties of near-�eld excitation in a particular case, here

we provide a classical example of a calculation using QSA, which can be found in

some textbooks discussing plasmonics or nano-optics, e.g. [16, 19, 22]. The scheme of

the problem is given by Fig. 2.3, which shows the illumination of homogenous sphere

with radius a and complex permittivity εs(ω)ε0 by the external electric �eld from light

at frequency ω. Here we assume that the radius the sphere is much smaller than

the wavelength of light (a � λ), thus the electric �eld can be written as a spatially

constant �eld E = E0ẑ . The particle is surrounded by isotropic and non-absorbing
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Figure 2.3 Homogenous sphere in the static electric �eld E0.

medium with dielectric constant εm(ω)ε0. In order to obtain the electric �eld, �rstly

we solve the Laplace equation for electrostatic potential V . The Laplace Equation in

the spherical coordinate is written as

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0. (2.35)

We employ the separation of variables method by writing the scalar electric potential

as V (r, θ, φ) = R(r)Y (θ, φ), the Eq. (2.35) becomes[
1

R(r)

∂

∂r

(
r2 ∂R(r)

∂r

)]
+

[
1

Y (θ, φ) sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+

1

Y (θ, φ) sin2 θ

∂2Y (θ, φ)

∂φ2

]
= 0.

(2.36)

Further steps of the solution requires writing the �rst and second terms in the left-

hand side of Eq. (2.36) as constants. As we know a general solution of the Laplace

Equation, we equate the �rst(second) terms in the left-hand side of Eq. (2.36) with

±l(l + 1), therefore

r2 ∂
2R(r)

∂r2
+ 2r

∂R(r)

∂r
− l(l + 1)R(r) =0; (2.37)

sin θ
∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+
∂2Y (θ, φ)

∂φ2
+ l(l + 1) sin2 θY (θ, φ) =0. (2.38)

By separating the azimuthal part in the Eq. (2.38) as Y (θ, φ) = Θ(θ)Φ(φ) and writing

sin θ

Θ(θ)

∂

∂θ

(
sin θ

∂Θ(θ)

θ

)
+ l(l + 1) sin2 θ = m2, (2.39)
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therefore

1

sin θ

∂

∂θ

(
sin θ

∂Θ(θ)

∂θ

)
+

(
l(l + 1)− m2

sin2 θ

)
Θ(θ) =0, (2.40)

∂2Φ(φ)

∂φ2
+m2Φ(φ) =0. (2.41)

The solution of Eq. (2.40) is generally known as the associated Legendre polynomials

Pml (cos θ), while it can be seen that for any constant A, the function Φ(φ) = Aeimφ

satis�es the Equation (2.41). However, since the electric �eld is polarized along z-

direction E0 = E0ẑ = E0(cos θr̂ − sin θθ̂), the azimuthal symmetry applies which

means that the solution for Y (θ, φ) does not depend on φ. This condition implies

m = 0, and therefore the solution for azimuthal part is given by

Y (θ, φ) = Pl(cos θ), (2.42)

where Pl(cos θ) is the Legendre polynomials of order-l. The radial part R(r) can be

solved by expressing the function as the power series in the form

R(r) =

∞∑
l=0

Bnr
n. (2.43)

Inserting Eq. (2.43) into Eq. (2.37) yields

∞∑
l=0

Bnr
n[n(n+ 1)− l(l + 1)] = 0, (2.44)

which gives n = l,−l − 1. The general solution of Eq. (2.35) is given by

V (r, θ) =

∞∑
l=0

[
Clr

l +
Dl

rl+1

]
Pl(cos θ), (2.45)

where Cl and Dl are arbitrary constants to be determined by the boundary conditions.

Now we apply the proper boundary conditions to obtain excact form of the potentials

inside and outside the sphere, Vin and Vout respectively. Inside the sphere (r < a) the

term of Dl
rl+1 diverges as r → 0, thus in this region Dl = 0 for all l, that is

Vin =

∞∑
l=0

Clr
lPl(cos θ). (2.46)

Here we only consider solution for lowest-order mode which can be obtained by only

including l = 1 in the derivation. Outside the sphere (r > a), the incoming �eld
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E0 cos θ must be recovered at large r, which means that Vout = −E0r cos θ as r →∞.

This requirement demands that C1 = −E0. The value of D1 shall be determined later.

Since P1(cos θ) = cos θ, thus

Vout =

[
− E0r +

D1

r2

]
cos θ. (2.47)

The lowest-mode solution is �nally obtained by applying boundary conditions for

electric and displacement �elds, E and D respectively, as stated in Eqs. (2.28) and

(2.29). The corresponding boundary conditions in spherical coordinate are respectively

expressed as (
∂Vin

∂θ

)
r=a

=

(
∂Vout

∂θ

)
r=a

, (2.48)

εs

(
∂Vin

∂r

)
r=a

=εm

(
∂Vout

∂r

)
r=a

. (2.49)

Therefore the potentials inside and outside the sphere are given by

Vin(r) =− 3εm
εs + 2εm

E0r cos θ, (2.50)

Vout(r) =− E0r cos θ +
εs − εm
εs + 2εm

E0r cos θ
a3

r2
. (2.51)

The electric �elds inside and outside the sphere are immediately obtained by taking

the gradient of the corresponding potentials Ein,out = −∇Vin,out. Introducing the

variables of dipole moment p and polarizability α de�ned as

p ≡ 4πεmε0αE0, (2.52)

α ≡ a3 εs − εm
εs + 2εm

, (2.53)

the electric �elds are then given by

Ein(r) =
3εm

εs + εm
E0, (2.54)

Eout(r) =E0 +
1

4πεmε0r3
[3r̂(r̂ · p)− p]. (2.55)

Finally, the time-dependent electric �elds are expressed as

Ein,out(r, t) = Ein,out(r)e
−iωt. (2.56)
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Figure 2.4 (a) Optical relative permittivity εs of Au, Ag, and Al spheres of radius 10 nm.
The Drude �tting parameters are taken from reference [56]. The dotted black line represents
the value Re(εs)=-2. (b) The maximum near-�eld enhancement of materials in (a), calculated
by using Eq. 2.55.

The second term in the right-hand side of Eq. (2.55) is exactly the expression of

near-�eld of oscillating dipole from the Eq. (1.6), and for this reason the lowest mode

of excitation (l = 1) is called dipole excitation [21]. It is also shows that the near-�eld

enhancement at a given wavelength which can be de�ned as E

E0(λ) (maximum at r = a

and cos θ = 0) is only determined by the relative permittivities of sphere and the

surrounding medium. Fig. 2.4 compares the wavelength-dependence of Au, Ag, and

Al nano-spheres optical relative permittivities (a=10 nm) at the visible region (λ=390-

700 nm) and the maximum near-�eld enhancement around the nanoparticle placed in

vacuum. An example of the near-�eld distribution normalized to the incoming �eld

is depicted by Fig. 2.5. From the Fig. 2.4, it is observed that maximum near-�eld

enhancements in the vicinity of Au and Ag spherical nanoparticles are sigini�cantly

higher compared to the Al counterpart, because the real and imaginary parts of their

relative permittivities are close to the values leading the dipole resonance, in which the

near-�eld enahancement factor tends to be very large. Theoretically, in non-arbsorbing

medium the dipole resonance occurs when following condition is ful�lled:

Re(εs) = −2εm, Im(εs) = 0, (2.57)

also knowsn as Fröhlich condition [16].

The inclusion of l > 1 in the solution of the Laplace Equation leads to the occurence

of multipolar excitations. For example, when l = 2 both dipole and quadrupole modes
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Figure 2.5 Near-�eld enhancement around Ag spherical nanoparticle (a=10 nm) at excita-
tion wavelength λ=400 nm.

contribute to the excitation condition [21]. However, for many purposes, the lowest-

mode excitation is adequate to describe the optical properties of small nanoparticles

illuminated by visible or near-infrared radiation [16], since if the size of the corre-

sponding nanoparticles are considerably small to the wavelength of the illuminating

light, the contributions of higher order excitations are negligibly small compared to

the dipole excitation [21]. The problems on the limit of QSA approximation related

to the size of nanostructures shall be addreessed in the last Sub-section of QSA.

2.2.2 Quasi-static Finite-Di�erence Method

The simplest model of describing near-�eld enhancement around the tip is the quasi-

static sphere as previously described [20]. To obtain the behavior of near-�eld as well

as its resonant condition for more realistic shape of the tips, the Laplace Equation have

been solved analytically for some generalized geometry, e.g. spheroids [58, 59, 6] and

paraboloid [60]. For more complicated shapes, the analytical solution is practically

di�cult or otherwise impossible to obtain. To overcome this limitation, some methods

have been devised to perform the calculations numerically, such as boundary element

method (BEM) [60] and discrete-dipole approximation (DDA) [59, 21]. One of the

well-known numerical method to solve various electromagnetics problems within the
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quasi-static approximation is �nite-di�erence method (FDM) [61, 20], which basically

expands the derivatives of a given function or variable into a �nite-di�erence scheme

by discretization of calculation domain into set of lattices called mesh. Thus, the

di�erential equation can be solved by numerical approximation. In the FDM for

solving quasi-static problems, the square mesh is commonly employed to discretize

the spatial position. For example, the position of a point P from the origin in the

two-dimensional domain is expressed as:

(xi, yj) = (ih, jh), i, j ∈ Z, (2.58)

with h is de�ned as a small distance between any two neighboring points. The spatial

square mesh of the domain is illustrated in Fig. 2.6(a), in which the values of other

variables relevant to the calculation are stored. In order to obtain a �nite-di�erence

scheme of the second-order derivative of scalar potential V given in the Laplace equa-

tion, we evaluate V at the distance h from the point P with Taylor's series as follows:

V (xi ± h, yj) =V (xi, yj)±
∂V (xi, yj)

∂x
h+

∂2V (xi, yj)

∂x2
h2

+
∂3V (xi, yj)

∂x3
h3 +O(h4),

(2.59)

V (xi, yj ± h) =V (xi, yj)±
∂V (xi, yj)

∂y
h+

∂2V (xi, yj)

∂y2
h2

− ∂3V (xi, yj)

∂y3
h3 +O(h4).

(2.60)

Hereafter we denote V (xi, yj) as Vi,j . By inserting Eqs. (2.59) and (2.60) into the

Laplace equation

∇2Vi,j =
∂2Vi,j
∂x2

+
∂2Vi,j
∂y2

= 0, (2.61)

therefore the potential Vi,j can be solved directly, given by

Vi,j =
Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1

4
+O(h4). (2.62)

By neglecting fourth-order error O(h4), Eq. (2.62) shows that the value of Vi,j is the

average of its four nearest-neighbor lattices, as depicted by Fig. 2.6(b).

For inhomogenous domain consisting two or more media with di�erent dielectric

constants, the relative permittivity as the function of the position ε(r, ω) needs to be

incorporated into the mesh. For a moment, we assume that the media are dielectrics,
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(a) (b)

Figure 2.6 (a) Position and (b) potential mesh in �nite-di�erence domain.

whose imaginary part of the relative permittivity is with zero or negligible. We begin

with the Gauss law, written as

∇ · [ε(r, ω)∇V (r)] = 0. (2.63)

The Gauss Divergence Theorem for two-dimensional system is then applied into the

Eq. (2.63). In two-dimensional system, it transforms the integration with respect to

the di�erential surface area dS = dxdy into the contour integration in the form∮
Si,j

∇ · [ε(r, ω)∇V (r)] dS =

∮
li,j

ε(r, ω)∇V (r) · n̂ dl, (2.64)

where n̂ is the unit vector normal to the path of integration l. The contour integral

is performed along the interface separating media with dielectric constants ε1 and

ε2, and is decomposed into the paths l1, l2, l3, and l4, as shown by Fig. 2.7(a). The

�nite-di�erence counterpart for the corresponding integration is given by Fig. 2.7(b), in

which the relative permittivity of point (xi, yj) is denoted by εi,j . By using trapezoidal

rule, in which the continous integration of a a given function f(x) from xi−1 = xi − h

to xi+1 = xi + h with respect to dx can be numerically evaluated as [62]:∫ xi+1

xi−1

f(x)dx =
h

2
[f(xi−1) + 2f(xi) + f(xi+1)] +O(h3), (2.65)

the integration along l1 is therefore approximated as∫
l1

ε(r, ω)
∂V

∂x
dy ≈1

2

(
Vi+2,j − Vi+1,j

h
+
Vi+1,j − Vi,j

h

)
×(

εi+1,j+1 + 2εi+1,j + εi+1,j−1

2

)
2h

=(Vi+2,j − Vi,j)
εi+1,j+1 + 2εi+1,j + εi+1,j−1

2
,

(2.66)
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(a) (b)

Figure 2.7 (a) Continous and (b) discrete contour integration paths in the right-hand side
of Equation 2.64. The interface between media is depicted with dotted lines. Violet, red,
orange, and green arrows represent paths l1, l2, l2, and l4, respectively. In (b), the electric
�eld component normal to each path in the integration is depicted as the dashed arrow with
the same color.

similarly, the integrations along l2, l3, and l4 are given by∫
l2

ε(r, ω)
∂V

∂y
dx ≈(Vi,j+2 − Vi,j)

εi+1,j+1 + 2εi,j+1 + εi−1,j+1

2
, (2.67)∫

l3

ε(r, ω)
∂V

∂x
dy ≈(Vi−2,j − Vi,j)

εi−1,j+1 + 2εi−1,j + εi−1,j−1

2
, (2.68)∫

l4

ε(r, ω)
∂V

∂y
dx ≈(Vi,j−2 − Vi,j)

εi+1,j−1 + 2εi,j−1 + εi−1,j−1

2
. (2.69)

By combining the Eqs. (2.66)-(2.69), the potential Vi,j can be solved as

Vi,j ≈
Vi+2,jβ

(1)
i,j + Vi,j+2β

(2)
i,j + Vi−2,jβ

(3)
i,j + Vi,j−2β

(4)
i,j

β
(1)
i,j + β

(2)
i,j + β

(3)
i,j + β

(4)
i,j

, (2.70)

where the de�nitions of β
(n)
i,j , n = 1− 4 are given as follows:

β
(1)
i,j ≡

εi+1,j+1 + 2εi+1,j + εi+1,j−1

2
, β

(2)
i,j ≡

εi+1,j+1 + 2εi,j+1 + εi−1,j+1

2
,

β
(3)
i,j ≡

εi−1,j+1 + 2εi−1,j + εi−1,j−1

2
, β

(4)
i,j ≡

εi+1,j−1 + 2εi,j−1 + εi−1,j−1

2
.

(2.71)

Note that in the case of homogenous domain, β
(n)
i,j is constant and therefore Eq. (2.70)

is accordingly reduced to Eq. (2.62) as expected. The �rst step to calculate electric

�eld distribution is by assigning an appropiate initial value for each Vi,j . In the

iterative process that follows, the potential value at (n + 1)-th iteration V
(n+1)
i,j is

then updated from the values of its four nearest-neighbor potentials obtained from

the previous iteration, by utilizing �nite-di�erence result derived in Eq. (2.70). This
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updating algorithm is expressed as

V
(n+1)
i,j =

V
(n)
i+2,jβ

(1)
i,j + V

(n)
i,j+2β

(2)
i,j + V

(n)
i−2,jβ

(3)
i,j + V

(n)
i,j−2β

(4)
i,j

β
(1)
i,j + β

(2)
i,j + β

(3)
i,j + β

(4)
i,j

, (2.72)

The iterative loop is then repeated until the di�erence between V
(n+1)
i,j and V

(n)
i,j falls in

the range of some acceptable error value. When the criteria of convergence is achieved,

the electric �eld of the corresponding point is then calculated by taking the gradient

of the potential as follows:

E
(n+1)
i,j = −

V
(n+1)
i+2,j − V

(n+1)
i,j

2h
x̂−

V
(n+1)
i,j+2 − V

(n+1)
i,j

2h
ŷ (2.73)

The quasi-static �nite-di�erence method formerly explained requires generalization

for a domain consisting conductive materials where the induced current density is

included in the calculation [61]. By using Eq. (2.12) for induced current J and then

applying the identity ∇· (∇×F) = 0 on the Ampere law given in Eq. (2.27), therefore

∇ ·

[(
εm +

iσ

ε0ω

)
E

]
= 0. (2.74)

In the harmonic time-varying system, the expression of the electromagnetic �elds

include vector potential A(r), and are given by

E(r) =−∇V (r) + iωA(r); (2.75)

B(r) =∇×A(r). (2.76)

Thus, in order to �nd E(r), both V (r) and A(r) must be solved simultaneously in

the �rst-hand. However, in the QSA the contribution of the vector potential to the

electric-�eld is negligible at low frequency, i.e. iωA(r) ≈ 0, this condition implies that

E(r) ≈ −∇V (r). Therefore the Eq. (2.63) can be rewritten as

∇ · [(ε(1)
r + iε(2)

r )∇V (r)] = 0. (2.77)

We have shown that quasi-static �nite-di�erence method is also applicable to calculate

the electric �eld in the domain in which metallic material is present, simply by using

complex relative permittivity instead of the real-valued one. With this method, it

is possible to calculate the near-�eld distribution surrounding nanostructure for any
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arbitrary shape. Indeed, this method is also applicable to simulate local electric �eld

response of system consisting con�guration of nano-materials, e.g. arrays of 2D nan-

odisks embedded in a low dielectric medium [63, 64]. We shall use the previously

explained procedure to calculate near-�eld enhancement of in the vicinity of Au tips

placed in the vacuum, presented in the Chapter 3.

2.2.3 Validity and Limit of Quasi-Static Approximation

In this Sub-section, we address the limit the validity and limit of QSA which is related

to the ratio between the spatial dimension of nanostructures and the wavelength of the

illuminating electromagnetic wave, generally assumed as a plane wave. The common

circumstance of the calculation with QSA consists of nanostructure and and non-

absorbing medium. Supposing that the plane wave is propagating along x-direction

in the Cartesian coordinate, the spatial dependence of the electric is described as:

E(x) = E0e
iñkx, (2.78)

where ñ is the complex refractive index of the medium or body in which the plane wave

propagates. We denoteD as the largest dimension of the body and λ as the wavelength

of electromagnetic wave. Since in QSA the radiating electric �eld is considered as

spatially static, therefore following condition must be satis�ed for both inside and and

ouside the body [6]:

|ñkD| � 1, or
D

λ
�

∣∣∣∣∣ 1

2πñ

∣∣∣∣∣. (2.79)

Based on this imposed condition, the typical limit of which QSA can be regarded

as valid is D ≈ λ
20 or possibly D ≈ λ

10 [6]. This result is con�rmed by the work of

McLeod et al. [65] who compares the calculations of near-�eld enhancements around

ellipsoid and hyperboloid tips with the quasi-static and electrodynamics �nite-element

method (FEM). Length and radius of the tips (placed above SiO2/Si layers plane) are

L and a, respectively. The result is summarized in Fig. 2.8, which shows that the

quasi-static approximation predicts monotonic growth of near-�eld enhancement as

L increases while a is kept constant. This behavior is attributed to the lightning-rod

e�ect which depends of the geometric 'sharpness' of the tips, quantitatively parameter-

ized by L
a [65]. The quasi-static results depart from the more realistic electrodynamics
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Figure 2.8 Calculation of near-�eld enhancement around ellipsoid and parabolic tips with
quasi-static (QS) and electrodynamic (ED) FEM. The illuminating electric �eld Einc is per-
pendicular to the tip's axes [65].

calculations near the probe length L ≈ λ
10 . For the visible wavelength, this means

that the largest dimension of the body considerably valid in the quasi-static system

is in the range of 39-70 nm. However, in general cases the limit of QSA is di�cult to

determine precisely [6]. Another criteria for this limit is given by Demming et al [60],

who state that QSA is valid as long as the largest dimension of the body is smaller

than Rayleigh length R, de�ned as R = λ
2π . Some authors even consider that for

the optical wavelength, QSA is adequate to describe the optical properties of a body

whose size is below 100 nm [66, 16].

2.3 Electron-Light Interactions in Graphene

2.3.1 Electron-Photon Hamiltonian

By using the near-�eld obtained the previous Sub-section, let us describe the interac-

tion of electron with an external electromagnetic �eld by considering the Hamiltonian

of electron in the corresponding condition. The momentum of electron p is substituted

by canonical momentum in the form p− eA(r), where e is the elementary charge and
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A is the potential vector. The total Hamiltonian is generally given by

H(r, t) =
[p− eA(r, t)]2

2m
+ U(r), (2.80)

in which m and U(r) are the electronic mass and potential energy of a given system,

respectively. By transforming the momentum p into the respective operator form

p→ ~
i∇, and adapting the Coulomb gauge ∇ ·A = 0, Eq. (2.80) becomes

H ≈

[
p2

2m
+ U(r)

]
+

[
− eA · ∇

m

]
≡ H0 +H′, (2.81)

where H0 and H′ correspondingly denote unperturbed and time-dependent perturbed

Hamiltonians. In Eq. (2.81) we do not include the term ∝ A2 since in the visible

light its value is very small compared with the term consisting linear-dependence of

A. Now we consider the relation between the vector potential A with the electric �eld

E. In the far-�eld case, there is no contribution of scalar potential V (r) to the electric

�eld, and therefore the relation can be directly established in the Eq. (2.75) by taking

V (r)=0, hence

A =
E

iω
. (2.82)

On the other hand, in near-�eld case described by the quasi-static approximation, we

have to consider a di�erent approach. By utilizing the Ampere law for vacuum (εr = 1,

J = 0) as well as Eqs. (2.75) and (2.75), we have

∇×∇×A =
−1

c2

[
∂∇V
∂t

+
∂2A

∂t2

]
. (2.83)

By employing Coulomb gauge and assuming that A is a plane wave, i.e. A(r, t) =

A0e
i(k·r−ωt), then∇×A = ik×A. In the quasi-static case, the second-order derivative

term in the Eq. (2.83) can be excluded because the retarded time is omitted [57],

therefore

ω2A =
∂∇V
∂t

. (2.84)

By substituting the right-hand side of Eq. (2.84) with −iω[−∇V (r)] = −iωEst(r),

where Est(r) is the static electric �eld, thus again Eq. (2.82) prevails. In general, the

perturbed electron-photon Hamiltonian is given by

H′ =
e~
mω

E · ∇, (2.85)
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in which E can be either electric far- or near-�elds. In the next-Sub-section, we shall

use the tight-binding graphene wave function to calculate the electron-photon matrix

element.

2.3.2 Tight-binding Electron-Photon Matrix Element

The electron-photon matrix element describe the interaction between an electron in

material with the external electric �eld from an incident light. Let us consider an

electron at initial electronic state i, in which we denote ki as electron wave vector.

The electric �eld incites the electron to the �nial state f and now its wave vector is

denoted as kf . This process of electron excitation is accounted by the electron-photon

matrix element, mathematically stated as

Me−opt(k, r) = 〈Ψf (kf , r)|H′|Ψi(ki), r〉

=
e~
mω
〈Ψf (kf , r)|E(r) · ∇|Ψi(ki, r)〉,

(2.86)

where Ψi(f)(ki(f)) is the electron wave function at initial (�nal) electronic state. In

the tight-binding method, the wave function of a system is expressed as the linear

summation of its atomic orbitals (for this reason tight-binding method is also known

as linear combination of atomic orbitals, LCAO). In the case of graphene, the 2s, 2px,

and 2py orbitals form the σ bonding which is responsible for the structural robustness

of all carbon allotropes, while 2pz orbital give rises to the π bonding whose energy is

close to the Fermi level and largely determine of the optical properties of graphene in

the visible region [31, 67]. Therefore, in this thesis, only the electron in 2pz orbital is

considered. Since there are two carbon atoms A and B, the wave function consists of

Bloch wave function, φbs(k) as well as its tight-binding coe�cient Cbu(k), given by

Ψf (k, r) =
∑
u=A,B

Cb
u(k)φu(k, r), (b = v, c), (2.87)

where indices v and c specify for valence and conduction bands, respectively. In

graphene containing N carbon atoms, the Bloch wave function described as follows:

φu(k, r) =
1√
N

N∑
j=1

eiR
u
j ϕ(r−Ru

j ), (2.88)

in which ϕ(r − Ru
j ) is the electron of 2pz orbital at distance Ru

j from the origin.

We need to de�ne some variables before explicitly state the formulae for the tight-
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binding coe�cients. Referring to Fig. 1.6(b), we de�ne δB
n ≡ δn, n = 1, 2, 3, as

the vectors connecting atom in B-sublattice to its three nearest-neighbor atoms in A

sub-lattice. Conversely, we write δA
n = −δB

n as the vectors from an A atom to its

three nearest-neighbor B atoms. By using this information, the variables f(k), its

complex conjugate f∗(k), and its absolute value ω(k) which are often employed in the

tight-binding calculations of graphene can be calculated as

f(k) ≡
3∑

n=1

eik·δ
A
n = e

i kxa√
3 + 2e

−i kxa
2
√

3 cos(kya/2), (2.89)

f∗(k) ≡
3∑

n=1

eik·δ
B
n = e

−i kxa√
3 + 2e

i kxa
2
√

3 cos(kya/2), (2.90)

ω(k) ≡
√
f(k)f∗(k) =

[
1 + 4 cos

(
kya

2

)
cos

(√
3kxa

2

)
+ cos2

(
kya

2

)] 1
2

. (2.91)

The explicit formulae of tight-binding coe�cients are given by [67]:

Cv
A(k) =

1√
2[1 + sω(k)]

√
f(k)

ω(k)
, Cc

A(k) =
1√

2[1− sω(k)]

√
f(k)

ω(k)
,

Cv
B(k) =

1√
2[1 + sω(k)]

√
f∗(k)

ω(k)
, Cc

B(k) =
−1√

2[1− sω(k)]

√
f∗(k)

ω(k)
,

(2.92)

where s is the overlap integral between atom A and B, de�ned by

s ≡ 〈ϕ(r−Ru
j − δu

n)|ϕ(r−Ru
j )〉. (2.93)

In this thesis, we utilize s=0.129 [67]. By referring to Eq. (2.92), we derive some

relations of tight-binding coe�cients which is useful for later calculations as follows:

Cc∗
A (k)Cv

B(k) =− [Cc∗
B (k)Cv

A(k)]∗, (2.94)

Cc∗
A (k)Cv

A(k) =− Cc∗
B (k)Cv

B(k). (2.95)

The wave function of graphene 2pz orbital is an odd function with respect to the z

coordinate [67], and it is helpful to express the wave function in the terms of some well-

known functions to obtain deeper understanding of its properties. In order to make

possible the calculations of some fundamental variables analytically, the normalized

wave function of graphene 2pz orbital has been �tted into Gaussian basis set in the

form of [67]:

ϕ(r− r0) = (z − z0)

4∑
k=1

Ikexp

[
−(r− r0)2

2σ2
k

]
. (2.96)
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Figure 2.9 Wave function of graphene 2pz orbital.

The Gaussian parameters in the Eq. (2.96) to �t an ab-initio calculation are given by

Tabel 2.1. By using these values, we visualize the graphene 2pz orbital in the xz plane

centered at the origin, i.e. at y = 0, r0 = 0, and z0 = 0 as shown by the Fig. 2.9, from

which it is inferred that the length of orbital is around 2 a.u. = 1.058
◦
A.

k 1 2 3 4

Ik (a.u−5/2) 0.05 0.41 1.06 1.05
σk (a.u) 2.16 0.91 0.13 0.39

Table 2.1: The Gaussian �tting parameters for the radial part of the electronic graphene
2p wave function [67] in the xz plane at y = 0.

2.3.3 Optical Absorption in Graphene

By using the tight-binding description of graphene, now we are ready to calculate the

optical absorption and emission in its interaction with light. In the case of electro-

magnetic wave in the far-�eld regime, the electric �eld polarized in the P direction is

simply written as

E(t) = Ee±iωtP, (2.97)

where the +(-) sign in the Eq. (2.97) speci�es the emission (absorption) of a photon

with frequency ω. Based on this information as well as Eq. (2.86), the matrix element
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describing the absorption or emission of light whose frequency ωL is given by

Me−opt(ki,kf ) =
e~
mω

Eei(ωf−ωi±ωL)P ·Dfi(ki,kf ), (2.98)

where Dfi(ki,kf ) is called the dipole vector between initial and �nal electronic

states and is de�ned by

Dfi(ki,kf ) ≡ 〈Ψf (kf , r)|∇|Ψi(ki, r)〉. (2.99)

Note that in the Eq. (2.98) the electric far-�eld is taken out from the integration

since its magnitude is constant along the graphene plane. Furthermore, by recalling

Eqs. (2.87) and (2.88) as well as tight binding coe�cients relations given by Eqs. (2.94)

and (2.95), it can be shown that the more explicit form of dipole vector describing

transition from valence to conduction band is given as follows:

Dcv(k) = −2
√

3

a
moptRe

[
Cc∗

B (k)Cv
A(k)

3∑
n=1

exp(−iδA
n · k)δA

n

]
, (2.100)

where the variable mopt is called optical matrix element, because its provision of

describing the optical properties of π electron in graphene [67]. The optical matrix

element is de�ned as

mopt ≡

〈
ϕ(r− δB

n )

∣∣∣∣∣ ∂∂x
∣∣∣∣∣ϕ(r)

〉
. (2.101)

By using the Gaussian basis set in Eq. (2.96) as well as Table 2.1, the optical matrix

element expressed in Eq. (2.101) can be calculated analytically, from which its value

is obtained to be mopt = 0.21 a.u.−1 [67]. It is informative to mention that since the

product of atomic wave function and its derivative quickly descrease as the distance

between atoms is increasing, only the nearest-neighbour coupling is considered [67].

There are two points to be clari�ed in the steps of calculation leading to the

Eq. (2.100) to get a better comprehension of the properties of optical absorption in

graphene that soon will be discussed. First, it is mentioned but not explicitly shown

in [67] that the direction of the dipole vector is the opposite of that three vectors

connecting atom A to atom B or vice versa in the form of:

〈ϕ(r− δA(B)
n )|∇|ϕ(r)〉 = −

〈
ϕ(r− δB

n )

∣∣∣∣∣ ∂∂x
∣∣∣∣∣ϕ(r)

〉
δA(B)
n , (2.102)
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based on the reasoning that the vectors point along the bond between two atoms A

and B, and the gradient yields vector which points away from the origin, because the

wave function possesses positive value that is descreasing when moving away from the

origin, i.e. the center of one wave function [67]. Referring to Eq. (2.98), then this

result implies that the light polarized in z direction will result the zero value of the

matrix element and consequently, as shall be demonstrated later, there is no optical

absorption for the light in the corresponding polarization. Second, In the Eq. (2.100),

the summation over all atomic sites gives the selection rule ki = kf = k which means

that in far-�eld case the optical transition always occurs vertically, i.e. without change

of electron wave vector. In the relation to original results in this thesis, In Chapter

4 we shall perform rigorous step-by-step calculation of optical matrix element which

eventually con�rms the result in Eq. (2.102), as well as demonstrate that the vertical

transition is only a special case of electronic optical transition based on the argument

of Fourier transform. In our case, the localized near-�eld on graphene plane placed

few nanometers below the tip apex depends on the spatial position R = (x, y) is given

by

E(R) = E0

∑
σ=x,y,z

ησ(R), (2.103)

in which the near-�eld enhancement factor ησ(R) ≡ Eσ(R)
E0

is expressed as the sum-

mation of the Gaussian-based functions in order in order to enable the analytical

calculations of relevant variables.

Finally, by using the Fermi golden rule, the transition probability or rate of graphene

electron between initial and �nal states (valence and conduction bands, respectively)

Wv→c, due to the absorption of photon with energy εL is proportional to the square

of optical matrix element in Eq. (2.98) given as follows:

Wv→c ∝ |P ·Dcv(k)|2δ(εc(kc)− εv(kv)− εL), (2.104)

where δ is the Dirac delta function. From the Eq. (2.104), it can be shown that the

optical absorption in the case of far-�eld is mainly determined by the polarization of

light P, which results the nodes observed around K and K' points in the Brillouin

zone of graphene [67, 68]. We reproduce the calculations of transition probability for

two di�erent light polarizations P = (Px, Py), depicted by Fig. 2.10.
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Figure 2.10 Transition probability in Brillouin zone of graphene for P = (1, 0) and P =
(0, 1) around K point (4π/3a, 0). In former (later) case, the nodes are observed at ϕ =
0, π, 2π...(ϕ = π/2, 3π/2...).

In Chapter 4, we shall demonstrate that the transition probability in near-�eld case

is determined by the change of electron wave vector in the transition from valence band

to conduction band.





Chapter 3

Near-�eld Enhancement around

Metallic Nano-tips

3.1 Parabolic Au Tip

In this chapter, we calculate the near-�eld enhancement around Au tip placed in

vacuum tip with �nite-di�erence method. To perform the calculation, we are required

to specify the geometry of the tip as well as its relative permittivity as the function

wavelength of irradiating light. We shall show that magnitude of response near-�eld

are mainly determined by these two factors, and therefore enable us to maximize the

near-�eld enhancement by choosing particular tip shape and wavelength of the light.

The relative permittivity of bulk Au is considered as the summation of Drude and

Drude-Lorentz terms to include both optical properties originating from intraband and

interband transitions of electrons,respectively. As explained in the previous chapter,

relative permittivity εr which includes both terms is expressed as:

εr(ω) = ε∞ −
ωD

2

ω2 + iΓDω
−∆ε

ω2
L

(ω2 − ω2
L) + iΓLω

. (3.1)

The �tting values of parameters in Eq.( 3.1) are given in Tab. 3.1. Here the parameter

∆ε can be interpreted as a weighing factor [69] of the Drude-Lorentz term. These

values are applicable to describe the relative permittivity of Au for optical wavelength

in the range of 500-1000 nm [69]. The Au tip is modelled as a paraboloid of which

the radius of curvature at its apex is denoted by a. Geometry of the tip in the two-

dimensional �nite-di�erence calculation domain (xz plane) is depicted in Fig. 3.1.

43
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Figure 3.1 Parabolic Au tip in the two-dimensional �nite-di�erence calculation domain (xz)
plane, the radius of curvature at tip apex is denoted as a .

ε∞ ωD/2π (THz) ΓD/2π (THz) ωL/2π (THz) ΓL/2π (THz) ∆ε

5.9673 2113.6 15.92 650.07 104.86 1.09

Table 3.1: Fitting values of parameters contained in the Drude and Drude-Lorentz terms
given by Equation 3.1, adapted from reference [69].

The �xed height of the tip H is choosen as 80 nm. This distance is approximately

corresponds to the Rayleigh length for the shortest wavelength used in the calculation

(500 nm/2π). Because in nano-scale regime the electron-surface scattering e�ect is

not negligible, the damping constants in Drude and Drude-Lorentz terms are modi�ed

by using Eqs. (2.21)-(2.23). This modi�cation is explicitly stated as:

ΓD(L) → ΓD(L) +AvF
S

4V
, (3.2)

where S and V are the surface area and volume of the tip, respectively. By using

A = 0.33 [46] and vF = 1.41 × 1015nm.s−1 [55], relative permittivity of the tip εr is



3.1. Parabolic Au Tip 45

Figure 3.2 Calculated real and imaginary parts of Au in the case of (a) parabolic tip and
(b) sphereical nanoparticle whose radius a=5, 10, and 15 nm.

calculated for the optical wavelength λ=500-700 nm. The corresponding calculations

are carried out for a=5, 10, and 15 nm in order to capture the size e�ect on the rela-

tive permittivity for the case of parabolic nano-tips and nano-sphere for comparison.

The results are presented in Fig. 3.2(a), which shows the increase of the imaginary

part of nano-tip relative permittivity as its radius descreases, particularly in the long

wavelength region. This property is also observed for the case of spherical nanoparti-

cles as given in (b). The main di�erence is that the imaginary part of permittivity of

nano-sphere increases more quickly compared with the case of parabolic tip, because

for a given radius a, the former is less voluminous and the e�ect of electron-surface

boundary scattering is more noticeable in the smaller nanostructure.

The calculation of near-�eld enhancement distribution around Au nano-tip in

the vacuum is then performed numerically with �nite di�erence method. The two-

dimensional calculation domain (xz plane) whose size is (100 nm × 130 nm) is de-

scretized into 1000 × 1300 square meshes, which means that the size of individual

mesh is 0.1 nm×0.1 nm. Hereafter we write (xi, zk) to denote a spatial position in the

two-dimensional �nite-di�erence domain. Further, we need to assign the appropiate

values of electrostatic potentials inside and outside tip at the zeroth iteration (n=0).

As has been explained in the Chapter 1, the electric �eld enhancement is optimized

when the electric �eld emanating from the light E0 is polarized parallel to the tip axis,

and therefore in this work we only consider the corresponding case. Outside the tip,

E0 generates the electrostatic potential V (r) which is equal to ∓zE0, where ∓ sign in
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Figure 3.3 Calculated maximum near-�eld enhancement as the function of irradiating wave-
length λ=500-700 nm for Au parabolic tip and spherical nanoparticle. Inset: the optical
relative permittivity εr(λ) of Au parabolic tip (blue) and sphere (red) of radius a=10 nm .
Black line intersects the value of maximum enhancement and εr at λ ≈ 534 nm.

the potential represents E0 is directed toward ±z direction. Inside the tip, the value of

potential V (r) is zero at n=0, since initially the tip is not a�ected by E0. The relative

permittivity of the tip at a given wavelength εr is evaluated by using Eqs. 3.1 and 3.2.

The initial conditions of �nite-di�erence calculation are summarized as follows:

(Inside tip)

V
(n=0)
i,k (r) = 0,

εi,k(r, λ) = εr(λ).

(Outside tip)

V
(n=0)
i,k (r) = ∓E0zk,

εi,k(r, λ) = 1.

(3.3)

With the previously described procedures, we calculate the near-�eld enhancement

in the vicinity of Au parabolic tip (a=10 nm) for several optical wavelengths to obtain

the magnitude of maximum enhancement as the function of wavelength of illuminating

light in the range of λ=500-700 nm. For each case, the incoming electric �eld E0 is in

the +z-direction. The �nite-di�erence calculation is performed with iteration number

n = 2.5 × 104. The result is presented by the blue dots in Fig. 3.3, showing that the

resonance condition, i.e. maximum magnitude of near-�eld enhancement (∼ 9.4) is

attained at λ ≈534 nm. We compare our numerical calculation with the maximum

near-�eld enhancement around the quasi-static sphere, analytically evaluated using
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Figure 3.4 Calculated near-�eld enhancement in the vicinity of parabolic tip (a=10 nm) at
excitation wavelength λ ≈534 nm.

Eqs. (2.55), which is depicted by dashed red line in the �gure. The maximum en-

hancement factor for the case of Au nano-sphere occurs at λ ≈539.5 nm. Because the

resonance conditions are almost overlapping, therefore, its is concluded enhancement

in the case of the tip corresponds to the dipole mode of near-�eld excitation. How-

ever, it is also shown that the resonance condition of near-�eld enhancement in the

parabolic tip is slightly blue-shifted (which means that it occurs at smaller wavelength)

compared with the nano-sphere. This e�ect mainly due to the shape-dependence of

relative permittivity. It is interesting to compare our results with the Mie theory cal-

culations by Olson et al. [23] on the wavelength dependence of extinction cross section

for the individual Au spherical nanoparticle, which show peaks of cross-sections in the

Fig. 1.2 appear in almost similar range of optical wavelength. In Fig. 3.4 we show the

near-�eld enhancement of around parabolic tip (a=10 nm) at λ ≈534 nm, in which

arrows represent the directions of the total electric �eld. The �gure indicates that

the maximum enhancement occurs below the tip apex, which is dominated by the z-

component of the near-�eld, and the direction of electric �eld inside the tip is opposite

of the direction of incoming �eld E0. This result can be explained by the electrostatic

lightning rod e�ect, in which the incoming �eld induces the Au electron cloud to move
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Figure 3.5 Enhancements of (a) z, (b) x, and (c) total components of near-�eld as the
function of x at 2 nm below Au tip apex. Solids and dashed lines represent calculated results
using �nite-di�erence method and �tting functions, respectively.

to the opposite end of the tip and in return generates the near-�eld enhancement.

The distribution of the near-�eld components at some particular distance below

the tip z = z0 is then evaluated to obtain their pro�les, which are �tted into Gaussian-

based functions. In the Fig. 3.5 (a), (b), and (c) we correspondingly show the pro�le

of z, x, and total near-�eld components at 2 nm below the tip apex calculated by

�nite di�erence method as well as the respective �tting functions. The complex �tting

functions are given by:

Ez(x, z = z0) =E0

(
K +

∑
a=1

Aae
−x2

2v2
a + iL+ i

∑
b=1

Bbe
−x2

2w2
b

)
ẑ, (3.4)

Ex(x, z = z0) =− E0x

(∑
c=1

Cce
−x2

2f2
c + i

∑
d=1

Dde
−x2

2g2
d

)
x̂. (3.5)

In (a) the width of near-�eld enhancement magnitude of z component |Ez/E0| is

approximately 5.08 nm, while in (b), the near-�eld enhancement magnitude of x com-

ponent |Ex/E0| is maximum at x =∼ ±9.75 nm and eventually vanishes as x→ ±∞.

In (c), by using |E| =
√
E2
z +E2

x, it is found that the width of near-�eld enhancement

magnitude of total components |E/E0| tip is around 5.54 nm, which is only slightly

larger compared with that of the z component. By considering the azimuthal symme-

try, it is possible to extend the previous �tting method into the calculation of near-�eld

planar distribution on the xy plane. In this consideration, the z, x and y near-�eld
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Figure 3.6 Planar distribution (a) z, (b) x and (c) all components of near-�eld at 2 nm
below the Au tip.

components can be written as:

Ez(x, y) =E0ηz(x, y) = E0

(
K +

∑
a=1

Aae
−x2−y2

2v2
a + iL+ i

∑
b=1

Bbe
−x2−y2

2w2
b

)
ẑ, (3.6)

Ex(x, y) =E0ηx(x, y) = −E0x

(∑
c=1

Cce
−x2−y2

2f2
c + i

∑
d=1

Dde
−x2−y2

2g2
d

)
x̂, (3.7)

Ey(x, y) =E0ηy(x, y) = −E0y

(∑
c=1

Cce
−x2−y2

2f2
c + i

∑
d=1

Dde
−x2−y2

2g2
d

)
ŷ. (3.8)

In Fig. 3.6 (a), (b), and (c) we respectively depict the enhancement distributions of

total, z, and x components of near-�eld on xy for the corresponding conditions.

In short, we have demonstrated that the wavelength dependence of near-�eld re-

sponse for the parabolic Au tip shares almost similar characteristics with the case

of quasi-static spherical particle, and the mechanism responsible for the near-�eld en-

hancement around the tip corresponds to electrostatic lighting rod e�ect, which occurs

due the concentration of charges in the sharp end of the tip. The charge density ac-

cumulated in tip apex is obviously related to geometry of the tip. This lead us to

consider another tip shape to optimize the near-�eld enhancement which is one of the

utmost importance in near-�eld spectroscopy.

3.2 Conical Au Tip

Now we calculate the near-�eld enhancement for the case of conical tip as an alternative

shape to obtain larger near-�eld enhancement compared with the case of parabolic tip.
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Figure 3.7 (a) Geometrical depiction of the conical tip, (b) The relative permittivity of
Au tip εr corresponds to ϕ=15 deg for a=15, 10, and 5 nm. The calculated magnitudes of
near-�eld enhancement as the function of (c) ϕ and �xed a=10 nm, and (d) for a=15, 10,
and 5 nm and ϕ=15, 12, 9, 6, and 3 degree.

Geometry of the tip is described as an upside-down truncated cone with hemisphere

of radius a at its bottom, where the angle between its slant and z axis is ϕ, and as

in the previous calculations, the height of tip H is 80 nm. The shape of conical tip is

illustrated in Fig. 3.7(a). The size e�ect on the relative permittivity εr(λ) of conical Au

tip (ϕ=15 deg.) is presented in (b), which shows more rapid increases of its imaginary

part as the tip radius decreases in the long wavelength regime compared with the

case of parabolic tip. The reason for this property is because for a given radius a,

the conical tip possesses more surface-to-volume ratio compared to to parabolic tip of

the identical radius, and therefore, the electron-surface scattering e�ect on εr is more

pronounced in the former case. With the �nite-di�erence procedures applied for the

parabolic tip, we calculate the magnitude of maximum near-�eld enhancement factor
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|E/E0| as the functions of two geometrical parameters of conical tip, namely opening

angle ϕ and radius a. We assume that the wavelength dependence of |E/E0| is similar

to the case of parabolic tip, and for this reason, the corresponding calculations are

performed only for λ ≈534 nm. The magnitude of maximum enhancement factor the

function of ϕ (a=10 nm) is presented in (c) which shows monotonic growth of |E/E0|

as ϕ becomes smaller. In (d) we calculate |E/E0| by choosing a=15, 10, and 5 nm

for ϕ=15, 12, 9, 6, and 3 degree, in which the smaller radius of the tip yields larger

magnitude of near-�eld enhancement factor. The results from (c) and (d) are again

the direct implications of the lightning-rod e�ect, where the induced surface charge

density accumulated around the tip apex is becomes higher as both ϕ and a decrease.

As a resume, we have shown that although the near-�eld response of the nano-tips

are almost similar to the quasi-static sphere, of which for many practical purposes

the nano-tips are often approximated. However, the �nite-di�erence calculations re-

veal some aspects of near-�eld enhancement properties that can not be accounted by

the quasi-static sphere model. For example, it is demonstrated that beside complex

relative permittivities of the tip and the surrounding medium εr(λ), tip shape and

the related geometrical parameters plays de�nitive role in determining the magni-

tude of near-�eld enhancement factor in its vicinity, while the spherical quasi-static

model predicts the size invariance of the near-�eld enhancement factor, as described

by Eq. (2.55).

3.3 Comparison with Calculations from Some Established

Works

At the end of this chapter, we perform two calculations of the near-�eld enhancement

around nano-tips which were established in some works. This is done because (1) we

need verify the accuracy of our �nite-di�erence method and its comparison with the

calculations using other techniques, such as �nite-element (FE) and �nite-di�erence

time-domain (FDTD) methods which numerically solve the Maxwell equations rather

than much simpler the Laplace equation, and (2) to obtain some information on the

magnitude near-�eld enhancement around materials made other than Au at some

particular optical wavelength.
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Figure 3.8 Finite-di�erence calculation of near-�eld enhancements in the vicinity of (a) Pt
tip at λ=808 nm and (b) W tip (R=10 nm, α=15 degree) at λ=800 nm. In both calculations
the direction of incoming electric �eld E0 is parallel to tip axis.

The FE simulation of near-�eld enhancement around Pt tip under the irradiation by

the laser of wavelength λ=808 nm by Cui et al. [25] (εtip = −17.179+29.609i) is given in

Fig. 1.5(a), while in (b) the FTDT calculation of near-�eld enhancement around W tip

shined by light of wavelength 800 nm by Thomas et al. [26] (εtip ∼ 5+i19i) is depicted.

In Fig. 3.8 we present reproduction of the two calculations, performed with the quasi-

static �nite-di�rerence method, where it can be observed that maximum magnitude

of near-�eld enhancements in (a) and (b) are ∼ 10 and ∼ 6.1, respectively. Referring

to Fig 1.5, it is inferred that our results are in good agreement with one obtained in

the corresponding works, and therefore to some extent justify the applicability of our

�nite-di�erence method for the calculation of near-�eld enhancement around metallic

nano-tips.



Chapter 4

Near-Field Induced Optical Transition

in Graphene

In this chapter, we discuss the e�ect of the near-�eld around Au tip on the optical

transition of an electron in graphene, which occurs from valence band to conduction

band. The near-�eld induced optical transition is interpreted from the results of optical

matrix element calculations for the near-�eld. After calculating the optical matrix

element, we describes the properties transition probability a�ected by near-�eld in

graphene.

4.0.1 Near-Field Optical Matrix Element

We begin the story by describing the general expression of the far-�eld optical matrix

element, because it shall be shown later that the description the coupling between

of near-�eld and electron in graphene can be expressed in the term of the far-�eld

optical matrix element. In the origin of Cartesian coordinate, 2pz orbital of graphene

in Eq. (??) is written by

ϕ(R, z) = ϕ(x,y, z) = z

4∑
k=1

Ikexp

[
−x2 − y2 − z2

2σ2
k

]
. (4.1)

We introduce the shift constants α = α(σk) and β = β(σk) for a given σk and transform

the coordinates x → x − α and y → y − β. The reason for this coordinates shifting

is to simplify the integration as shown below. The gradient of the wave function after

53
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the transformations is given by

∇ϕ(x− αx̂,y− βŷ, z) = ϕ(x,y, z)

[
α− x
σ2
k

x̂+
β − y
σ2
k

ŷ+
z−1 − z
σ2
k

ẑ

]
(4.2)

Let we de�ne the vectorial matrix elementmA
opt which is is de�ned as 〈ϕ(r− δA

n )|∇|ϕ(r)〉,

let us remind the readers that δA
n , n = 1, 2, 3 are the nearest-neighbour vectors

connecting carbon atom in A sublattice to its three nearest neighbour atoms in B

sublattice, as has been de�ned in the Chapter 2. By using Eq. (4.2) we have

mA
opt =

∫ ∞
−∞

dv z

4∑
l=1

Ile
(−x

2−y2−z2

2σ2
l

)
∇

[
z

4∑
k=1

Ike
(−x

2−y2−z2

2σ2
k

)

]
∫ ∞
−∞

dv

(
ϕ(x− αx̂− xA

n ,y− βŷ− yA
n , z)

[
α− x
σ2
k

x̂+
β − y
σ2
k

ŷ+
z−1 − z
σ2
k

ẑ

]
×

ϕ(x− αx̂,y− βŷ, z)

)
,

(4.3)

where xA
n and yA

n are respectively the x and y components of vector δA
n , and the

integration is performed over volume element dv = dxdydz. The integration which

consists the third term in square bracket in Eq. (4.3) vanishes since the integrand is

an odd function with respect to z. The integral of remaining terms are calculated as

follows:

mA
opt =

4∑
l=1

4∑
k=1

[∫ ∞
−∞

dz z2e
− z22 ( 1

σ2
k

+ 1

σ2
l

)

][∫ ∞
−∞

dy e
− y

2

2 ( 1

σ2
k

+ 1

σ2
l

)
e
y( β

σ2
k

+
β+yA

n
σ2
l

)

]
×[∫ ∞

−∞
dx e

− x2

2 ( 1

σ2
k

+ 1

σ2
l

)
e
x( α
σ2
k

+
α+xA

n
σ2
l

)α− x
σ2
k

]
×[

e
−α2−β2

2σ2
k e

− (α+xA
n )

2σ2
l e

− (β+yA
n )

2σ2
l

]
x̂+[∫ ∞

−∞
dz z2e

− z22 ( 1

σ2
k

+ 1

σ2
l

)

][∫ ∞
−∞

dx e
− x2

2 ( 1

σ2
k

+ 1

σ2
l

)
e
x( α
σ2
k

+
α+xA

n
σ2
l

)

]
×[∫ ∞

−∞
dy e

− y
2

2 ( 1

σ2
k

+ 1

σ2
l

)
e
y( β

σ2
k

+
β+yA

n
σ2
l

) β − y
σ2
k

]
×[

e
−α2−β2

2σ2
k e

− (α+xA
n )

2σ2
l e

− (β+yA
n )

2σ2
l

]
ŷ

(4.4)
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In order to avoid over-complicated in the analytical solution, we need to choose some

special values for both α and β. This step is permissible because the value of integral

over entire space in Eq. (4.3) does not change by shifting the origin into some particular

points in the coordinate. The values of α and β are chosen as such so the following

relations are satis�ed(
α

σ2
k

+
α+ xA

n

σ2
l

)
= 0,

(
β

σ2
k

+
β + yA

n

σ2
l

)
= 0, (4.5)

which yields

α = −x
A
n

σ2
l

(
1

σ2
k

+
1

σ2
l

)−1

, β = −y
A
n

σ2
l

(
1

σ2
k

+
1

σ2
l

)
. (4.6)

Therefore, the constants in Eq. (4.4) are given as follows:

e
−α2−β2

2σ2
k e

− (α+xA
n )

2σ2
l e

− (β+yA
n )

2σ2
l = exp

[
− a2

CC

2

1

(σ2
k + σ2

l )2

]
, (4.7)

where aCC = |δA
n | is the length of nearest-neighbour vectors pointing from atom A to

atom B. Continuing the derivation of Eq. (4.7), the optical matrix element is given by

mA
opt =

√
8π3

4∑
l=1

4∑
k=1

[
IkIl exp

[
− a2

CC

2

1

(σ2
k + σ2

l )2

](
1

σ2
k

+
1

σ2
l

)−5/2]
×[

−xA
n

σ2
k + σ2

l

x̂+
−yA

n

σ2
k + σ2

l

ŷ

]

=
√

8π3

4∑
l=1

4∑
k=1

[
IkIl exp

[
− a2

CC

2

1

(σ2
k + σ2

l )2

](
1

σ2
k

+
1

σ2
l

)−5/2
1

σ2
k + σ2

l

]
(−δA

n )

(4.8)

From the Eq. (4.8), it is concluded that the direction of mA
opt is opposite to the vector

connecting carbon atom in sub-lattice A to its three nearest neighbour atoms in sub-

lattice B. By similar mathematical arguments, it can be shown that the direction of

mB
opt ≡ 〈ϕ(r− δB

n )|∇|ϕ(r)〉 is in the direction of −δB
n . These results together justify

the reasoning which leads to the Eq. (2.102). By using the �tting values provided in

Table 2.1, it can be calculated that the magnitude of optical matrix element |mA
opt| =

|mB
opt| is equal to the one claimed in [67].

Now let us calculate near-�eld induced optical transition of electron in graphene.

Let us suppose that a monolayer graphene is placed 2 nm below the parabolic Au
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tip apex, of which the near-�eld distribution on the xy plane at λ ∼534 nm has

been calculated in Chapter 3. We consider that the introduction of graphene does

not signi�cantly alter the previously calculated result since in the optical wavelength,

graphene is almost transparent, for only absorbing 2.3% of the light [32]. The spa-

tial distribution of near-�eld components on the graphene (xy) plane are �tted into

Gaussian-based function given in Eqs. (3.6)-(3.8). Hereafter we adopt the notation

for near-�eld distribution introduced in Eq. (2.103). By recalling tigh-binding wave

function of graphene provided by Eqs. (2.87) and (2.88), the following is the explicit

form of the electron-near-�eld matrix element specifying the electron optical transition

from valence to conduction bands due to the near-�eld distribution generated by light

frequency ωL:

Me−nf(ki,kf ) =
∑

σ=x,y,z

1

N

N∑
j=1

N∑
j′=1

e~
mω

E0e
i(ωf−ωi±ωL)×

[
Cc∗

A (kf )Cv
A(ki)e

i(ki·RA
j −kf ·R

A
j′ )〈ϕ(z,R−RA

j′)|ησ(R) · ∇|ϕ(z,R−RA
j )〉+

Cc∗
A (kf )Cv

B(ki)e
i(ki·RB

j −kf ·R
A
j′ )〈ϕ(z,R−RA

j′)|ησ(R) · ∇|ϕ(z,R−RB
j )〉+

Cc∗
B (kf )Cv

A(ki)e
i(ki·RA

j −kf ·R
B
j′ )〈ϕ(z,R−RB

j′)|ησ(R) · ∇|ϕ(z,R−RA
j )〉+

Cc∗
B (kf )Cv

B(ki)e
i(ki·RB

j −kf ·R
B
j′ )〈ϕ(z,R−RB

j′)|ησ(R) · ∇|ϕ(z,R−RB
j )〉

]
(4.9)

The long expression in the Eq. (4.9) can be simpli�ed by introducing two auxiliary the

coordinates

R' ≡ R−RA
j , (4.10)

R� ≡ R−RB
j . (4.11)

Then these two coordinates can be interpreted as the relative position of A and B

carbon atoms relative to the centre of the tip at xy plane,respectively. By substituting

R→ R' (R→ R�) in �rst and third (second and fourth) terms in the square bracket

of the Eq. (4.9), as well as performing some algebraic manipulation in the complex
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exponential terms of the same equation, hence

Me−nf(ki,kf ) =
∑

σ=x,y,z

1

N

N∑
j=1

N∑
j′=1

e~
mω

E0e
i(ωf−ωi±ωL)×

[
Cc∗

A (kf )Cv
A(ki)e

i(ki−kf )·RA
j eikf ·(R

A
j −R

A
j′ )〈ϕ(z,R'+RA

j −R
A
j′)|ησ(R'+RA

j ) · ∇|ϕ((z,R')〉+

Cc∗
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j eikf ·(R
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j −R
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j −R
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j eikf ·(R
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j −R
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j eikf ·(R
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B
j′ )〈ϕ((z,R� +RB

j −R
B
j′)|ησ(R� +RB

j ) · ∇|ϕ((z,R�)〉

]
.

(4.12)

The next step is performing summation with respect to lattice index j′, and since

we only consider the nearest-neighbour interactions, the subtraction of RA
j − RB

j′

and RB
j −R

A
j′ will respectively yield the three nearest-neighbour vectors δA

n and δB
n ,

n = 1, 2, 3 while RA
j −R

A
j′ = RB

j −R
B
j′ = 0 because the subtracted vectors point to

the similar site of carbon atom in the graphene plane. By de�ning ∆k ≡ kf − ki as

the change of electron momentum from valence to conduction band, Eq. (4.12) is thus

reduced to

Me−nf(ki,kf ) =
∑

σ=x,y,z

1

N

N∑
j=1

e~
mω

E0e
i(ωf−ωi±ωL)×[

Cc∗
A (kf )Cv

A(ki)e
−i∆k·RA

j 〈ϕ(z,R')|ησ(R'+RA
j ) · ∇|ϕ(z,R')〉+

Cc∗
A (kf )Cv

B(ki)e
−i∆k·RB

j e−ikf ·δ
B
n 〈ϕ(z,R� − δB

n )|ησ(R� +RB
j ) · ∇|ϕ(z,R�)〉+

Cc∗
B (kf )Cv

A(ki)e
−i∆k·RA

j e−ikf ·δ
A
n 〈ϕ(z,R'− δA

n )|ησ(R'+RA
j ) · ∇|ϕ(ϕ(z,R')〉+

Cc∗
B (kf )Cv

B(ki)e
−i∆k·RB

j 〈ϕ(r)|ησ(z,R� +RB
j ) · ∇|ϕ(z,R�)〉

]
.

(4.13)

Let us recall that the width of the planar near-�eld components distribution (around

the size of tip diameter 2a) is considerably larger compared with distance between

carbon atoms in graphene, which is 0.142 nm. Therefore, we can regard RA
j ≈ RA

j =

Ru
j in the corresponding equation since the planar near-�eld distribution on the two

atoms in a given unit cell atRu
j are almost equal. Hence, Eq. (4.13) is further simpli�ed
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by

Me−nf(ki,kf ) =
∑
σ=x,y

1

N

N∑
j=1

e~
mω

E0e
i(ωf−ωi±ωL)×[

Cc∗
A (kf )Cv

B(ki)e
−ikf ·δB

n e−i∆k·R
u
jmσ

opt(R−R
u
j )(−σ̂ · δB

n )+

Cc∗
B (kf )Cv

A(ki)e
−ikf ·δA

n e−i∆k·R
u
jmσ

opt(R−R
u
j )(−σ̂ · δA

n )

]
,

(4.14)

where

mσ
opt(R−R

u
j ) =〈ϕ(z,R− δA,B

n )|ησ(R+Ru
j ) · ∇|ϕ(z,R)〉

=σ̂ · 〈ϕ(z,R− δA,B
n )|ησ(R+Ru

j )∇|ϕ(z,R)〉
(4.15)

is the near-�eld optical matrix element. By using tight-binding relation given

by Eq. (2.95), the �rst and the last terms in the square bracket of Eq. (4.13) will

cancel each other. Since both graphene 2pz orbital and the near-�eld components

distribution on the graphene plane are �tted into Gaussian-based functions as we

discussed in Chapters 2 and 3, then calculation of the remaining terms in Eq. (4.13)

can be performed analytically. Nevertheless, here we skip the rather tedious derivation

and instead provide a qualitative explanation to recompense the necessary quantitative

description. Since the width of the planar near-�eld components distribution is also

much larger than the size of graphene 2pz orbital whose size is in order of 0.1 nm, the

magnitude of near-�eld is constant over the individual orbital and hence mσ=x,y
opt (R−

Ru
j ) is proportional to product of the near-�eld enhancement factor at Ru

j , which is

denoted ησ=x,y(Ru
j ), and the far-�eld optical matrix element mopt, given by

mσ=x,y
opt (R−Ru

j ) ≈ ησ=x,y(Ru
j )mopt . (4.16)

Before continuing the discussion, it is noteworthy to mention that the z component of

the near-�eld distribution is zero, i.e.∫ ∞
−∞

dv〈ϕ(r− δA(B)
n )|ηz(R+R

A(B)
j )∇|ϕ(r)〉 = 0, (4.17)

because the integrands are an odd function with respect to z. Therefore, even though

possesses larger enhancement factor compared with the near-�eld planar components

as demonstrated in the Chapter 3, near-�eld of z component does not contribute to
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Figure 4.1 Calculated magnitude near-�eld optical matrix element per unit area of graphene
in (a) real space (b) ∆k space.

the optical transition of electron in graphene. In the semi-in�nite graphene plane, we

recognize that the summation over lattice index j in Eq. (4.14) is equivalent the two di-

mensional Fourier transform. Before we perform the Fourier transform of the near-�eld

optical matrix element given in Eq. (4.16), let us consider the special condition when

ησ(Ru
j )=1, in other words, the magnitude of the electric �eld is constant everywhere

along graphene plane as in the case of far-electric �eld. Let mRu
x ≡ m(a1 + a1)/2

and nRu
y ≡ n(a1 − a1)/2, m,n ∈ Z de�ne the unit cell position in x and y direction,

respectively. Because graphene under consideration is semi-in�nite, then the Fourier

transform in this case is given by

F [mopt]∆k ≡
1

N

∑
j

e−i∆k·R
u
jmopt

=
1

N

∑
n

∑
m

e−i∆kx·mR
u
xe−i∆ky·nR

u
ymopt

=
1

(2π)2N

∫ ∞
−∞

dn

∫ ∞
−∞

dme−i∆kx·mR
u
xe−i∆ky·nR

u
ymopt

=
1

NcAc
δ(∆kx)δ(∆ky)mopt,

(4.18)

where Nc and Ac = 3
√

3a2/2 are the number and area of unit cell, respectively. The

expression in Eq. (4.18) has non-zero value if only ∆kx = ∆ky = 0, which mean

when the small momentum of photon is neglected, only vertical transition is possible

in the far-�eld spectroscopy, where there is no change of electron wave vector. On

the other hand, in the case of near-�eld optical transition, the Fourier transform
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is performed on the planar components of near-�eld enhancement ησ=x,y(mRu
x, nR

u
y)

given by Eqs. (3.7)-(3.8). The corresponding Fourier transform provides the magnitude

of near-�eld optical matrix element as the function ∆k = (∆kx,∆ky) as follows:

mx
opt(∆k) =

∆kx
2πNcAc

(
− i
∑
c=1

Ccf
4
c e
−∆k2

x−∆k2
y

2f2
c +

∑
d=1

Ddg
4
de

−∆k2
x−∆k2

y

2g2
d

)
, (4.19)

my
opt(∆k) =

∆ky
2πNcAc

(
− i
∑
c=1

Ccf
4
c e
−∆k2

x−∆k2
y

2f2
c +

∑
d=1

Ddg
4
de

−∆k2
x−∆k2

y

2g2
d

)
. (4.20)

From Eqs. (4.19) and (4.20), it is inferred that the localization of near-�eld on the

graphene plane imposes a new optical transition rule which exclude the vertical tran-

sition that must be satis�ed in far-�eld case, because at ∆k=0, the near-�eld optical

matrix element is completely zero. Interestingly, the real parts of the near-�eld dis-

tribution contributes to the imaginary part of the optical matrix element, and vice

versa. Thus, in our case, the electron-near-�eld matrix element is a complex num-

ber, in contrast with the electron-photon matrix element for the far-�eld case which

is always real, as given by Eqs. (2.98)-(2.100). The magnitude of near-�eld optical

matrix element in real and ∆k-space are given by Fig. 4.1(a) and (b), respectively. It

is observed that in the case of tip radius a=10 nm, the magnitude of near-�eld optical

matrix element is maximum at |∆k|=0.03/nm. It is also important to note that the

magnitude of optical matrix element in ∆k-space is larger compared with the case

of in real-space, mathematically due to the Fourier transform of the optical matrix

element.

4.0.2 E�ect of Tip radius on the Near-�eld optical matrix element

For a given excitation wavelength λ ∼534 nm, we calculate the near-�eld optical matrix

element as we vary tip radius a. The calculations are performed to provide a clearer

picture of how the the distribution of the near-�eld on graphene a�ects the properties

of optical matrix element. The calculated optical matrix elements in real and ∆k-

space for tip radius a=5 and 10 nm are given by Fig. 4.2 (a) and (b), respectively.

From the �gure, it is inferred that because for the smaller tip radius the near-�eld is

more localized, then the width between the peaks of matrix element in the real space

is narrower compared with the case of larger tip. However, the narrower width of the

the near-�eld distribution in the real space implies the broader width in the ∆k-space,
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Figure 4.2 Calculated magnitude near-�eld optical matrix element (a) real space (b) ∆k
space for a=5 and 10 nm.

which means that the probability of the change of electron wave vector during the

optical transition is greater.

4.0.3 Near-Field Transition Probability

In this section, we calculate the transition probability of electron of graphene a�ected

by near-�eld. We shall not use the transition probability formula in Eq. (2.104) for

near-�eld case because the occurrence of non-vertical optical transition and the direc-

tion of near-�eld can not be described by constant polarization vector P. However,

based on the same general principle of the Fermi golden rule, the near-�eld transition

probability is given by

Wv→c(kf ) =
2π

~
|Me−nf(ki,kf )|2δ(εc(kf )− εv(ki)− εL). (4.21)

The calculation is carried out for laser energy εL = 2.32 eV (λ ∼534 nm) by us-

ing Eq. 4.21. To capture the e�ect of ∆kx and ∆ky on the transition probability

Wv→c(kf ), we plot the values of corresponding variable as a function of several com-

binations of ∆kx and ∆ky, shown By Fig. 4.3. From the �gure, it is observed that

the change of electron wave vector in x (y) direction will form nodes at ϕ = 0, π, 2π..

(ϕ = π/2, 3π/2, ...). Therefore, we infer an important di�erence compared with the

case of far-�eld, in which the nodes are determined by the polarization vector P, as
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Figure 4.3 Transition probability in the near-�eld for (a)(∆kx,∆ky) = (±0.01/nm, 0),
(b) (∆kx,∆ky) = (±0.03/nm, 0), (b) (∆kx,∆ky) = (±0.2/nm, 0), and (d)
(∆kx,∆ky) = (0,±0.03/nm), (e)(∆kx,∆ky) = (+0.03/nm, 0.03/nm), and (e)(∆kx,∆ky) =
(+0.03/nm,−0.03/nm).

given by Fig. 2.10. From the same comparison, it is also concluded that the transition

probability in the near-�eld case is signi�cantly enhanced.

Finally, it is noteworthy to compare our work very recent results obtained by

Mueller and Reich [42], as has been brie�y reviewed in Chapter 1. Although utilizing

rather di�erent theoretical method, they obtained the some similar results as contained

in this thesis, among others the occurrence of non-vertical transition in electron optical

transition and the ∆k-dependence of the transition probability in the case of graphene

interaction with the near-�eld from periodic of plasmonic lattice. However, we have

demonstrated that the described phenomena can occur solely due to the localization

of near-�eld on the periodic graphene plane. Therefore, the two studies seem to

complement each other.



Chapter 5

Conclusions

Within this thesis, we have performed the quasi-static �nite-di�erence calculation of

near-�eld enhancement around the vicinity of metallic tip as a response of irradiating

light. We have shown that for Au tip, the maximum enhancement is obtained for

the optical wavelength λ ∼534 nm. We also found that the geometrical parameter

of the tip plays signi�cant role in determining the maximum magnitude of near-�eld

enhancement factor, that is, the near-�eld enhancement around the conical tip with

the opening angle ϕ = 15 degree is higher compared with the case of parabolic tip. The

localized near-�eld in the vicinity of conical tip is further enhanced by selecting the

narrow opening angle as well as decreasing the tip radius. We argue that this e�ect is

direct consequence of the electrostatic lightning-rod e�ect, in which the concentration

of electric charge near the tip apex generates the enhanced and localized near-electric

�eld.

After performing the near-�eld calculation, we investigate the near-�eld e�ect on

the optical transition of electron in graphene. By using the the tight-binding de-

scription of graphene wave function, we analytically demonstrate that the near-�eld

localization along graphene plane produce a new transition rule in which dictates the

change of electron wave vector in the transition. We also calculate the electron-near-

�eld optical matrix element, which shows that its magnitude is proportional to the

near-�eld enhancement. What missing is the calculation of electron-phonon matrix

element which will enable us to calculate the enhanced Raman spectra in TERS of

graphene. This task is considered for the future work.

63





Appendix A

Calculation Programs

Here we provide programs utilized for the numerical calculations and plottings in this

thesis.

The �nite-di�erence method for calculating near-�eld enhancement based on the

quasi-static approximation as the function of incoming electric �eld from the light E0

and relative permittivity of ε(i, k) in the case of parabolic tip can be found in the

FLEX workstation, described as follows:

~pratama/for/tip_enhancement/parabola

Program : gfdm1.f90

Inputs : E0, epsilon(i,k)

Outputs : x(i), z(k), V(i,k) or E(i,k)

The �nite-di�erence method for calculating near-�eld enhancement based on the

quasi-static approximation as the function of incoming electric �eld from the light E0

and relative permittivity of ε(i, k) in the case of conical tip can be found in the FLEX

workstation described, as follows:

~pratama/for/tip_enhancement/parabola

Program : gfdm4.f90

Inputs : E0, epsilon(i,k), a, phi
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Outputs : x(i), z(k), V(i,k) or E(i,k)

In both programs, the 1000×1300 square meshes are utilized, in which the area of

an individual mesh is 0.1 nm×0.1 nm, as given in Chapter 3 of this thesis. For the

corresponding mesh size, the iteration number n required in the algorithm to obtain

the electrostatic potential V (i, k) is set as n = 25000.

The directory and program for plotting the optical matrix element in the real space

due to the near-�eld enhancement from parabolic tip is given as follows:

The values of Gaussian �tting parameters for tip radius a=5 nm and a=10 nm

utilized in this thesis can be found in the following program

~pratama/for/tip_enhancement/parabola/matrix element

Program : gaussian_r.f90

Output : x(i), y(j), matrix(i,j)

The directory and program for plotting the optical matrix element in the ∆k-space

due to the near-�eld enhancement from parabolic tip is given as follows:

~pratama/for/tip_enhancement/parabola/matrix element

Program : gaussian_k.f90

Output : kx(i), ky(j), matrix(i,j)

The directory and program for plotting the transition probability of electron in the

Brillouin zone due to the near-�eld enhancement from parabolic tip as the function

change of electron wave vector ∆kx and ∆kx is given as follows:

~pratama/for/tip_enhancement/parabola/matrix element

Program : absorption.f90

Input : dkx, dky

Outputs : kx(i), ky(j), Absorption(i,j)
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