平成 10 年度 卒業論文

Li ドープ微小黒鉛クラスターの電子状態

学籍番号 9410116

木村・齋藤研 田代 哲正

電気通信大学 電子工学科 電子デバイス工学講座

指導教官 齋藤 理一郎 助教授

提出日平成11年2月10日

概要

グラファイトを扱った研究、開発が各方面で盛んに行なわれているが、それらはグ ラファイト層間に不純物をドープし、新しい材料として用いられている。例えば、Li をドープしたグラファイトを2次電池の電極に用いたものは製品化されている。

そこで、Liをドープしたときの電子状態を計算し、そのときのLiの持つ電荷について調べ、その状態を解析するということを目的とし、実験を行なった。

様々な大きさのクラスターで最適化構造の計算を行ない、Liの電荷について調べ、 Liへの総電荷移動量を計算することにより、Liをドープする場所(クラスターの内 部、外部)によってLiの持つ電荷が正、負と違いがでてくることがわかった。

総電荷移動量を大きくするためには、単に Li をたくさんドープするのではなく、 Li をドープする場所が大切であり、他に、クラスターを大きくすることによっても総電 荷移動量を大きくできる。

Li⁺の存在割合という観点から見ても、上の結果が得られることがわかった。

目次

1	序論	ì	1
	1.1	背景	1
		1.1.1 微小グラファイトクラスターの Li 過剰吸着	2
		1.1.2 Li ドープナノグラファイト	3
		1.1.3 $Li_{12}C_{60}$	4
		1.1.4 リチウム電池 (lithium cell)	5
	1.2	目的	3
2	計算	方法	7
	2.1	計算モデル及び計算条件................................	7
		2.1.1 入力データの作成方法	7
		2.1.2 最適化構造の計算	9
		2.1.3 DRC(動的反応座標)の計算	4
3	結果	. 乃び老察 26	6
0	3.1	$C_{04}H_{10}Cl$ $C_{04}H_{10}Br$ 26	6
	9.1	$3 1 1 C_2 H_{12} Cl \qquad $, К
		3.12 C H Br 2°	7
	29	C H I; C H I;	۱ Q
	J.Z	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	с С
		5.2.1 $\bigcup_{24} \Pi_{12} \square$)
		$3.2.2 \mathrm{C}_{54}\mathrm{H}_{18}\mathrm{L}_{1} \ldots \ldots$	5
		$3.2.3$ 2枚の $C_{24}H_{12}$	J
	3.3	DRC(動的反応座 標)	2
	3.4	考察	3
		3.4.1 総電荷移動量	3

		3.4.2	Li ⁺ の割合		. 36
4	まと	め			39
5	付録				42
	5.1	MOPA	AC	•••	. 42
		5.1.1	MOPAC の概要		. 42
		5.1.2	PM3 法		. 43
		5.1.3	MOPAC のオプション		. 46
	5.2	動的反	応座標		. 47
		5.2.1	計算原理		. 47
	5.3	MOPA	AC の入力データA		. 50
		5.3.1	最適化構造に用いるデータ		. 50
	5.4	最適化	,構造の入力データを xyz 座標系に直す		. 53
	5.5	MOPA	AC の入力データB		. 54
		5.5.1	xyz 座標に直した時のデータ	•••	. 54

第1章

序論

本章では、まず本研究に至るまでの背景を述べ、次いで研究の目的を述べる。

1.1 背景

グラファイトを扱った研究、開発は各方面にて盛んに行なわれている。それらはグ ラファイトの層間に不純物をドープし、新たな材料として用いられている。例えば、 Liをドープしたグラファイトを2次電池の電極に用いた物は製品化されてもいる。

近年、直径約数十 のグラファイトが注目されてきている。このグラファイトの特徴は終端部分の占める割合が非常に多いということである。そしてそのような微小グラファイトはに Li が過剰に吸着するという報告がある。[1]

1.1.1 微小グラファイトクラスターの Li 過剰吸着

C₉₆H₂₄の微小グラファイトに Li が吸着するときは、図 1.1のように最近接の C か らの距離約 2.30 、クラスター平面からの高さ約 1.83 のところで安定し、 Li の持 つ電荷は約 0.60 になると言う報告がある。 [1]

また、Liを2個以上ドープしたとき、電荷が正になる場合と負になる場合の2種類 があり、その原因はLi-再近接H間の距離やクラスターからの高さに関係していると 言う報告がある。[2]

図 1.1:Li の吸着機構 [1](修士論文 中平より引用)¹

グラファイトの層間に最も多く Li が入っているときの面内構造は、図 1.2のように なっており、 $\sqrt{3} \times \sqrt{3}$ 構造と呼ばれ、組成比は Li:C=1:6 になることが良く知られて いる。 [1]

¹/home9/students/tashiro/tex/u98tash/eps/C96Li1H24-vol3r-bv.eps

図 1.2: 第1ステージ Li GIC の面内構造 [1](修士論文 中平より引用)²

1.1.2 Liドープナノグラファイト

Li をドープしたグラファイトは2次電池の電極への応用が期待されている。

最近では、実際に陽極に LiCoO₂ を用い、陰極にグラファイトを用いた 2 次電池が 製品化されている。この電池では、陽極で式 (1. 1.2) のような反応が進行し、陰極で は式 (1. 1.3) のような反応が進行する。全体では式 (1. 1.3) のような反応が進行す る。

 $\operatorname{LiCoO}_2 \iff \operatorname{Li}_{1-x}\operatorname{CoO}_2 + x\operatorname{Li}^+ + xe^-$ (1. 1.1)

$$6\mathbf{C} + x\mathbf{Li}^+ + x\mathbf{e}^- \iff \mathbf{Li}_x\mathbf{C}_6 \tag{1. 1.2}$$

$$\operatorname{LiCoO}_2 + 6C \iff \operatorname{Li}_{1-x}\operatorname{CoO}_2 + \operatorname{LiC}_6$$
 (1. 1.3)

その時の電池の全体図を図 1.3に示す。充電するときは陰極のグラファイトの層間 にLi が入り、放電するときは、グラファイト層間のLi が抜け出し、陽極のLiCoO₂ の層間に入り込む。

²/home9/students/yagi/tex/m98yagi/eps/GIC-1st.eps

図 1.3: Li イオン電池の反応モデル [1](修士論文 中平より引用)³

しかし、陰極に GIC を用いた電池では理論上第1ステージ GIC での放電容量以上 は望めないので、さらに高容量化するために、様々な形態の炭素について研究がなさ れている。[1]

1.1.3 $Li_{12}C_{60}$

グラファイトやダイヤモンドと並び、炭素の第3の形態として 1985 年に H.W.Kroto らによって発見されたフラーレンでは、 $C_{60}Li_x$ クラスターの質量分析が行なわれてお り、 $C_{60}Li_{12}$ が最も安定に存在することが分かっている。その構造は、図 1.4のように なっている。この場合、組成比はLi:C=1:5となる。したがって、グラファイト以外 の形態では、組成比Li:C=1:6以上が期待できることが分かる。

中平らは卒業研究において、 $Li_xC_{60}(x = 1 \sim 12)$ について電子状態、最適化構造の 計算を行なった。卒業研究で得られた成果を以下にまとめる。[1]

- Li のつき方は、Li 同士が最も近くに配置される構造が最安定である。
- Liの数が増加すると、C₆₀の単結合の長さは短くなり、二重結合の長さは長く なる。

³/home2/students/naka/tex/m96naka/eps/Li-denchi.eps

- Li の数が増加すると、Li の電荷量は減少する。
- Li から C₆₀ に移動する電荷量には限界がある。
- Liの電荷量とLiの5員環の面からの距離には密接な関係があり、両者の関係は 3次関数で表される。

図 1.4:C₆₀Li₁₂ 分子構造 [1](修士論文 中平より引用)⁴

1.1.4 リチウム電池 (lithium cell)

リチウムを負極活性物質として使う1次電池。リチウムはイオン化傾向が大きいの で3V近い起電力が得られ、また軽い元素なのでエネルギー密度が非常に高い。水と 反応するため、電解液や電解質として有機溶媒や固体電解質を使用する。小型、薄型 化が容易である。

次のようなリチウム電池が実用化されている。

フッ化黒鉛 $(CF)_n$ または二酸化マンガン MnO_2 を正極活性物質とするもの。負極で 生成する Li^+ は正極活性物質の結晶間に入り、次の反応をする

 $(\mathbf{CF})_n + n\mathbf{Li}^+ + n\mathbf{e} \implies (\mathbf{CFLi})_n$ (1. 1.4)

$$MnO_2 + Li^+ + e \implies MnOOLi$$
 (1. 1.5)

主にエネルギー密度 300mWh/g のものがつくられていて、これはアルカリマンガン乾電池の約 3 倍に相当する。公称電圧は (CF)_n 型が 2.8V、 MnO₂ 型は 3.0V となっている。

現在では、円筒細型、ボタン型、コイン型などの小型電池が市販され電卓、腕時計 などに使われている。[3]

⁴/home2/students/naka/tex/m96naka/eps/C60Li12.ps

1.2 目的

Li をドープしたグラファイトは 2 次電池の電極への応用が期待されている。そこ で Li をドープしたグラファイトの電子状態を計算し、その結果より Li の持つ電荷に ついて詳しく調べ、その問題点を明らかにしていく。

第2章

計算方法

本章では、計算方法及び計算モデルについて述べる。

2.1 計算モデル及び計算条件

本研究で用いた MOPAC の入力データの作製方法、計算モデル、計算条件等の実際の計算方法について説明する。

2.1.1 入力データの作成方法

入力データは一つのファイルに記述する。ファイルの名前は filename.dat のように.dat という拡張子をつける。最初の 1 行にオプションのキーワードを、次の 2 行にコメン トを書き、4 行目から分子の構造を記述する。また + オプションでオプション行を 増やし、2 行目、3 行目にもオプションを書くことができる。構造の記述の仕方は 3 通りある。内部座標形式、XYZ 座標形式、GAUSSIAN 形式である。本研究では、 MOPAC で一般的に使われている内部座標形式を用いた。内部座標形式の構造の記述 の仕方は、次のようである。

定義した原子の順に番号を付けていく と、*i*番目の原子の位置の定義は、定義 済みの原子*j、k、* ℓ によって記述され る。*i*番目の原子は、(a)*j*番目の原子と の距離r(Å 単位)、(b)原子*i、j、k*で なす結合角 $\theta(度)$ 、(c)原子*i、j、k*で なす面と原子*j、k、* ℓ でなす面とのなす 2面角 $\psi(度)$ で定義される(図 2.1)。

また、1番目の原子はそれ以前に定義済みの原子がないので内部座標は共に0とし、2番目の原子は1番目の原子との距離のみ指定して他は0とし、3番目の原子は1、2 番目の原子を参照して原子間距離と結合角を指定して2面角は0とする。

また、対称性を考慮して構造を定義するには、対称関数を用いる。対称性の指定は、 SYMMETRY オプションを指定し、構造データの次に空行を1行入れ、その次の行 から記述する。記述は参照原子の番号、対称関数、指定原子の順に記述する。対称関 数はそれぞれ、1:指定原子の原子間距離が参照原子と同じ、2:指定原子の結合角が 参照原子と同じ、3:指定原子の2面角が参照原子と同じにするという意味である。ま た、対称関数は他にもあるがここでは述べない(詳しくはマニュアルを参照)。

¹/home2/students/naka/tex/m96naka/eps/ijkl.eps

2.1.2 最適化構造の計算

計算には $C_{24}H_{12}, C_{54}H_{18}$ を使用。計算条件として最適化構造の計算は基本的に、計 算時間 T=1.0D (1日), GNORM=0.1 ~ 0.5, PM3 法, UHF 計算。付録に研究に用い たクラスーターモデル ($C_{24}H_{12} \ge C_{54}H_{18}$)の入力データを示す。

まずは、ハロゲン原子の Cl と Br について最適化構造の計算を行なった。 Cl,Br と もに C₂₄H₁₂ に原子を 1 個つけ最適化の計算を行ない、その計算結果をもとにして 2 個つけた時のデータをつくり、さらに計算していくという方法で順番に計算をしていっ た。図 2.2は、 Cl を 1 個つけたときの計算結果を xmol で見たときの図である。

図 2.2:C₂₄H₁₂Cl²³ 上から見た図 (左)、横から見た図 (右)

次に図 2.2の入力データを示す。このデータの説明をすると、1行目はキーワード で、T=1.0D は計算時間制限で1日で終了。GNORM=0.1 は構造最適化計算終了の 判定基準でエネルギー勾配が0.1 で計算を終了させる。PM3 は近似法として PM3 法 を使う。UHF は非制限ハートリーフォック計算をさせる。詳しいキーワードの説明 は、付録に掲載。

 $^{^{2}/}home9/students/tashiro/tex/u98tash/eps/Cl-test1.eps$

³/home9/students/tashiro/tex/u98tash/eps/Cl-test2.eps

ここで、図 2.2の入力データ、 out file、および arc file を示す。 ファイル名 Cl1.dat

T=1.0I) NOINTER GN	ORM=	=0.1 PM3 GEO	-0K	UHF SHIFT=2	PULAY			
Graphi	ite Cl symme [.]	try	adopted MOP	AC o	coodrdinates				
neutra	1								
C	0.00000000	0	0.000000	0	0.000000	0	0	0	0
С	1.43390324	1	0.000000	0	0.000000	0	1	0	0
С	1.42034347	1	120.2995949	1	0.000000	0	2	1	0
С	1.42314448	1	120.3278766	1	0.1562021	1	3	2	1
С	1.42900099	1	119.9729149	1	-0.3461558	1	4	3	2
С	1.41869814	1	120.3476049	1	0.1950938	1	5	4	3
С	1.38939406	1	120.6411062	1	-179.8597767	1	1	2	3
С	1.48129769	1	121.5736167	1	1.8920285	1	7	1	2
С	1.47343312	1	115.1730029	1	-2.7798475	1	8	7	1
С	1.43417528	1	120.4426123	1	-179.9713739	1	2	3	4
С	1.49065518	1	120.2605954	1	-2.0266589	1	10	2	3
С	1.47270012	1	115.9592502	1	3.7820603	1	11	10	2
С	1.43397621	1	119.2116363	1	-179.9044413	1	3	4	5
С	1.42785867	1	119.1624457	1	0.3652910	1	13	3	4
С	1.37840898	1	121.0439991	1	-0.4321488	1	14	13	3
С	1.41844960	1	119.6372902	1	-179.6796589	1	4	5	6
С	1.42309549	1	119.5801328	1	-0.2600061	1	16	4	5
C	1.37383902	1	120.8688416	1	0.1466737	1	17	16	4
C	1.41722882	1	119.8377154	1	-179.7043616	1	5	6	1
C	1.40727411	1	119.5011741	1	-0.0346201	1	19	5	6
С	1.38911905	1	120.2977512	1	0.0438566	1	20	19	5
С	1.40153793	1	120.7784592	1	-179.9851755	1	6	1	2
C	1.45419660	1	119.8720231	1	-0.4079679	1	22	6	1
С	1.46386673	1	121.0278277	1	-1.0449462	1	23	22	6
H	1.11869636	1	109.5486651	1	-124.9736337	1	8	7	9
H	1.09737574	1	117.0398327	1	178.2720698	1	9	8	10
H	1.11711263	1	109.4469209	1	-123.7739094	1	11	10	12
H	1.09623502	1	117.1266749	1	179.2199296	1	12	11	13
H	1.09617680	1	118.6972933	1	179.9792215	1	14	13	15
H	1.09605154	1	120.3449829	1	179.9319071	1	15	14	16
H	1.09618481	1	118.7319011	1	179.9591310	1	17	16	18
H	1.09589720	1	120.6061263	1	179.9342677	1	18	17	19
H	1.09591008	1	119.5480439	1	179.9777491	1	20	19	21
H	1.09633404	1	119.8706307	1	-179.9810112	1	21	20	22
H	1.09372479	1	119.8839784	1	-177.2522628	1	23	22	24
H	1.11857062	1	110.1008588	1	125.1312894	1	24	23	7
CL	1.81509389	1	107.9831659	1	116.5111408	1	8	7	1

ファイル名 Cl1.out

PM3 CALCULATION RESULTS

MOPAC 93.00 CALC'D. Wed Jun 24 12:55:27 1998 * GEO-OK - OVERRIDE INTERATOMIC DISTANCE CHECK * UHF - UNRESTRICTED HARTREE-FOCK CALCULATION * T= - A TIME OF 1.000 DAYS REQUESTED DUMP=N - RESTART FILE WRITTEN EVERY 3600.000 SECONDS * - THE PM3 HAMILTONIAN TO BE USED РМЗ * NOINTER - INTERATOMIC DISTANCES NOT TO BE PRINTED * - A DAMPING FACTOR OF 2.00 DEFINED SHIFT GNORM= - EXIT WHEN GRADIENT NORM DROPS BELOW .100 * PULAY - PULAY'S METHOD TO BE USED IN SCF T=1.OD NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY Graphite Cl symmetry adopted MOPAC coodrdinates

neutral

ATOM	CHEMICAL	BOND LENGTH	BOND ANGLE	TWIST ANGLE				
NUMBER	SYMBOL	(ANGSTROMS)	(DEGREES)	(DEGREES)				
(I)		NA:I	NB:NA:I	NC:NB:NA:I		N A	NB	NC
1	С							
2	С	1.43390 *				1		
3	С	1.42034 *	120.29959	*		2	1	
4	С	1.42314 *	120.32788	* 0.15620	*	3	2	1
5	С	1.42900 *	119.97291	* -0.34616	*	4	3	2
6	С	1.41870 *	120.34760	* 0.19509	*	5	4	3
7	С	1.38939 *	120.64111	* -179.85978	*	1	2	3
8	С	1.48130 *	121.57362	* 1.89203	*	7	1	2
9	С	1.47343 *	115.17300	* -2.77985	*	8	7	1
10	С	1.43418 *	120.44261	* -179.97137	*	2	3	4
11	С	1.49066 *	120.26060	* -2.02666	*	10	2	3
12	С	1.47270 *	115.95925	* 3.78206	*	11	10	2
13	С	1.43398 *	119.21164	* -179.90444	*	3	4	5
14	С	1.42786 *	119.16245	* 0.36529	*	13	3	4
15	С	1.37841 *	121.04400	* -0.43215	*	14	13	3
16	С	1.41845 *	119.63729	* -179.67966	*	4	5	6
17	С	1.42310 *	119.58013	* -0.26001	*	16	4	5

18	С	1.37384	*	120.86884	*	0.14667	*	17	16	4
19	С	1.41723	*	119.83772	*	-179.70436	*	5	6	1
20	С	1.40727	*	119.50117	*	-0.03462	*	19	5	6
21	С	1.38912	*	120.29775	*	0.04386	*	20	19	5
22	С	1.40154	*	120.77846	*	-179.98518	*	6	1	2
23	С	1.45420	*	119.87202	*	-0.40797	*	22	6	1
24	С	1.46387	*	121.02783	*	-1.04495	*	23	22	6
25	Н	1.11870	*	109.54867	*	-124.97363	*	8	7	9
26	Н	1.09738	*	117.03983	*	178.27207	*	9	8	10
27	Н	1.11711	*	109.44692	*	-123.77391	*	11	10	12
28	Н	1.09624	*	117.12667	*	179.21993	*	12	11	13
29	Н	1.09618	*	118.69729	*	179.97922	*	14	13	15
30	Н	1.09605	*	120.34498	*	179.93191	*	15	14	16
31	Н	1.09618	*	118.73190	*	179.95913	*	17	16	18
32	Н	1.09590	*	120.60613	*	179.93427	*	18	17	19
33	Н	1.09591	*	119.54804	*	179.97775	*	20	19	21
34	Н	1.09633	*	119.87063	*	-179.98101	*	21	20	22
35	Н	1.09372	*	119.88398	*	-177.25226	*	23	22	24
36	Н	1.11857	*	110.10086	*	125.13129	*	24	23	7
37	Cl	1.81509	*	107.98317	*	116.51114	*	8	7	1

CARTESIAN COORDINATES

NO.	ATOM	Х	Y	Z
1	C	0.0000	0.0000	0.0000
2	C	1.4339	0.0000	0.0000
3	С	2.1505	1.2263	0.0000
4	С	1.4525	2.4665	0.0033
5	С	0.0236	2.4815	-0.0007
6	C	-0.7060	1.2648	-0.0040
7	C	-0.7081	-1.1954	0.0029
8	C	-0.0182	-2.5054	0.0478
9	C	1.4536	-2.4398	0.0237
10	C	2.1348	-1.2512	-0.0028
11	C	3.6245	-1.2776	-0.0512
12	C	4.2943	0.0332	-0.0069
13	C	3.5845	1.2303	0.0063
14	C	4.2767	2.4790	0.0237
15	C	3.5885	3.6733	0.0256
16	C	2.1668	3.6919	0.0134
17	С	1.4513	4.9221	0.0138
18	С	0.0776	4.9386	0.0074
19	С	-0.6682	3.7185	0.0017
20	С	-2.0754	3.7255	0.0001

2	21		С		-2	.782	2	2.52	97	-0.00	28			
2	22		С		-2	.107	0	1.30	41	-0.00	38			
2	23		C		-2	.866	4	0.06	39	-0.00	85			
2	24		C		-2	.190	8	-1.23	44	-0.03	64			
2	25		H		- C	.391	0	-3.15	36	-0.78	43			
2	26		H		1	.996	1	-3.39	31	0.05	71			
2	27		H		Э	957	2	-1.82	54	-0.96	62			
2	28		H		5	.389	9	0.03	37	0.02	89			
2	29		H		5	.372	8	2.47	31	0.03	60			
3	30		H		4	.131	5	4.62	53	0.03	76			
3	31		H		2	.017	3	5.86	09	0.01	98			
3	32		H		-0	.469	0	5.88	85	0.00	77			
3	33		H		-2	.611	1	4.68	16	0.00	17			
3	34		H		-3	8.878	5	2.54	34	-0.00	48			
3	35		H		-3	959	3	0.09	43	-0.03	66			
3	36		H		-2	.571	4	-1.88	37	0.79	11			
3	37	(21		-0	. 482	7	-3.33	07	1.59	63			
H :	(PM3):	J.	J.	Ρ.	STEW	ART,	J.	COMP.	CHEM	Ι.	10,	209	(1989	0.
C:	(PM3):	J.	J.	Ρ.	STEW	ART,	J.	COMP.	CHEM	Ι.	10,	209	(1989).
C1 :	(PM3):	J.	J.	Ρ.	STEW	ART,	J.	COMP.	CHEM	ί.	10,	209	(1989	0.

MOLECULAR POINT GROUP : C1

UHF CALCULATION, NO. OF ALPHA ELECTRONS = 58

NO. OF BETA ELECTRONS = 57

CYCLE:	1	TIME:	11.161	TIME	LEFT:	23.99Н	GRAD.:	472.955	HEAT:	123.3313
CYCLE:	2	TIME:	6.486	TIME	LEFT:	23.99H	GRAD.:	268.099	HEAT:	111.5824
CYCLE:	3	TIME:	10.339	TIME	LEFT:	23.98H	GRAD.:	292.205	HEAT:	111.0654
CYCLE:	4	TIME:	7.495	TIME	LEFT:	23.98H	GRAD.:	187.051	HEAT:	108.0609
CYCLE:	5	TIME:	6.175	TIME	LEFT:	23.98H	GRAD.:	151.732	HEAT:	106.7090
CYCLE:	6	TIME:	2.781	TIME	LEFT:	23.98H	GRAD.:	479.862	HEAT:	97.41556
CYCLE:	7	TIME:	10.338	TIME	LEFT:	23.98H	GRAD.:	431.730	HEAT:	94.39554
CYCLE:	8	TIME:	9.345	TIME	LEFT:	23.97H	GRAD.:	356.220	HEAT:	92.41296
CYCLE:	9	TIME:	10.322	TIME	LEFT:	23.97H	GRAD.:	347.528	HEAT:	91.67102
CYCLE:	10	TIME:	3.237	TIME	LEFT:	23.97H	GRAD.:	395.565	HEAT:	90.32778
CYCLE:	11	TIME:	10.306	TIME	LEFT:	23.97H	GRAD.:	312.236	HEAT:	87.32699
CYCLE:	12	TIME:	10.267	TIME	LEFT:	23.96H	GRAD.:	337.934	HEAT:	86.48357
CYCLE:	13	TIME:	5.007	TIME	LEFT:	23.96H	GRAD.:	67.747	HEAT:	82.45979
CYCLE:	14	TIME:	2.277	TIME	LEFT:	23.96H	GRAD.:	77.459	HEAT:	80.30556
CYCLE:	15	TIME:	10.337	TIME	LEFT:	23.96H	GRAD.:	94.554	HEAT:	80.23842
CYCLE:	16	TIME:	7.604	TIME	LEFT:	23.96H	GRAD.:	98.540	HEAT:	80.11387
CYCLE:	17	TIME:	7.564	TIME	LEFT:	23.96H	GRAD.:	92.979	HEAT:	79.96969
CYCLE:	18	TIME:	7.628	TIME	LEFT:	23.95H	GRAD.:	92.540	HEAT:	79.74542
CYCLE:	19	TIME:	5.202	TIME	LEFT:	23.95H	GRAD.:	96.395	HEAT:	79.51154

CYCLE:	20	TIME:	9.888	TIME	LEFT:	23.95H	GRAD.:	75.594	HEAT:	79.13419
CYCLE:	21	TIME:	7.590	TIME	LEFT:	23.95H	GRAD.:	85.606	HEAT:	78.88077
CYCLE:	22	TIME:	8.593	TIME	LEFT:	23.95H	GRAD.:	68.078	HEAT:	78.81391
CYCLE:	23	TIME:	7.610	TIME	LEFT:	23.94H	GRAD.:	73.007	HEAT:	78.68634
CYCLE:	24	TIME:	7.068	TIME	LEFT:	23.94H	GRAD.:	76.200	HEAT:	78.48462
CYCLE:	25	TIME:	6.612	TIME	LEFT:	23.94H	GRAD.:	69.859	HEAT:	78.15557
CYCLE:	26	TIME:	5.671	TIME	LEFT:	23.94H	GRAD.:	52.916	HEAT:	77.74009
CYCLE:	27	TIME:	7.574	TIME	LEFT:	23.94H	GRAD.:	48.171	HEAT:	77.49117
CYCLE:	28	TIME:	5.687	TIME	LEFT:	23.93Н	GRAD.:	54.407	HEAT:	77.31834
CYCLE:	29	TIME:	6.664	TIME	LEFT:	23.93Н	GRAD.:	58.292	HEAT:	77.23245
CYCLE:	30	TIME:	4.240	TIME	LEFT:	23.93Н	GRAD.:	38.713	HEAT:	77.09751
CYCLE:	31	TIME:	4.244	TIME	LEFT:	23.93Н	GRAD.:	23.838	HEAT:	77.02846
CYCLE:	32	TIME:	4.250	TIME	LEFT:	23.93Н	GRAD.:	22.021	HEAT:	76.95747
CYCLE:	33	TIME:	3.754	TIME	LEFT:	23.93Н	GRAD.:	24.571	HEAT:	76.90008
CYCLE:	34	TIME:	3.769	TIME	LEFT:	23.93Н	GRAD.:	22.398	HEAT:	76.87286
CYCLE:	35	TIME:	3.290	TIME	LEFT:	23.93Н	GRAD.:	16.579	HEAT:	76.84632
CYCLE:	36	TIME:	2.291	TIME	LEFT:	23.92H	GRAD.:	21.849	HEAT:	76.82145
CYCLE:	37	TIME:	3.754	TIME	LEFT:	23.92H	GRAD.:	30.147	HEAT:	76.76721
CYCLE:	38	TIME:	4.251	TIME	LEFT:	23.92H	GRAD.:	26.403	HEAT:	76.74101
CYCLE:	39	TIME:	3.760	TIME	LEFT:	23.92H	GRAD.:	12.586	HEAT:	76.69002
CYCLE:	40	TIME:	3.265	TIME	LEFT:	23.92Н	GRAD.:	12.010	HEAT:	76.66243
CYCLE:	41	TIME:	3.272	TIME	LEFT:	23.92Н	GRAD.:	14.166	HEAT:	76.64252
CYCLE:	42	TIME:	1.789	TIME	LEFT:	23.92H	GRAD.:	12.974	HEAT:	76.62898
CYCLE:	43	TIME:	3.297	TIME	LEFT:	23.92Н	GRAD.:	10.807	HEAT:	76.60399
CYCLE:	44	TIME:	3.283	TIME	LEFT:	23.92Н	GRAD.:	7.824	HEAT:	76.59438
CYCLE:	45	TIME:	1.792	TIME	LEFT:	23.92Н	GRAD.:	10.365	HEAT:	76.57921
CYCLE:	46	TIME:	3.245	TIME	LEFT:	23.92Н	GRAD.:	10.079	HEAT:	76.57018
CYCLE:	47	TIME:	1.787	TIME	LEFT:	23.92H	GRAD.:	6.778	HEAT:	76.53315
CYCLE:	48	TIME:	1.788	TIME	LEFT:	23.92H	GRAD.:	8.789	HEAT:	76.51710
CYCLE:	49	TIME:	1.785	TIME	LEFT:	23.91H	GRAD.:	10.190	HEAT:	76.49932
CYCLE:	50	TIME:	1.787	TIME	LEFT:	23.91H	GRAD.:	5.689	HEAT:	76.48624
CYCLE:	51	TIME:	3.247	TIME	LEFT:	23.91H	GRAD.:	7.097	HEAT:	76.46906
CYCLE:	52	TIME:	1.790	TIME	LEFT:	23.91H	GRAD.:	5.951	HEAT:	76.45852
CYCLE:	53	TIME:	1.794	TIME	LEFT:	23.91H	GRAD.:	5.813	HEAT:	76.44184
CYCLE:	54	TIME:	1.782	TIME	LEFT:	23.91H	GRAD.:	4.749	HEAT:	76.42891
CYCLE:	55	TIME:	3.233	TIME	LEFT:	23.91H	GRAD.:	4.138	HEAT:	76.41803
CYCLE:	56	TIME:	3.227	TIME	LEFT:	23.91H	GRAD.:	4.656	HEAT:	76.40662
CYCLE:	57	TIME:	3.283	TIME	LEFT:	23.91H	GRAD.:	5.197	HEAT:	76.40098
CYCLE:	58	TIME:	3.229	TIME	LEFT:	23.91H	GRAD.:	4.117	HEAT:	76.39546
CYCLE:	59	TIME:	3.232	TIME	LEFT:	23.91H	GRAD.:	5.478	HEAT:	76.38632
CYCLE:	60	TIME:	3.216	TIME	LEFT:	23.91H	GRAD.:	3.647	HEAT:	76.37827
CYCLE:	61	TIME:	3.260	TIME	LEFT:	23.91H	GRAD.:	3.679	HEAT:	76.37288
CYCLE:	62	TIME:	3.223	TIME	LEFT:	23.90H	GRAD.:	3.118	HEAT:	76.36890
CYCLE:	63	TIME:	3.257	TIME	LEFT:	23.90H	GRAD.:	3.218	HEAT:	76.36580
CYCLE:	64	TIME:	3.226	TIME	LEFT:	23.90H	GRAD.:	2.886	HEAT:	76.36343
CYCLE:	65	TIME:	3.271	TIME	LEFT:	23.90H	GRAD.:	3.281	HEAT:	76.36184

CYCLE:	66 TIME:	3.239 TIME	LEFT:	23.90H	GRAD.:	3.831	HEAT:	76.36053
CYCLE:	67 TIME:	3.239 TIME	LEFT:	23.90H	GRAD.:	1.991	HEAT:	76.35875
CYCLE:	68 TIME:	3.219 TIME	LEFT:	23.90H	GRAD.:	1.925	HEAT:	76.35706
CYCLE:	69 TIME:	3.264 TIME	LEFT:	23.90H	GRAD.:	1.914	HEAT:	76.35586
CYCLE:	70 TIME:	3.229 TIME	LEFT:	23.90H	GRAD.:	2.080	HEAT:	76.35514
CYCLE:	71 TIME:	3.285 TIME	LEFT:	23.90H	GRAD.:	1.778	HEAT:	76.35413
CYCLE:	72 TIME:	3.240 TIME	LEFT:	23.90H	GRAD.:	1.454	HEAT:	76.35359
CYCLE:	73 TIME:	3.251 TIME	LEFT:	23.89H	GRAD.:	1.126	HEAT:	76.35302
CYCLE:	74 TIME:	3.249 TIME	LEFT:	23.89H	GRAD.:	0.897	HEAT:	76.35269
CYCLE:	75 TIME:	1.794 TIME	LEFT:	23.89H	GRAD.:	0.850	HEAT:	76.35250
CYCLE:	76 TIME:	3.263 TIME	LEFT:	23.89H	GRAD.:	0.849	HEAT:	76.35228
CYCLE:	77 TIME:	3.262 TIME	LEFT:	23.89H	GRAD.:	0.665	HEAT:	76.35208
CYCLE:	78 TIME:	1.795 TIME	LEFT:	23.89H	GRAD.:	0.584	HEAT:	76.35199
CYCLE:	79 TIME:	3.286 TIME	LEFT:	23.89H	GRAD.:	0.850	HEAT:	76.35183
CYCLE:	80 TIME:	1.792 TIME	LEFT:	23.89H	GRAD.:	0.554	HEAT:	76.35174
CYCLE:	81 TIME:	3.265 TIME	LEFT:	23.89H	GRAD.:	0.601	HEAT:	76.35163
CYCLE:	82 TIME:	1.800 TIME	LEFT:	23.89H	GRAD.:	0.526	HEAT:	76.35159
CYCLE:	83 TIME:	1.794 TIME	LEFT:	23.89H	GRAD.:	0.449	HEAT:	76.35153
CYCLE:	84 TIME:	1.807 TIME	LEFT:	23.89H	GRAD.:	0.442	HEAT:	76.35146
CYCLE:	85 TIME:	1.794 TIME	LEFT:	23.89H	GRAD.:	0.478	HEAT:	76.35142
CYCLE:	86 TIME:	3.290 TIME	LEFT:	23.89H	GRAD.:	0.453	HEAT:	76.35133
CYCLE:	87 TIME:	3.272 TIME	LEFT:	23.88H	GRAD.:	0.411	HEAT:	76.35126
CYCLE:	88 TIME:	3.292 TIME	LEFT:	23.88H	GRAD.:	0.314	HEAT:	76.35120
CYCLE:	89 TIME:	1.800 TIME	LEFT:	23.88H	GRAD.:	0.330	HEAT:	76.35116
CYCLE:	90 TIME:	1.806 TIME	LEFT:	23.88H	GRAD.:	0.353	HEAT:	76.35112
CYCLE:	91 TIME:	1.802 TIME	LEFT:	23.88H	GRAD.:	0.351	HEAT:	76.35109
CYCLE:	92 TIME:	3.268 TIME	LEFT:	23.88H	GRAD.:	0.348	HEAT:	76.35105
CYCLE:	93 TIME:	4.756 TIME	LEFT:	23.88H	GRAD.:	0.293	HEAT:	76.35100
CYCLE:	94 TIME:	1.805 TIME	LEFT:	23.88H	GRAD.:	0.257	HEAT:	76.35099
CYCLE:	95 TIME:	1.805 TIME	LEFT:	23.88H	GRAD.:	0.227	HEAT:	76.35097
CYCLE:	96 TIME:	1.802 TIME	LEFT:	23.88H	GRAD.:	0.228	HEAT:	76.35095
CYCLE:	97 TIME:	3.280 TIME	LEFT:	23.88H	GRAD.:	0.223	HEAT:	76.35093
CYCLE:	98 TIME:	1.803 TIME	LEFT:	23.88H	GRAD.:	0.198	HEAT:	76.35092
CYCLE:	99 TIME:	1.807 TIME	LEFT:	23.88H	GRAD.:	0.177	HEAT:	76.35090
CYCLE:	100 TIME:	1.806 TIME	LEFT: 2	23.88H	GRAD.:	0.155	HEAT:	76.35089
CYCLE:	101 TIME:	1.805 TIME	LEFT: 2	23.88H	GRAD.:	0.158	HEAT:	76.35088
CYCLE:	102 TIME:	1.804 TIME	LEFT: 2	23.88H	GRAD.:	0.144	HEAT:	76.35087
CYCLE:	103 TIME:	3.284 TIME	LEFT: 2	23.87H	GRAD.:	0.155	HEAT:	76.35086
CYCLE:	104 TIME:	1.801 TIME	LEFT: 2	23.87H	GRAD.:	0.134	HEAT:	76.35086
CYCLE:	105 TIME:	3.278 TIME	LEFT: 2	23.87H	GRAD.:	0.130	HEAT:	76.35085
TEST O	N GRADIENT	SATISFIED						

PETERS TEST SATISFIED

T=1.OD NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY Graphite Cl symmetry adopted MOPAC coodrdinates

neutral

```
PETERS TEST WAS SATISFIED IN BFGS OPTIMIZATION
SCF FIELD WAS ACHIEVED
                       PM3 CALCULATION
                                          MOPAC 93.00
                                           Wed Jun 24 13:03:13 1998
    FINAL HEAT OF FORMATION = 76.35085 KCAL = 319.45194 KJ
    TOTAL ENERGY
                         =
                              -3344.50318 EV
    ELECTRONIC ENERGY
                       = -26747.34132 EV POINT GROUP: C1
    CORE-CORE REPULSION
                        =
                              23402.83814 EV
    IONIZATION POTENTIAL =
                                 8.49646
    NO. OF ALPHA ELECTRONS =
                                58
    NO. OF BETA ELECTRONS =
                                57
    MOLECULAR WEIGHT
                       = 335.812
    SCF CALCULATIONS =
                               192
    COMPUTATION TIME = 7 MINUTES AND 41.203 SECONDS
```

ATOM	CHEMICAL	BOND LENGTH	BOND ANGLE		TWIST ANGLE				
NUMBER	SYMBOL	(ANGSTROMS)	(DEGREES)		(DEGREES)				
(I)		NA:I	NB:NA:I		NC:NB:NA:I		N A	NB	NC
1	С								
2	С	1.42977 *					1		
3	С	1.41923 *	120.10561	*			2	1	
4	С	1.42527 *	120.12629	*	-0.15132	*	3	2	1
5	С	1.42262 *	119.94464	*	0.19917	*	4	3	2
6	С	1.42497 *	119.98384	*	-0.04095	*	5	4	3
7	С	1.41244 *	120.93054	*	179.87886	*	1	2	3
8	С	1.48627 *	120.53095	*	-1.14998	*	7	1	2

9	C	1.47462	*	115.83880	*	2.57529	*	8	7	1
10	С	1.43039	*	119.79940	*	-179.74900	*	2	3	4
11	С	1.42795	*	118.82873	*	0.17115	*	10	2	3
12	С	1.37983	*	121.07221	*	-0.32687	*	11	10	2
13	С	1.42267	*	119.62586	*	-179.67279	*	3	4	5
14	С	1.41929	*	119.31400	*	-0.27168	*	13	3	4
15	С	1.38263	*	120.94078	*	0.12078	*	14	13	3
16	С	1.41936	*	119.94950	*	-179.94613	*	4	5	6
17	С	1.42054	*	119.17212	*	-0.07653	*	16	4	5
18	С	1.38172	*	120.87064	*	0.08513	*	17	16	4
19	С	1.41903	*	120.08260	*	179.89417	*	5	6	1
20	С	1.42230	*	119.18839	*	0.06471	*	19	5	6
21	С	1.37916	*	120.85468	*	0.01149	*	20	19	5
22	С	1.42017	*	120.09518	*	-179.79480	*	6	1	2
23	С	1.41438	*	119.16535	*	0.13055	*	22	6	1
24	С	1.38976	*	120.48920	*	-0.29989	*	23	22	6
25	Н	1.11692	*	109.62355	*	-124.19848	*	8	7	9
26	Н	1.09595	*	117.15974	*	179.06993	*	9	8	10
27	Н	1.09602	*	118.68310	*	179.96833	*	11	10	12
28	Н	1.09595	*	120.25339	*	179.91193	*	12	11	13
29	Н	1.09595	*	118.90139	*	179.96022	*	14	13	15
30	Н	1.09586	*	120.24214	*	179.92799	*	15	14	16
31	Н	1.09590	*	118.89218	*	179.95503	*	17	16	18
32	Н	1.09588	*	120.23557	*	179.96634	*	18	17	19
33	Н	1.09590	*	118.84342	*	179.95577	*	20	19	21
34	Н	1.09589	*	120.33197	*	179.96919	*	21	20	22
35	Н	1.09568	*	119.38860	*	179.92322	*	23	22	24
36	Н	1.09655	*	120.10673	*	179.26325	*	24	23	7
37	Cl	1.81163	*	108.32715	*	122.70702	*	8	7	1

MOLECULAR POINT GROUP : C1

ALPHA EIGENVALUES

-55.17533 -43.34829 -39.48182 -39.18660 -34.92700 -34.64223 -33.27353 -30.93609 -29.45970 -28.15861 -28.09539 -26.28759 -26.20174 -22.86278 -22.70617 -22.41142 -22.26875 -22.19208 -19.27369 -19.06032 -18.86308 -18.58953 -18.48154 -18.34320 -16.60587 -16.56916 -16.27408 -16.22162 -15.84303 -15.56270 -15.46995 -14.97649 -14.88021 -14.86834 -14.77942 -14.58485 -14.42748 -14.28958 -13.71961 -13.50031 -13.43728 -13.26566 -13.08135 -13.05642 -12.96498 -12.20384 -12.16210 -12.06522 -11.79139 -11.17096 -10.77790 -10.47076 -10.41703 -10.19110 -10.02858 -9.50685 -9.11971 -8.49646 -0.62870 -0.34440 0.28776 0.37697 0.49975 0.90629 1.36208 1.60106 1.73375 2.47393 2.55351 2.63093 2.66450 2.76433 2.78474 2.83604 2.96325 2.97097 2.98768 3.00147 3.32672 3.37424

3.38042	3.42415	3.48454	3.54754	3.61086	3.66830	3.78863	3.82417
3.97762	4.06918	4.17862	4.24818	4.49426	4.60347	4.66618	4.68481
4.78475	4.80410	4.83004	4.90750	5.15194	5.26018	5.40726	5.46947
5.50108	5.52313	5.88015	5.99981	6.01674	6.10096	6.42569	6.45569

BETA EIGENVALUES

-54.93628	-43.30746	-39.45688	-39.08568	-34.88231	-34.53645	-33.19739	-30.81852
-29.39543	-28.13861	-28.00090	-26.23118	-26.10190	-22.75894	-22.69050	-22.32354
-22.25072	-22.10932	-19.16294	-19.05681	-18.80768	-18.55878	-18.43280	-18.30670
-16.58401	-16.51316	-16.23570	-16.18222	-15.70189	-15.55094	-15.31790	-14.96508
-14.85625	-14.83523	-14.74722	-14.49456	-14.39488	-14.17250	-13.64664	-13.48095
-13.35079	-13.24566	-13.05087	-13.02034	-12.91772	-12.14272	-12.05203	-12.03338
-11.72733	-11.06396	-10.62274	-10.44003	-10.28960	-10.11608	-9.98293	-9.24597
-8.90450	-1.06648	-0.45994	-0.18180	0.32363	0.45531	0.70523	0.94734
1.54029	1.71802	1.86521	2.60320	2.65306	2.78048	2.81166	2.82772
2.85840	2.91796	2.97173	2.99805	3.00174	3.03351	3.38057	3.41445
3.42706	3.43800	3.51799	3.58166	3.69061	3.77774	3.84395	3.86044
4.00531	4.13943	4.24675	4.31003	4.53906	4.61558	4.69665	4.73211
4.79754	4.82758	4.88643	4.91331	5.17784	5.31321	5.43261	5.49062
5.51862	5.53175	5.92754	6.01108	6.04209	6.11132	6.43914	6.46670

NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS

ATOM N	O. TYPE	CHARGE	ATOM	ELECTRON DENSITY			
1	С	0.005618	3.9	944			
2	С	-0.008005	4.0080				
3	С	-0.005191	4.0	052			
4	C	-0.007663	4.0	077			
5	C	-0.006955	4.0	070			
6	C	-0.008174	4.0	082			
7	С	-0.088891	4.0	889			
8	C	0.045453	3.9	545			
9	C	-0.151510	4.1	515			
10	С	-0.015556	4.0	156			
11	С	-0.087529	4.0	875			
12	С	-0.084079	4.0	841			
13	С	-0.030305	4.0	303			
14	С	-0.086126	4.0	861			
15	С	-0.085326	4.0	853			
16	С	-0.030318	4.0	303			
17	С	-0.085995	4.0	860			
18	С	-0.085821	4.0	858			
19	С	-0.030604	4.0	306			
20	С	-0.084753	4.0	848			

21	С		-0.086466	4.0865
22	C		-0.028770	4.0288
23	C		-0.082745	4.0827
24	C		-0.083638	4.0836
25	Н		0.089747	0.9103
26	Н		0.119251	0.8807
27	Н		0.107311	0.8927
28	Н		0.106835	0.8932
29	Н		0.106430	0.8936
30	Н		0.106476	0.8935
31	Н		0.106348	0.8937
32	Н		0.106378	0.8936
33	Н		0.106438	0.8936
34	Н		0.106688	0.8933
35	Н		0.108247	0.8918
36	Н		0.113143	0.8869
37	Cl		-0.069943	7.0699
DIPOLE	X	Y	Z	TOTAL
POINT-CHG.	0.264	0.906	-0.830	1.257
HYBRID	0.142	0.215	-0.300	0.396
SUM	0.406	1.121	-1.130	1.643

CARTESIAN COORDINATES

NO.	ATOM	Х	Y	Z
1	с	0,0000	0 0000	0 0000
2	c	1,4298	0.0000	0.0000
3	C	2.1417	1.2278	0.0000
4	C	1.4340	2.4650	-0.0033
5	С	0.0114	2.4694	-0.0022
6	С	-0.7045	1.2373	0.0012
7	С	-0.7260	-1.2116	-0.0026
8	С	-0.0161	-2.5171	-0.0310
9	С	1.4565	-2.4488	0.0041
10	C	2.1470	-1.2376	0.0087
11	С	3.5745	-1.2060	0.0210
12	C	4.2604	-0.0087	0.0178
13	C	3.5643	1.2313	0.0060
14	C	4.2561	2.4706	0.0028
15	C	3.5672	3.6693	-0.0036
16	C	2.1464	3.6926	-0.0055
17	C	1.4211	4.9140	-0.0083
18	C	0.0394	4.9181	-0.0072
19	С	-0.6929	3.7013	-0.0033

20	С	-2.1151	3.6872	0.0004
21	С	-2.8106	2.4963	0.0053
22	С	-2.1246	1.2482	0.0056
23	С	-2.8233	0.0184	0.0116
24	С	-2.1304	-1.1863	0.0069
25	Н	-0.3370	-3.0990	-0.9288
26	Н	2.0006	-3.3994	0.0428
27	Н	4.1216	-2.1556	0.0337
28	Н	5.3563	-0.0001	0.0258
29	Н	5.3521	2.4654	0.0061
30	Н	4.1130	4.6196	-0.0060
31	Н	1.9758	5.8592	-0.0107
32	Н	-0.5096	5.8665	-0.0086
33	Н	-2.6533	4.6418	0.0001
34	Н	-3.9065	2.4954	0.0096
35	Н	-3.9189	0.0225	0.0213
36	Н	-2.6783	-2.1360	0.0227
37	Cl	-0.5354	-3.4794	1.4133

ATOMIC ORBITAL ELECTRON POPULATIONS

1.15308	0.92228	0.92300	0.99601	1.15836	0.92198	0.92625	1.00141
1.15578	0.92784	0.92282	0.99875	1.15646	0.92490	0.92697	0.99933
1.15616	0.92483	0.92679	0.99917	1.15682	0.92844	0.92304	0.99988
1.18088	0.94713	0.93712	1.02376	1.17435	0.93214	0.92453	0.92353
1.20687	0.94777	0.97529	1.02158	1.15757	0.93595	0.92718	0.99486
1.18206	0.93269	0.97321	0.99958	1.18024	0.97966	0.92687	0.99730
1.16357	0.92860	0.93897	0.99917	1.18016	0.97965	0.92688	0.99944
1.18058	0.93427	0.97194	0.99854	1.16274	0.93640	0.93157	0.99960
1.18023	0.94606	0.96038	0.99933	1.18014	0.94573	0.96076	0.99919
1.16296	0.93640	0.93155	0.99970	1.18004	0.93396	0.97256	0.99819
1.18054	0.97975	0.92653	0.99966	1.16251	0.92919	0.93968	0.99739
1.18080	0.97984	0.92582	0.99627	1.17870	0.93280	0.97753	0.99462
0.91025	0.88075	0.89269	0.89316	0.89357	0.89352	0.89365	0.89362
0.89356	0.89331	0.89175	0.88686	1.98448	1.91696	1.73299	1.43551

(SZ) = 0.500000 (S**2) = 2.843561

ATOMIC ORBITAL SPIN POPULATIONS

-0.04297	-0.05342	-0.05032	-0.37795	0.04729	0.05438	0.05447	0.45749
-0.04257	-0.05132	-0.05173	-0.37489	0.04075	0.04847	0.04877	0.36931

-0.04031	-0.04818	-0.04790	-0.36528	0.03974	0.04723	0.04797	0.35759
0.04368	0.04933	0.04506	0.44320	-0.01769	-0.05103	-0.03711	-0.04102
0.05639	0.05467	0.06303	0.67601	-0.04790	-0.05760	-0.06134	-0.39521
0.04204	0.05357	0.04944	0.45539	-0.04105	-0.04749	-0.05411	-0.43691
0.04504	0.05271	0.05365	0.40738	-0.03999	-0.04629	-0.05271	-0.42597
0.04028	0.05084	0.04755	0.43511	-0.04282	-0.05164	-0.05057	-0.37926
0.03893	0.04884	0.04683	0.41815	-0.03883	-0.04885	-0.04665	-0.41652
0.04249	0.05069	0.05026	0.37969	-0.03859	-0.04952	-0.04563	-0.41310
0.03891	0.04483	0.05016	0.42100	-0.04142	-0.04906	-0.05068	-0.36075
0.03987	0.04563	0.05023	0.43932	-0.03751	-0.05027	-0.04503	-0.38510
0.04816	-0.05971	-0.04136	0.03967	0.03866	-0.03940	-0.03793	0.03778
0.03747	-0.03813	-0.03965	0.03503	0.00000	0.00906	0.02240	0.04637

TOTAL CPU TIME: 461.22 SECONDS

== MOPAC DONE == JOB FINISHED ファイル名 Cl1.arc

SUMMARY OF PM3 CALCULATION

MOPAC 93.00

C24 H12C1

Wed Jun 24 13:03:13 1998 T=1.0D NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY Graphite Cl symmetry adopted MOPAC coodrdinates neutral

PETERS TEST WAS SATISFIED IN BFGS OPTIMIZATION SCF FIELD WAS ACHIEVED

HEAT OF FORMATION	=	76.350845 KCAL = 319.45194 KJ	
ELECTRONIC ENERGY	= ·	-26747.341316 EV	
CORE-CORE REPULSION	=	23402.838138 EV	
DIPOLE	=	1.64315 DEBYE SYMMETRY: C	1
(SZ)	=	0.500000	
(S**2)	=	2.843561	
NO. OF ALPHA ELECTRONS	=	58	
NO. OF BETA ELECTRONS	=	57	
IONIZATION POTENTIAL	=	8.496456 EV	
ALPHA SOMO LUMO (EV)	=	-8.496 -0.629	
BETA SOMO LUMO (EV)	=	-8.904 -1.066	
MOLECULAR WEIGHT	=	335.812	
SCF CALCULATIONS	=	192	
COMPUTATION TIME = 7 M	INUTES	AND 41.213 SECONDS	

FINAL GEOMETRY OBTAINED

neutral

CHARGE

T=1.0D NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY Graphite Cl symmetry adopted MOPAC coodrdinates

С	0.00000000	0	0.0000000	0	0.0000000	0	0	0	0	0.0056
С	1.42977293	1	0.0000000	0	0.0000000	0	1	0	0	-0.0080
С	1.41922899	1	120.1056144	1	0.0000000	0	2	1	0	-0.0052
С	1.42527020	1	120.1262885	1	-0.1513184	1	3	2	1	-0.0077
С	1.42261720	1	119.9446366	1	0.1991732	1	4	3	2	-0.0070
С	1.42497027	1	119.9838358	1	-0.0409467	1	5	4	3	-0.0082

С	1.41244086	1	120.9305426	1	179.8788596	1	1	2	3	-0.0889
С	1.48627042	1	120.5309541	1	-1.1499838	1	7	1	2	0.0455
С	1.47462251	1	115.8387972	1	2.5752876	1	8	7	1	-0.1515
С	1.43039139	1	119.7994028	1	-179.7490002	1	2	3	4	-0.0156
С	1.42794812	1	118.8287318	1	0.1711534	1	10	2	3	-0.0875
С	1.37982579	1	121.0722061	1	-0.3268685	1	11	10	2	-0.0841
С	1.42266931	1	119.6258637	1	-179.6727853	1	3	4	5	-0.0303
С	1.41929337	1	119.3139994	1	-0.2716770	1	13	3	4	-0.0861
С	1.38262642	1	120.9407756	1	0.1207759	1	14	13	3	-0.0853
С	1.41935789	1	119.9494975	1	-179.9461320	1	4	5	6	-0.0303
С	1.42054060	1	119.1721179	1	-0.0765343	1	16	4	5	-0.0860
С	1.38172146	1	120.8706363	1	0.0851346	1	17	16	4	-0.0858
С	1.41902785	1	120.0826020	1	179.8941692	1	5	6	1	-0.0306
С	1.42229993	1	119.1883901	1	0.0647125	1	19	5	6	-0.0848
С	1.37915940	1	120.8546777	1	0.0114851	1	20	19	5	-0.0865
С	1.42016819	1	120.0951833	1	-179.7948021	1	6	1	2	-0.0288
С	1.41438194	1	119.1653492	1	0.1305479	1	22	6	1	-0.0827
С	1.38975887	1	120.4891951	1	-0.2998896	1	23	22	6	-0.0836
H	1.11691745	1	109.6235507	1	-124.1984819	1	8	7	9	0.0897
H	1.09594828	1	117.1597444	1	179.0699288	1	9	8	10	0.1193
H	1.09602086	1	118.6830982	1	179.9683268	1	11	10	12	0.1073
H	1.09595457	1	120.2533878	1	179.9119306	1	12	11	13	0.1068
H	1.09594611	1	118.9013923	1	179.9602182	1	14	13	15	0.1064
H	1.09585737	1	120.2421405	1	179.9279894	1	15	14	16	0.1065
H	1.09590082	1	118.8921784	1	179.9550272	1	17	16	18	0.1063
H	1.09588348	1	120.2355744	1	179.9663382	1	18	17	19	0.1064
H	1.09589844	1	118.8434199	1	179.9557747	1	20	19	21	0.1064
H	1.09589441	1	120.3319664	1	179.9691907	1	21	20	22	0.1067
H	1.09567751	1	119.3886001	1	179.9232235	1	23	22	24	0.1082
H	1.09654772	1	120.1067267	1	179.2632545	1	24	23	7	0.1131
CL	1.81162530	1	108.3271506	1	122.7070183	1	8	7	1	-0.0699

次に $C_{24}H_{12}$ にアルカリ金属の Li をつけ、 Cl,Br と同じように最適化構造の計算を 行なった。 Li を 1 個つけたときの計算結果を xmol で見たときの図を示す。

図 2.3:C₂₄H₁₂Li^{4 5} 上から見た図 (左)、横から見た図 (右)

この場合(C₂₄H₁₂Li₁の場合)は、再近接 C からの距離約 2.30 、グラファイと平面からの距離約 1.73 で安定した。前に述べた、中平の報告は再近接 C からの距離約 2.30 、グラファイと平面からの距離約 1.83 で安定するとあったので、クラスターのサイズがかわっても、Li の吸着の仕方はほとんどかわらないことがわかった。

Liのつき方は、Liが正電荷を持つ場合と負電荷を持つ場合の2種類があり、その2種類の違いは、Liと最近接H間との距離、角度あるいはクラスターとの距離に関係しているのではないかというこが八木氏の研究によりわかっている。

2.1.3 DRC(動的反応座標)の計算

DRC は動的反応座標に対するキーワードで、このキーワードを指定することにより古典的にではあるが、振動、回転の効果を含めた反応座標を求めることができる。 計算には最適化構造の計算で使用したデータを xyz 座標に直したデータを使用する。

⁴/home9/students/tashiro/tex/u98tash/eps/Li-test1.eps

⁵/home9/students/tashiro/tex/u98tash/eps/Li-test2.eps

xyz座標に直した時のデータの例をここに示す。xyz座標への直し方、および研究で 用いたクラスターモデル($C_{24}H_{12}$ と $C_{54}H_{18}$)の入力データは付録に掲載。

T=1.	F=1.OD NOINTER 1SCF XYZ						
CH4	symmetry adop	ted MOPAC coodrd	inates				
neut	ral						
С	0.0000000	0.0000000	0.0000000				
H	1.0900000	0.0000000	0.0000000				
H	-0.3633114	1.0276696	0.0000000				
H	-0.3633114	-0.5138348	-0.8899880				
H	-0.3633114	-0.5138348	0.8899880				

このような xyz 座標のデータは最適化構造の計算で用いたデータからつくることが できる。 xyz 座標に直したデータから反応座標を計算し、 xmol を使って反応の様子 を xmol アニメーションで見ることができる。

第3章

結果及び考察

本章では、計算から得られた結果を示し、その結果について考察する。

3.1 $C_{24}H_{12}Cl$, $C_{24}H_{12}Br$

まずは、 $C_{24}H_{12}Cl$ と $C_{24}H_{12}Br$ の最適化構造の計算結果を示す。

${\bf 3.1.1} \quad C_{24}H_{12}Cl$

図 3.1は $C_{24}H_{12}$ に $Cl \in 12$ 個つけて最適化の計算をしたときの結果を、 xmol で見たものである。最適化構造の計算をしていくと、 Cl 原子を 12 個つけたところまでは $Cl 原子間の吸着がなく、 Cl の電荷に影響がないままで <math>C_{24}H_{12}$ につくことがわかった。

図 3.1:C₂₄H₁₂Cl₁₂¹⁻² 上から見た図 (左)、横から見た図 (右)

 $^{^{1}/}home9/students/tashiro/tex/u98 tash/eps/Cl-a.eps$

 $^{^{2}/}home9/students/tashiro/tex/u98tash/eps/Cl-b.eps$

 $3.1.2 C_{24}H_{12}Br$

図 3.2は Cl と同様に Br を 12 個つけた時のもので、 Br をつけたときも、 Cl をつけ た時と同じような結果であった。

 $\boxtimes 3.2:C_{24}H_{12}Br_{12}^{-3-4}$ 上から見た図(左)、横から見た図(右)

	結合距離	電荷		結合距離	電荷
$\mathrm{C}_{24}\mathrm{H}_{12}\mathrm{Cl}_{12}$			$\mathrm{C}_{24}\mathrm{H}_{12}\mathrm{Br}_{12}$		
Cl	Х	-0.03	Br	Х	-0.09
\mathbf{C}	Х	-0.13 ~ 0.03	С	Х	-0.11 ~ 0.03
Н	Х	0.12	Н	Х	0.14
C-Cl	1.80	-0.04, -0.03	C-Br	1.97	-0.01, -0.09
C-H	1.12	-0.04, 0.12	C-H	1.12	-0.01, 0.14
C-C	1.48	-0.04,-0.13	C-C	1.47	-0.01,-0.11

まり1 社会に対し声だ

表 3.1は結合距離と電荷を表にしたもので、左が $C_{24}H_{12}Cl_{12}$ 、右が $C_{24}H_{12}Br_{12}$ のも のである。C-ClやC-Brの電荷は結合している原子のそれぞれの電荷を表しており、 C-C の電荷は、それぞれ Cl、Br と結合している C と、その最近接 C のものを表して いる。

³/home9/students/tashiro/tex/u98tash/eps/Br-a.eps

 $^{^4/}home9/students/tashiro/tex/u98tash/eps/Br-b.eps$

3.2 $C_{24}H_{12}Li$, $C_{54}H_{18}Li$

$3.2.1 C_{24}H_{12}Li$

次に Li をつけた場合について。 Li をつけた場合はハロゲン原子とは逆に Li には正 の電荷が移動していく。 Li は Li どうしの吸着なしで最高 14 個までつくことがわかっ た。(図??)

図 3.3:C₂₄H₁₂Li₁₄^{5 6} 上から見た図 (左)、横から見た図 (右)

$3.2.2 C_{54}H_{18}Li$

C₅₄H₁₈ について同じように最適化構造の計算を行なった。 C₅₄H₁₈ において Li 原子 は最大 18 個までついた。

⁵/home9/students/tashiro/tex/u98tash/eps/Li14.eps

⁶/home9/students/tashiro/tex/u98tash/eps/Li14s.eps

図 3.4:C₅₄H₁₈Li₁₈^{7 8} 上から見た図 (左)、横から見た図 (右)

⁷/home9/students/tashiro/tex/u98tash/eps/C54H18Li18a.eps

 $^{^{8}/}home9/students/tashiro/tex/u98tash/eps/C54H18Li18b.eps$

3.2.3 2枚の C₂₄H₁₂

次に C₂₄H₁₂ クラスターを 2 枚に増やして計算を実行した。計算を実行したモデル は 2 種類あって、1 つは平行に並べたクラスター間の中心に Li を置く方法。もう1 つ は中心には置かない方法を実行。図 3.5がクラスター間の中心に Li を置いたときのモ デルで、図 3.6が中心に置かなかったときのものである。

図 3.5:C₂₄H₁₂ を 2 枚使った時の様子 1^{9 10} 上から見た図 (左)、横から見た図 (右)

図 3.6:C₂₄H₁₂ を 2 枚使った時の様子 2^{11 12} 上から見た図 (左)、横から見た図 (右)

- ⁹/home9/students/tashiro/tex/u98tash/eps/CC-Lic-1.eps
- $^{10}/home9/students/tashiro/tex/u98tash/eps/CC-Lic-2.eps$

¹¹/home9/students/tashiro/tex/u98tash/eps/CC-Lis-1.eps

¹²/home9/students/tashiro/tex/u98tash/eps/CC-Lis-2.eps

		化りムニニー	と触く电り		
	結合距離	電荷		結合距離	電荷
$\mathrm{C}_{24}\mathrm{H}_{12}\mathrm{Li}_{14}$			$\mathrm{C}_{54}\mathrm{H}_{18}\mathrm{Li}_{18}$		
Li	Х	-0.4 ~ 0.59	Li	Х	-0.4 ~ 0.65
\mathbf{C}	Х	-0.32 ~ 0.16	\mathbf{C}	Х	-0.36 ~ 0.09
Н	Х	0.13 ~ 0.15	Н	Х	0.11 ~ 0.15
C-Li	2.17 ~ 2.46	х	C-Li	2.14 ~ 2.62	Х
C-H	1.13 ~ 1.14	Х	C-H	1.11 ~ 1.14	Х
C-C	1.43 ~ 1.48	х	C-C	1.43 ~ 1.46	Х
$(C_{24}H_{12})_2Li_1$			$(C_{24}H_{12})_2Li_1(中心 \times)$		
Li	Х	0.36	Li	Х	-0.45
\mathbf{C}	Х	-0.21 ~ 0.01	\mathbf{C}	Х	-0.09 ~ 0.00
Н	Х	0.09 ~ 0.11	Н	Х	0.11 ~ 0.15
C-Li	2.43		C-Li	2.65	Х
C-H	1.10		C-H	1.10 ~ 1.11	Х
C-C	1.39 ~ 1.43		C-C	1.38 ~ 1.43	Х
$C_{24}H_{12}$ 間	4.31		4.18 ~ 6.75		

表 3.2: 結合距離と電荷

表 3.2は Li ドープしたときの結合距離と電荷で、上段左が $C_{24}H_{12}Li_{14}$ 、右が $C_{54}H_{18}Li_{18}$ 、 下段左が $(C_{24}H_{12})_2Li_1$ 、右が $(C_{24}H_{12})_2Li_1$ (端にドープ)のものであるである。下段 の $C_{24}H_{12}$ 間とは 2 枚のクラスター間の距離のことを表している。

3.3 DRC(動的反応座標)

DRC の計算を行なった結果を表 3.3に示す。 DRC=1 ~ (fs)、初期エネルギー K=0.1 ~ 10(Kcal/mol) で計算をおこなった。

表 3.3:DRC と初期エネルギーと電荷の関係						
Li の位置	DRC	KINETIC	電荷	最終位置		
中心		0.1	0.50	端		
		1	なし	放出		
	1	1	0.62	中心		
	10	1	0.63	中心		
	10	0.1	0.63	中心		
	100	1	なし	放出		
	100	10	-0.25	端		
端		0.1	-0.24	端		
		1	-0.25	端		
		10	なし	放出		
	1	1	なし	放出		
	10	0.1	なし	放出		
	10	1	-0.24	端		

表 3.3の説明をすると、Liの位置とはLiを飛ばすときの初期位置。DRC は半減期 を表す。(詳しいことは付録に記載) KINETIC は反応を起こすためにあたえたエネ ルギー。電荷とは安定状態になったときに、Li に移動した電荷のことで、最終位置は Li が最終的に安定になった位置のことをあらわしている。最終位置の中心とは、クラ スターの中心のことで、端とはクラスターの水素終端されているところを表している。 1 番上のものを例にとれば、「Li 1 個をクラスターの中心上空から真下に向かって、 半減期が、初期エネルギーが0.1 で落した時に、Li が最終的に安定になる場所はク ラスターの端(水素終端されているところ)で、そのときの電荷は0.50 である。」と いうように見る。表中の「放出」は、Li がクラスター付近で安定にならずに、離れて いったときのことを表す。

最適化構造の計算を行なったときには、Liを1個だけドープした場合、必ずLiの 電荷は正になっていたが、DRC計算の結果を見ると、ドープ数は1個だけれども、 Liの電荷が負になっているものが存在している。

3.4 考察

3.4.1 総電荷移動量

図 3.7は、 $C_{24}H_{12}$ クラスターにドープした Cl 原子の個数に対する、Cl 原子に移動 した電荷の総和のグラフで、図 3.8は Br ドープのものである。

図 $3.7:C_{24}H_{12}Cl_N$ の個数に対する総電荷移動量¹³

図 3.8:C₂₄H₁₂Br_N の個数に対する総電荷移動量¹⁴

以上のように Cl,Br ともにグラフは一様な減少のグラフになっている。このように ハロゲン原子をドープしていくと、ドープ数にほぼ比例して負の電荷がハロゲン原子

 $^{^{13}/}home9/students/tashiro/tex/u98tash/eps/Cl-t-ch.eps$

¹⁴/home9/students/tashiro/tex/u98tash/eps/Br-t-ch.eps

の方に移動していく。

図 3.9は Liをドープしたときの電荷移動量の和のグラフである。

図 3.9:C₂₄H₁₂Li_N の Li の個数に対する総電荷移動量¹⁵

図 3.9の は Li がクラスターの内側に 1 個でも存在しているとき。 は Li がクラス ター内側にないときのグラフである。このグラフを見てわかるように、 Li がクラス ター内側に位置していた方が、ないときに比べて総電荷移動量は大きくなるっている。 このグラフとハロゲン原子のものを比べると、 Li の場合ハロゲン原子と違って、 Li を 8、9 個ドープしたところで総電荷移動量が飽和して増えなくなっているのがわか る。

 $C_{54}H_{18}$ について同様の計算を行なった。 $C_{54}H_{18}$ において Li 原子は最大 18 個まで ついた。その時の電荷移動量の和は以下のようになります。グラフ中の は Li がクラ スターの内側 (中心) にあるときで、 はないときのものである。

¹⁵/home9/students/tashiro/tex/u98tash/eps/Li-t-ch.eps

図 3.10:C₅₄H₁₈Li_N の Li の個数に対する総電荷移動量¹⁶

このグラフを $C_{24}H_{12}$ クラスターのグラフと比較してみると、 $C_{24}H_{12}$ クラスターで は8、9個ドープしたところでで電荷移動量の和が飽和してきてるのに対して、 $C_{54}H_{18}$ クラスターの場合 $10 \sim 15$ 個ドープしたところで飽和しているのがわかる。これによ リクラスターを大きくしていくことによって、Liへの電荷移動量を多くできることが わかる。

図 $3.11:C_{24}H_{12}$ を 2 枚つかった時の Li の個数に対する総電荷移動量¹⁷

¹⁶/home9/students/tashiro/tex/u98tash/eps/Li54-t-ch.eps

 $^{^{17}/}home9/students/tashiro/tex/u98tash/eps/Licc-t-ch.eps$

図 3.11は $C_{24}H_{12}$ クラスター 1 枚のときと同様に $C_{24}H_{12}$ クラスターを 2 枚使ったと きの、Li の個数に対する総電荷移動量をグラフにしたものである。グラフ中の は Li がクラスターの中心にあるときで、 はないときのものである。 $C_{24}H_{12}$ クラスター 1 枚のときに比べて明らかに総電荷移動量は大きくなっているのがわかるが、 $C_{24}H_{12}$ クラスター 1 枚のときと同様に、ある一定数以上の Li をドープしても、総電荷移動量 は増えずに飽和していることがわかる。 $C_{54}H_{18}$ クラスターのグラフと比べると、ドー プする Li の数が少ないところでは同じような増え方をしているが、ドープ数が多くな ると、 $C_{54}H_{18}$ クラスターは Li をドープしていくに従って電荷移動量も徐々に増えて いるのに対して、 $C_{24}H_{12}$ クラスター 2 枚のときは 10 ~ 12 個ドープすると飽和して しまい、それ以上ドープ数を増やしても電荷移動量は増えない。

3 種類のモデルの結果よりわかることは、Liをクラスターの端(水素終端している ところ)にドープするよりも、内側(中心)にドープしたときの方が電荷移動量の総 和が大きくなり、クラスターを大きくしたり、クラスターの数を増やすことによって も、電荷移動量の総和を大きくすることができるということである。

3.4.2 Li⁺の割合

図 3.12から図 3.14は、Li の個数に対する Li⁺ の割合を表したグラフである。それ ぞれのグラフを見てわかることは、どのクラスターの場合でも Li をクラスターの中 心 (内側) に置いてあるときの方が、ないときに比べて Li の電荷が正になる割合が多 くなっているということである。つまり Li への電荷移動量を多くするには、ドープす る Li の量に関係なくクラスターの内側に Li をドープする必要があるということであ る。

3 つの図を比べてみると、 $C_{24}H_{12}Li_x$ よりも $C_{54}H_{18}Li_x$ 、 $C_{24}H_{12}Li_x$ よりも $C_{24}H_{12}2$ 枚の方がLiの電荷が正になる割合が多くなっている。つまりクラスターを大きくす る、あるいはクラスターの数を増やすことによっても電荷移動量を増やすことができ ることがわかる。

総電荷移動量のグラフを見ても、Li⁺の存在する割合のグラフを見ても同様の結果が得られたことになる。

図 $3.12:C_{24}H_{12}Li_N$ における Li^+ の割合 (: 中心に Li が存在、 : 外側のみ存在) ¹⁸

図 $3.13:C_{54}H_{18}Li_N$ における Li^+ の割合 (: 中心に Li が存在、 : 外側のみ存在) ¹⁹

 $^{^{18}/}home9/students/tashiro/tex/u98tash/eps/Li24p.eps$

 $^{^{19}/}home9/students/tashiro/tex/u98tash/eps/C54p2.eps$

図 $3.14:C_{24}H_{12}2$ 枚の Li^+ の割合 (: 中心に Liが存在、 : 外側のみ存在)²⁰

 $^{^{20}/\}mathrm{home9/students/tashiro/tex/u98tash/eps/L48p.eps}$

第4章

まとめ

Cl、Brドープについて、クラスターの外側にドープしたものの方が、結合長が短くなり、安定する。

クラスターに Li を 1 個ドープし最適化構造の計算を行なったとき、 Li をドープし た場所がクラスターの内側(中心)、外側(水素終端したところ)に関係なく、 Li の 電荷は正になる。

Liを2個以上ドープしたときに、電荷が正になるものと負になるもの2種類ができ るが、その原因は最近接のHとの距離やクラスターからの高さに関係している。(1998 修士論文 八木将志)

Li に移動する正電荷を多くするには、単にドープする Li の数を増やしていくだけ でもある程度は増えていくが、より効率良く多くの正電荷を得るには、クラスターの 中心 (内側) に Li をドープしておくことが必要である。

また、クラスターを大きくしたりクラスターの数を増やすことによっても、Liへの 電荷移動量を増やすことが可能である。

これからの問題点として、DRC計算の結果において、Liのドープ数が1個でも電荷が負になっているものがあるが、その原因を明らかにしていく。

謝辞

本研究及び論文作成にあたり、終始御懇切なる御指導、御鞭撻を賜わりました指導教 官である齋藤理一郎助教授に衷心より御礼の言葉を申し上げます。

また、本研究を進めるにあたり、熱心な御指導をいただくとともに種々の御高配を 賜わりました木村忠正教授、湯郷成美助教授、一色秀夫助手に深謝の意を表します。

また、研究活動をともにし、多くの援助をいただいた八木将志氏、平原勝久氏、に 深謝いたします。

そして、数々の御援助、御助言をしていただいた松尾竜馬氏、沼知典氏、山岡寛明 氏、安藤泰夫氏はじめ木村・齋藤・湯郷研究室の大学院生、卒研生の方々に感謝致し ます。

最後に、事務業務をして頂いた山本純子さんに感謝致します。

参考文献

- [1] 中平 政男, "グラファイトクラスターの Li 過剰吸着とラマン強度", 1996 年度 修士論文
- [2] 八木将志, "ドナー,アクセプター型ドープ微小黒鉛クラスターの電子状態",1998 年度修士論文
- [3] 久保 亮五、長倉 三郎、井口 洋夫、江沢 洋 編集、 理化学辞典第4版, 岩波書店, (1995)

第5章

付録

5.1 MOPAC

5.1.1 MOPAC の概要

MOPAC93 では分子の最適化構造、全電子エネルギー、分子軌道等が計算でき、4 つの計算方法、MINDO/3(Modified Intermediate Neglect of Differential Overlap)、 MNDO(Modified Neglect of Diatomic Overlap)、AM1(Austin Model 1)、PM3(Parametric Method 3) 法があり、それぞれ用いているパラメータやハミルトニアンが異なってお り、使用できる原子にも違いがある。本研究では、この MOPAC93 の PM3 法を用い て電子状態、基準振動、及び構造最適化の計算を行なった。

以下では、MOPAC の計算原理を簡単に述べる。

MOPAC は、次のような Hartree-Fock-Roothaan 方程式を SCF(Self-Consistent-Field) 計算により解いている。

$$\mathbf{FC}_i = \varepsilon_i \mathbf{SC}_i \tag{5. 1.1}$$

ここで C_i は固有ベクトルで、分子軌道 φ_i を原子軌道 χ_q の線形結合で表した (LCAO 近似; Linear Combination of atomic orbitals) 式

$$\varphi_i = \sum_{q=1}^n \chi_q C_{qi} \tag{5. 1.2}$$

の行列 C_{qi} の列ベクトルである。また、 ε_i は固有値、S は重なり積分で

$$S_{pq} = \langle \chi_p | \chi_q \rangle \tag{5. 1.3}$$

で表される行列である。 F はフォック行列で 一電子部分、 H、 二電子部分、 P の 和、

$$\mathbf{F} = \mathbf{H} + \mathbf{P} \tag{5. 1.4}$$

で表せる。ここで H、 P はそれぞれ、

$$H_{pq} = \langle \chi_p | h | \chi_q \rangle$$
$$P_{pq} = \sum_{r,s} T_{pq,rs} \cdot D_{rs}$$
$$D_{rs} = \sum_{j=1}^n 2C_{rj}C_{sj}$$

$$T_{pq,rs} = (\chi_p \chi_q | \chi_r \chi_s) - \frac{1}{2} (\chi_p \chi_s | \chi_r \chi_q)$$

である。ここで 2 電子積分項 $(\chi_p \chi_s | \chi_r \chi_q)$ は

$$(\chi_p \chi_s | \chi_r \chi_q) = \iint \chi_p(\mathbf{r}) \chi_s(\mathbf{r}) \frac{1}{(\mathbf{r'} - \mathbf{r})} \chi_r(\mathbf{r'}) \chi_q(\mathbf{r'}) d\mathbf{r} d\mathbf{r'}$$

以上の様な Hartree-Fock-Roothaan 方程式を SCF 計算によって解く。 SCF の計算 は、まず適当に固有ベクトル C を仮定して F 行列を作り、これを対角化して Hartree-Fock-Roothaan 方程式を解く。これで、固有値 ε_i と固有ベクトル C が求まる。ここ で求まった固有ベクトルと先に D_{rs} で仮定したものが、許容範囲ならば SCF は収 束したことになり計算を終える。もし、許容範囲外ならば求めた固有ベクトルを使っ て、いまの行程を繰り返す。

半経験的分子軌道法では、フォック行列の中の幾つかの積分項をあらかじめ与えら れた原子間距離の関数としてのパラメーターに置き換えている。

5.1.2 PM3法

次に、本研究で用いた MOPAC の PM3 法について述べ、 MNDO 法との比較も述 べる。 PM3 法、 MNDO 法は、どちらも NDDO 近似 (Neglect of Diatomic Differential Overlap)を用いている。これはある電子についての 2 原子間にわたる微分重な りが積分の中にでてきたら、その積分値を 0 とする近似である。この様な近似を行な うと、近似によって 0 とされた積分項の他に、被積分関数の積の持つ空間対称性のた め、幾つかの 2 電子積分項が 0 となる。これにより計算する量を大幅に減らすことが でき、計算時間を短縮することができる。

以下に、この様な近似を使った PM 3 法と MNDO 法に共通なフォック行列を記す。 但し、原子を A、 B などと表し、原子軌道を μ 、 ν 、 λ 、 σ などと表記する。また、 内殻電子と原子核を含めてコア (Core) と呼ぶ。

PM3 法、MNDO 法に共通なフォック行列は、

$$\begin{split} & \stackrel{F_{\mu\mu}}{\underset{\mu \in A}{\overset{=}{ B^{2}}{ B^{2}}}}{\underset{\nu \in A}{\overset{E}{ B^{2}}{ B^{2}}}} \underbrace{U_{\mu\mu} + \sum_{B} V_{\mu\mu,B}}_{\underset{\nu}{B}} + \sum_{\nu}^{A} P_{\nu\nu} \left[(\mu\mu|\nu\nu) - \frac{1}{2} (\mu\nu|\mu\nu) \right] + \sum_{B} \sum_{\lambda,\sigma}^{B} P_{\lambda\sigma} (\mu\mu|\lambda\sigma) \\ & \stackrel{F_{\mu\nu}}{\underset{\nu \in A}{\overset{E}{ B^{2}}{ B^{2}}}}{\underset{\nu \in A}{\overset{E}{ B^{2}}{ B^{2}}}} \underbrace{\frac{\sum_{B} V_{\mu\nu,B}}{\underset{\lambda}{B^{2}}{ P^{2}}} + \frac{1}{2} P_{\mu\nu} \left[3 (\mu\nu|\mu\nu) - (\mu\mu|\nu\nu) \right] + \sum_{B} \sum_{\lambda,\sigma}^{B} P_{\lambda\sigma} (\mu\nu|\lambda\sigma) \\ & \stackrel{F_{\mu\lambda}}{\underset{\lambda \in B}{\overset{E}{ B^{2}}{ P^{2}}}}{\underset{\lambda \in B}{\overset{E}{ B^{2}}{ P^{2}}}} \underbrace{\frac{\beta_{\mu\lambda}}{\underset{\sigma}{ P^{2}}} - \sum_{\lambda}^{A} \sum_{\sigma}^{B} P_{\nu\sigma} (\mu\nu|\lambda\sigma)}{ (5. 1.5)} \end{split}$$

ただし、

 $U_{\mu\mu}: 1$ 中心電子コアエネルギー (A 原子上の原子軌道の積 $\chi_{\mu}\chi_{\mu}$ で記述される 1 個の電子の運動エネルギー、及び原子 A のコアとの吸引に基づくポテンシャル エネルギーの和)

 $(\mu\mu|\nu\nu): 1$ 中心 2 電子反発積分 (クーロン積分) (= $g_{\mu\nu}$)

 $(\mu\nu|\mu\nu)$: 1 中心交換積分 (= $h_{\mu\nu}$)

 $V_{\mu\nu,B}$: 2 中心 1 電子吸引エネルギー (原子 A 上の原子軌道の積 $\chi_{\mu}\chi_{\nu}$ で表され る電子と原子 B とのコアとの静電気に基づくポテンシャルエネルギー)

 $\beta_{\mu\nu}$: 2 中心 1 電子コア共鳴積分 (各原子軌道に固有な結合パラメーター (bounding parameter) $\beta_{\mu},\beta_{\lambda}$ から次式で計算する)

$$\beta_{\mu\lambda} = \frac{1}{2} S_{\mu\lambda} (\beta^A_\mu + \beta^B_\lambda) \tag{5. 1.6}$$

 $(\mu\nu|\lambda\sigma): 2$ 中心 2 電子反発積分

 $P_{\lambda\sigma}$: 結合次数 (= $2\sum_{i}^{occ} C_{\lambda i} C_{\sigma i}$)

である。 $U_{\mu\mu}, G_{\mu\nu}, h_{\mu\nu}, \beta_{\mu}, \beta_{\lambda}$ などは原子ごとに定めたパラメーターである。計算した い分子の構造と原子種に応じて $F_{\mu\nu}$ が決まると、 F の対角化を繰り返し、 SCF(Self-Consistent Field) となったところで固有値 ε_D と固有ベクトル C が求まる。全電子エ ネルギー $E_{\epsilon l}$ は、

$$E_{el} = \frac{1}{2} \sum_{\mu} \sum_{\nu} P_{\mu\nu} (H_{\mu\nu} + F_{\mu\nu})$$
 (5. 1.7)

として求まる。ここに $H_{\mu\nu}$ はコアハミルトニアンと呼ばれ、 $F_{\mu\nu}$ の1電子部分 ((5.1.5) 式の下線つきの部分: "電子の運動エネルギー"と"電子と殻のポテンシャ ルエネルギー"の和) のことである。 分子の全エネルギー E_{tot} は、 E_{el} にコア-コア間の反発エネルギー E_{AB}^{core} の総和を加えて、

$$E_{tot} = E_{el} + \sum_{A < B} E_{AB}^{core} \tag{5. 1.8}$$

となる。

コアAとBの間の静電反発エネルギー項 E_{AB}^{core} の計算式は、PM3法とMNDO法とでは異なり以下のように与えられる。

<MNDO 法 >

$$E_{AB}^{core} = Z_A Z_B (s^A s^A | s^B s^B) \{ 1 + f_{AB} e^{-\alpha_A R_{AB}} + e^{-\alpha_B R_{AB}} \}$$
(5. 1.9)

<PM3 法>

$$E_{AB}^{core} = Z_A Z_B (s^A s^A | s^B s^B) \{1 + f_{AB} e^{-\alpha_A R_{AB}} + e^{-\alpha_B R_{AB}} \} + \frac{Z_A Z_B}{R_{AB}} \left\{ \sum_{k=1}^2 a_{kA} \exp[-b_{kA} (R_{AB} - c_{kA})^2] + \sum_{k=1}^2 a_{kB} \exp[-b_{kB} (R_{AB} - c_{kB})^2] \right\}$$
(5. 1.10)

但し、

Z_A: コア A の有効電荷

s^A:原子Aのs軌道

 $Z_A Z_B(s^A s^A | s^B s^B)$ は、それぞれ s 軌道の大きさに広がっている電荷球として近似した場合のコア A とコア B の間の静電反発エネルギーを表す。

 f_{AB} : A 原子が N か O で B 原子が H の場合は R_{AB} 、その他の場合は 1

R_{AB}: コアA とコアB との間の距離

 $\alpha_A, \alpha_B, a_{kA}, b_{kA}, c_{kA}$:原子ごとに決めたパラメーターである

MNDO 法の式 (5. 1.9) は、経験式である。式 (5. 1.9)~式 (5. 1.10) を比較する と、 MNDO 法と PM3 法との違いは、式 (5. 1.10) の下線つきの部分があるかないか だけの違いである。下線の部分は、 MNDO 法では van der Waals 距離付近の原子間 反発エネルギーを過大評価しているとされているので、これを補正するための項である。

また、 MNDO 法と PM3 法ではパラメーターの決め方が異なっており、 MNDO 法 が 32 個の分子の各諸量の実験値を再現するようにパラメーターが決められているの に対し、 PM3 法は 763 個の分子を元にパラメーターが最適化されている。従って PM3 法は MNDO 法と比べ精度が良くなっている。

以上のように、MOPACではフォック行列や原子間反発エネルギーを求める式の中 に、幾つかのパラメーターを使用している点で半経験的な計算である。

また、MOPAC の分子軌道計算では、扱う軌道は最外殻の原子軌道だけであり、残 りはコアに含める。本研究では炭素原子とリチウム原子、及び水素原子であるので、 扱う軌道は1s(x素のみ)、2s、 $2p_x$ 、 $2p_y$ 、 $2p_z(炭素及びリチウム)$ である。MOPAC では RHF 計算 (制限 Hartree-Fock) と UHF 計算 (非制限 Hartree-Fock) が扱える。 RHF は up スピンと down スピンの入る軌道は同じ関数で表され、UHF では違う 関数で表される。よって得られる準位は UHF では RHF の倍となる。本研究では全 て、UHF 計算で行なった。

5.1.3 MOPAC のオプション

MOPAC ではオプションを指定することで、様々な機能が使用できる。以下では、 本研究で使用したオプションを列挙し、簡単な説明をする。

- SYMMETRY
 対称性を保ちながら計算をさせる。
 対称性を考慮することにより、計算時間を短縮することができる。
- GNORM=n
 エネルギー勾配がnになったら計算を終了させる。
 構造最適化計算終了の判定基準となる。
- PULAY
 SCF を得るために Pulay の強制収束法を使用する。
- SHIFT=n
 SCF の計算の開始に減衰ファクター

• FORCE

振動解析を行なう。これによって、基準振動の振動数や固有ベクトルなどを求 めることができる。

• PM3

近似法として PM3 法を使用する。

• UHF

非制限ハートリーフォック計算をさせる。何も指定しなければ RHF (制限ハー トリーフォック)計算をする。

• GEO-OK

構造最適化において幾つかの安全チェックを無視させる。

• DRC

動的反応座標の計算

DRC = t とした場合: t > 0 半減期 t [fs] でエネルギーを減らす。 : t < 0 半増期 -t [fs] でエネルギーを増やす。

この内容については次項にて説明する。

T-PRIORITY=t
 DRC 計算で、時間が t [fs] 変化するごとに出力。

5.2 動的反応座標

また、本研究では動的反応座標を用いて計算した。この計算によって、構造最適化 だけでなく化学反応の様子を振動、回転、の効果も含めた反応座標を求めることがで き、反応条件のより詳しい検証をすることが期待できる。

5.2.1 計算原理

この計算はニュートンの運動方程式 $f_i = m_i a_i (f_i, m_i, a_i)$ はそれぞれ粒子 i に働く力、粒子 i の質量、加速度)を数値積分することより求める。

 $g_i(t) = \nabla_i E$ (*E* はエネルギー、 ∇_i は粒子 *i* の座標に関する微分) とすると、

$$-g_i(t)/m_i = v'_i(t) \tag{5. 2.11}$$

$$(v'_{i}(t) = dv_{i}(t)/(dt), v_{i}$$
は粒子iの速度)

$$-g_{i}(t - dt_{1})/m_{i} = v'_{i}(t - dt_{1})$$

$$= v'_{i}(t) - v''_{i}(t)dt_{1} + 1/2 \cdot v'''_{i}(t)(dt_{1})^{2} \cdots$$

$$-g_{i}(t - dt_{1} - dt_{2})/m_{i} = v'_{i}(t - dt_{1} - dt_{2})$$

$$= v'_{i}(t) - v''_{i}(t)(dt_{1} + dt_{2})$$

$$+ 1/2 \cdot v'''_{i}(t)(dt_{1} + dt_{2})^{2} \cdots$$

 $(dt_1, dt_2$ はタイムステップ。Taylor展開を行なった。)

となる。

よって、

$$\{g_i(t) - g_i(t - dt_1)\}/m_i = -v''_i(t)dt_1 + 1/2 \cdot v''_i(t)(dt_1)^2 \cdots$$
$$\{g_i(t) - g_i(t - dt_1 - dt_2)\}/m_i = -v''_i(t)(dt_1 + dt_2) + 1/2 \cdot v''_i(t)(dt_1 + dt_2)^2 \cdots$$

となる。

2次までの項を考慮すると

$$v_i''(t) = 2/m_i \cdot [\{g_i(t) - g_i(t - dt_1)\}(dt_1 + dt_2) - \{g_i(t) - g_i(t - dt_1 - dt_2)\}dt_1]/$$

$$\{(dt_1)^2(dt_1 + dt_2) - dt_1(dt_1 + dt_2)^2\}$$
(5. 2.12)
$$v_i''(t) = [\{g_i(t - dt_1) - g_i(t)\}/m_i + 1/2 \cdot v_i'''(t)(dt_1)^2]/dt_1$$
(5. 2.13)

となる。

半経験的分子起動法計算から得られた $g_i(t - dt_1 - dt_2)$ 、 $g_i(t - dt_1)$ 、 $g_i(t)$ を式 (5. 2.11)、 (5. 2.12)、 (5. 2.13) に代入して $v'_i(t)$ 、 $v''_i(t)$ 、 $v''_i(t)$ を求め、時間 dt 後の速度と位置

$$\begin{aligned} v_i'(t+dt) &\sim v_i(t) + v_i'(t)dt + 1/2 \cdot v_i''(t)(dt)^2 + \\ & 1/6 \cdot v_i'''(t)(dt)^3 \\ x_i'(t+dt) &\sim x_i(t) + v_i(t)dt + 1/2 \cdot v_i'(t)(dt)^2 + \\ & 1/6 \cdot v_i''(t)(dt)^3 + 1/24 \cdot v_i'''(t)(dt)^4 \end{aligned}$$

を求める。

以上の計算を繰り返し行なうことにより DRC を求めることができる。

5.3 MOPAC の入力データA

5.3.1 最適化構造に用いるデータ

 $\mathbf{C}_{24}\mathbf{H}_{12}$

```
T=1.0D NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY
Graphite symmetry adopted MOPAC coodrdinates
```

neutral С 0.0000000 0 0.000000 0 0.000000 0 0 0 0 С 1.41815137 1 0.0000000 0 0.0000000 0 1 0 0 1.41815137 1 120.0000000 1 0.0000000 0 С 2 1 0 $C \qquad 1.41815137 \quad 1 \quad 120.0000000 \quad 1 \qquad 0.0000000 \quad 1 \qquad 3 \qquad 2 \qquad 1 \\$ $C \qquad 1.41815137 \quad 1 \quad 120.0000000 \quad 1 \qquad 0.0000000 \quad 1 \qquad 4 \qquad 3 \qquad 2 \\$ C 1.41815137 1 120.0000000 1 0.0000000 1 5 4 3 C 1.41815137 1 120.0000000 1 180.0000000 1 1 2 3 C 1.41815137 1 120.0000000 1 0.0000000 1 7 1 2 C 1.41815137 1 120.0000000 1 0.0000000 1 8 7 1 $C \qquad 1.41815137 \quad 1 \quad 120.0000000 \quad 1 \quad 180.0000000 \quad 1 \quad 2 \quad 3 \quad 4 \\$ C 1.41815137 1 120.0000000 1 0.0000000 1 10 2 3 C 1.41815137 1 120.0000000 1 0.0000000 1 11 10 2 1.41815137 1 120.0000000 1 180.0000000 1 3 4 5 С 1.41815137 1 120.0000000 1 С 0.0000000 1 13 3 4 1.41815137 1 120.0000000 1 С 0.0000000 1 14 13 3 1.41815137 1 120.0000000 1 180.0000000 1 4 С 5 6 С 1.41815137 1 120.0000000 1 0.0000000 1 16 4 5 С 1.41815137 1 120.0000000 1 0.0000000 1 17 16 4 С 1.41815137 1 120.0000000 1 180.0000000 1 5 6 1 5 С 1.41815137 1 120.0000000 1 0.0000000 1 19 6 С 1.41815137 1 120.0000000 1 0.0000000 1 20 19 5 1.41815137 1 120.0000000 1 180.0000000 1 С 6 2 1 1.41815137 1 120.0000000 1 0.0000000 1 22 1 С 6 1.41815137 1 120.0000000 1 С 0.0000000 1 23 22 6 1.09441126 1 120.0000000 1 180.0000000 1 7 Н 8 9 1.09441126 1 120.0000000 1 180.0000000 1 9 8 10 Н 1.09441126 1 120.0000000 1 180.0000000 1 11 10 12 Н 1.09441126 1 120.0000000 1 180.0000000 1 12 11 13 Н 1.09441126 1 120.0000000 1 180.0000000 1 14 Н 13 15 1.09441126 1 120.0000000 1 180.0000000 1 15 Н 14 16 1.09441126 1 120.0000000 1 180.0000000 1 17 Н 16 18 1.09441126 1 120.0000000 1 180.0000000 1 Н 18 17 19 1.09441126 1 120.0000000 1 180.0000000 1 Н 20 19 21 20 22 Н 1.09441126 1 120.0000000 1 180.0000000 1 21 H 1.09441126 1 120.0000000 1 180.0000000 1 23 22 24 Н 1.09441126 1 120.0000000 1 180.0000000 1 24 23 7

$\mathbf{C}_{54}\mathbf{H}_{18}$

```
T=1.0D NOINTER GNORM=0.5 PM3 GEO-OK UHF PULAY SHIFT=2
Graphite
neutral
C 0.00000000 1 0.0000000 1 0.0000000 1 0 0 0
```

С	1.41815137	1	0.000000	1	0.0000000	1	1	0	0
С	1.41815137	1	120.0000000	1	0.000000	1	2	1	0
С	1.41815137	1	120.0000000	1	0.000000	1	3	2	1
С	1.41815137	1	120.0000000	1	0.000000	1	4	3	2
С	1.41815137	1	120.0000000	1	0.000000	1	5	4	3
С	1.41815137	1	120.0000000	1	180.0000000	1	1	2	3
С	1.41815137	1	120.0000000	1	0.0000000	1	7	1	2
С	1.41815137	1	120.0000000	1	0.0000000	1	8	7	1
С	1.41815137	1	120.0000000	1	180.0000000	1	2	3	4
С	1.41815137	1	120.0000000	1	0.0000000	1	10	2	3
С	1.41815137	1	120.0000000	1	0.0000000	1	11	10	2
c	1.41815137	1	120.0000000	1	180.0000000	1		4	5
c	1.41815137	1	120.0000000	1	0.0000000	1	13	3	4
c	1.41815137	1	120.0000000	1	0.0000000	1	14	13	3
c	1 41815137	1	120.0000000	1	180,0000000	1	4	5	6
c	1 41815137	1	120.0000000	1	0.0000000	1	16	4	5
c	1 41815137	1	120.0000000	1	0.0000000	1	17	16	4
c	1 41815137	1	120.0000000	1	180,0000000	1	5	6	1
c	1 41915137	1	120.0000000	1	0.0000000	1	10	5	6
c	1 41915137	1	120.0000000	1	0.0000000	1	20	10	5
c c	1.41015137	1	120.0000000	1	180,0000000	1	20 6	19	5 0
c a	1.41015137	1	120.0000000	1	180.0000000	1	0	I C	4
C a	1.41015137	1	120.0000000	1	0.0000000	1	22	0	I C
C a	1.41815137	1	120.0000000	1	0.0000000	1	23	22	0
C	1.41815137	1	120.0000000	1	180.0000000	1	8	7	1
C	1.41815137	1	120.0000000	1	0.0000000	1	25	8	7
C	1.41815137	1	120.0000000	1	0.0000000	1	26	25	8
С	1.41815137	1	120.0000000	1	180.0000000	1	9	8	7
С	1.41815137	1	120.0000000	1	0.0000000	1	28	9	8
С	1.41815137	1	120.0000000	1	0.0000000	1	29	28	9
С	1.41815137	1	120.0000000	1	0.0000000	1	11	10	9
С	1.41815137	1	120.000000	1	0.000000	1	31	11	10
С	1.41815137	1	120.000000	1	180.000000	1	12	11	10
С	1.41815137	1	120.000000	1	0.000000	1	33	12	11
С	1.41815137	1	120.000000	1	0.000000	1	34	33	12
С	1.41815137	1	120.000000	1	0.0000000	1	14	13	12
С	1.41815137	1	120.000000	1	0.0000000	1	36	14	13
С	1.41815137	1	120.0000000	1	180.000000	1	15	14	13
С	1.41815137	1	120.0000000	1	0.0000000	1	38	15	14
С	1.41815137	1	120.000000	1	0.000000	1	39	38	15
С	1.41815137	1	120.000000	1	0.000000	1	17	16	15
С	1.41815137	1	120.000000	1	0.000000	1	41	17	16
С	1.41815137	1	120.000000	1	180.000000	1	18	17	16
С	1.41815137	1	120.000000	1	0.000000	1	43	18	17
С	1.41815137	1	120.0000000	1	0.0000000	1	44	43	18
С	1.41815137	1	120.0000000	1	0.0000000	1	20	19	18
С	1.41815137	1	120.0000000	1	0.0000000	1	46	20	19
С	1.41815137	1	120.0000000	1	180.0000000	1	21	20	19
С	1.41815137	1	120.0000000	1	0.000000	1	48	21	20
С	1.41815137	1	120.0000000	1	0.000000	1	49	48	21
С	1.41815137	1	120.0000000	1	0.000000	1	23	22	21
C	1.41815137	1	120.0000000	1	0.000000	1	51	23	22
С	1.41815137	1	120.0000000	1	180.0000000	1	51	23	22
С	1.41815137	1	120.0000000	1	0.0000000	1	53	51	23
Н	1.09441126	1	120.0000000	1	180.0000000	1	26	27	25
Н	1.09441126	1	120.0000000	1	180.0000000	1	30	25	29
Н	1.09441126	1	120.0000000	1	180.0000000	1	29	30	28
Н	1.09441126	1	120.0000000	1	180.0000000	1	32	28	31

H	1.09441126	1	120.0000000	1	180.0000000	1	35	31	34
H	1.09441126	1	120.0000000	1	180.0000000	1	34	35	33
H	1.09441126	1	120.0000000	1	180.0000000	1	37	33	36
H	1.09441126	1	120.000000	1	180.0000000	1	40	36	39
H	1.09441126	1	120.000000	1	180.0000000	1	39	40	38
H	1.09441126	1	120.0000000	1	180.0000000	1	42	38	41
H	1.09441126	1	120.0000000	1	180.0000000	1	45	41	44
H	1.09441126	1	120.000000	1	180.0000000	1	44	45	43
H	1.09441126	1	120.000000	1	180.0000000	1	47	43	46
H	1.09441126	1	120.000000	1	180.0000000	1	50	46	49
H	1.09441126	1	120.0000000	1	180.0000000	1	49	50	48
H	1.09441126	1	120.0000000	1	180.0000000	1	52	48	51
H	1.09441126	1	120.0000000	1	180.0000000	1	53	51	54
H	1.09441126	1	120.0000000	1	180.0000000	1	54	53	27

$C_{24}H_{12}$ 2枚+Li

Grap	hite Li symme	try	adopted MUP	AC c	oodrdinates				
neut	ral								
С	0.0000000	0	0.000000	0	0.000000	0	0	0	0
С	1.41815137	1	0.000000	0	0.000000	0	1	0	0
С	1.41815137	1	120.000000	1	0.000000	0	2	1	0
С	1.41815137	1	120.000000	1	0.000000	1	3	2	1
С	1.41815137	1	120.000000	1	0.000000	1	4	3	2
С	1.41815137	1	120.000000	1	0.000000	1	5	4	3
С	1.41815137	1	120.000000	1	180.000000	1	1	2	3
С	1.41815137	1	120.000000	1	0.000000	1	7	1	2
С	1.41815137	1	120.000000	1	0.0000000	1	8	7	1
С	1.41815137	1	120.000000	1	180.0000000	1	2	3	4
С	1.41815137	1	120.000000	1	0.0000000	1	10	2	3
С	1.41815137	1	120.000000	1	0.0000000	1	11	10	2
С	1.41815137	1	120.000000	1	180.0000000	1	3	4	5
С	1.41815137	1	120.000000	1	0.0000000	1	13	3	4
С	1.41815137	1	120.000000	1	0.0000000	1	14	13	3
С	1.41815137	1	120.000000	1	180.0000000	1	4	5	6
С	1.41815137	1	120.000000	1	0.0000000	1	16	4	5
С	1.41815137	1	120.000000	1	0.0000000	1	17	16	4
С	1.41815137	1	120.000000	1	180.0000000	1	5	6	1
С	1.41815137	1	120.000000	1	0.0000000	1	19	5	6
С	1.41815137	1	120.000000	1	0.0000000	1	20	19	5
С	1.41815137	1	120.000000	1	180.0000000	1	6	1	2
С	1.41815137	1	120.000000	1	0.000000	1	22	6	1
С	1.41815137	1	120.000000	1	0.000000	1	23	22	6
Н	1.09441126	1	120.000000	1	180.0000000	1	8	7	9
Н	1.09441126	1	120.000000	1	180.0000000	1	9	8	10
Н	1.09441126	1	120.000000	1	180.0000000	1	11	10	12
Н	1.09441126	1	120.000000	1	180.0000000	1	12	11	13
Н	1.09441126	1	120.000000	1	180.000000	1	14	13	15
Н	1.09441126	1	120.000000	1	180.0000000	1	15	14	16
Н	1.09441126	1	120.000000	1	180.0000000	1	17	16	18
Н	1.09441126	1	120.000000	1	180.0000000	1	18	17	19
H	1.09441126	1	120.000000	1	180.0000000	1	20	19	21
Н	1.09441126	1	120.000000	1	180.0000000	1	21	20	22
н	1.09441126	1	120.000000	1	180.0000000	1	23	22	24

T=1.OD NOINTER GNORM=0.1 PM3 GEO-OK UHF SHIFT=2 PULAY ted MOPAC nhi т≓ netrv adom

H	1.09441126	1	120.0000000	1	180.0000000	1	24	23	7
LI	2.62499643	1	72.9311925	1	65.2636513	1	1	6	5
С	4.40000000	1	90.0000000	1	90.0000000	1	1	6	5
С	1.41815137	1	90.0000000	1	0.0000000	1	38	1	2
С	1.41815137	1	120.0000000	1	90.0000000	1	39	38	1
С	1.41815137	1	120.0000000	1	0.0000000	1	40	39	38
С	1.41815137	1	120.0000000	1	0.0000000	1	41	40	39
С	1.41815137	1	120.0000000	1	0.0000000	1	42	41	40
С	1.41815137	1	120.0000000	1	-180.0000000	1	38	39	40
С	1.41815137	1	120.0000000	1	0.0000000	1	44	38	39
С	1.41815137	1	120.0000000	1	0.0000000	1	45	44	43
С	1.41815137	1	120.0000000	1	-180.0000000	1	39	40	41
С	1.41815137	1	120.0000000	1	0.0000000	1	47	39	40
С	1.41815137	1	120.0000000	1	0.0000000	1	48	47	39
С	1.41815137	1	120.0000000	1	-180.0000000	1	40	41	42
С	1.41815137	1	120.0000000	1	0.0000000	1	50	40	41
С	1.41815137	1	120.0000000	1	0.0000000	1	51	50	40
С	1.41815137	1	120.0000000	1	-180.0000000	1	41	42	43
С	1.41815137	1	120.0000000	1	0.0000000	1	53	41	42
С	1.41815137	1	120.0000000	1	0.0000000	1	54	53	41
С	1.41815137	1	120.0000000	1	-180.0000000	1	42	43	38
С	1.41815137	1	120.0000000	1	0.0000000	1	56	42	43
С	1.41815137	1	120.0000000	1	0.0000000	1	57	56	42
С	1.41815137	1	120.0000000	1	-180.0000000	1	43	38	39
С	1.41815137	1	120.0000000	1	0.0000000	1	59	43	38
С	1.41815137	1	120.0000000	1	0.0000000	1	60	59	43
Н	1.09441126	1	120.0000000	1	180.0000000	1	45	44	46
Н	1.09441126	1	120.0000000	1	180.0000000	1	46	45	47
Н	1.09441126	1	120.0000000	1	180.0000000	1	48	47	49
Н	1.09441126	1	120.0000000	1	180.0000000	1	49	48	50
H	1.09441126	1	120.000000	1	180.0000000	1	51	50	52
H	1.09441126	1	120.000000	1	180.0000000	1	52	51	53
H	1.09441126	1	120.000000	1	180.0000000	1	54	53	55
H	1.09441126	1	120.000000	1	180.0000000	1	55	54	56
Н	1.09441126	1	120.0000000	1	180.0000000	1	57	56	58
Н	1.09441126	1	120.0000000	1	180.0000000	1	58	57	59
Н	1.09441126	1	120.0000000	1	180.0000000	1	60	59	61
Н	1.09441126	1	120.0000000	1	180.0000000	1	61	60	44

5.4 最適化構造の入力データを xyz 座標系に直す

1. 最適化構造の計算で使用してるデータの1行目を

T=1.OD NOINTER 1SCF xyz

に直す。このときファイル名は filename.dat でよい。そのデータを mopac80.exe filename で実行(80 は全原子の数によって変化)。計算結果が xyz 座標になって出てくる。その結果はファイル名を filename.xyz とする。計算結果を DRC の計算に使用する場合は、1~3行目を消して全原子数を1行目に入れておく。

37

С	0.0000000	0.000000	0.0000000
С	1.4237685	0.0000000	0.0000000
		•	
		•	

DRC の計算をする場合、上で作成したファイルを xyz2DRC filename で実行する。 これを実行すると、動かす原子の番号(ファイル中の順番)、その原子の半減期、初 期エネルギー、動かす方向などを聞かれるので、それに答える。そうすると新たに filename.dat というファイルができる。このファイルを再び mopac80.exe で実行し、そ の結果を DRC2anm filename で実行すると filename.anm というファイルが完成。こ れを xmol の XYZ モードで実行するとアニメーションを見ることができる。

5.5 MOPAC の入力データB

5.5.1 xyz 座標に直した時のデータ

 $\mathbf{C}_{24}\mathbf{H}_{12}$

С	0.000000	0.0000000	0.0000000
С	1.4237685	0.0000000	0.0000000
С	2.1355525	1.2331000	0.0000000
С	1.4234937	2.4659988	-0.0002475
С	-0.0002448	2.4658889	-0.0004169
С	-0.7120832	1.2328491	-0.0002293
С	-0.7090318	-1.2283527	0.0002457
С	0.0213487	-2.4475743	0.0005067
С	1.4026007	-2.4475358	0.0005173
С	2.1329653	-1.2282598	0.0002375
С	3.5540331	-1.2051480	0.0003614
С	4.2446384	-0.0088907	0.0002554
С	3.5538492	1.2332058	0.0000635
С	4.2444080	2.4754896	-0.0001317
С	3.5536062	3.6715698	-0.0003901
С	2.1325314	3.6943779	-0.0004627
С	1.4019222	4.9135063	-0.0008054
С	0.0206774	4.9133589	-0.0009189
С	-0.7095669	3.6940785	-0.0007172
С	-2.1306706	3.6710717	-0.0008187
С	-2.8211315	2.4748432	-0.0005627
С	-2.1303679	1.2327352	-0.0002762
С	-2.8208523	-0.0094792	-0.0000782
С	-2.1301376	-1.2056203	0.0001908
H	-0.5303143	-3.3943985	0.0007108

H	1.9542459	-3.3944042	0.0007376
H	4.0980746	-2.1564116	0.0005322
H	5.3404629	-0.0044256	0.0002987
H	5.3402360	2.4712193	-0.0001066
H	4.0976321	4.6228631	-0.0005539
H	1.9535972	5.8603813	-0.0009957
H	-0.5313204	5.8600110	-0.0011620
H	-2.6749644	4.6221710	-0.0010670
H	-3.9169657	2.4702892	-0.0006900
H	-3.9166866	-0.0051938	-0.0001743
H	-2.6740604	-2.1569132	0.0003444

$\mathbf{C}_{54}\mathbf{H}_{18}$

С	0.0000000	0.000000	0.0000000
С	1.4181514	0.000000	0.0000000
С	2.1272271	1.2281551	0.0000000
С	1.4181514	2.4563102	0.0000000
С	0.0000000	2.4563102	0.0000000
С	-0.7090757	1.2281551	0.000000
С	-0.7090757	-1.2281551	0.0000000
С	0.0000000	-2.4563102	0.000000
С	1.4181514	-2.4563102	0.000000
С	2.1272271	-1.2281551	0.000000
С	3.5453784	-1.2281551	0.0000000
С	4.2544541	0.0000000	0.0000000
С	3.5453784	1.2281551	0.0000000
С	4.2544541	2.4563102	0.0000000
С	3.5453784	3.6844653	0.0000000
С	2.1272271	3.6844653	0.0000000
С	1.4181514	4.9126205	0.0000000
С	0.0000000	4.9126205	0.0000000
С	-0.7090757	3.6844653	0.000000
С	-2.1272271	3.6844653	0.000000
С	-2.8363027	2.4563102	0.000000
С	-2.1272271	1.2281551	0.000000
С	-2.8363027	0.000000	0.000000
С	-2.1272271	-1.2281551	0.0000000
С	-0.7090757	-3.6844653	0.0000000
С	-2.1272271	-3.6844653	0.0000000
С	-2.8363027	-2.4563102	0.0000000
С	2.1272271	-3.6844653	0.000000
С	1.4181514	-4.9126205	0.000000
С	0.0000000	-4.9126205	0.000000
С	4.2544541	-2.4563102	0.000000
С	3.5453784	-3.6844653	0.000000
С	5.6726055	0.000000	0.0000000
С	6.3816812	-1.2281551	0.000000
С	5.6726055	-2.4563102	0.000000
С	5.6726055	2.4563102	0.0000000
С	6.3816812	1.2281551	0.0000000
С	4.2544541	4.9126205	0.0000000

С	5.6726055	4.9126205	0.000000
С	6.3816812	3.6844653	0.0000000
С	2.1272271	6.1407756	0.0000000
С	3.5453784	6.1407756	0.0000000
С	-0.7090757	6.1407756	0.000000
С	0.0000000	7.3689307	0.0000000
С	1.4181514	7.3689307	0.0000000
С	-2.8363027	4.9126205	0.000000
С	-2.1272271	6.1407756	0.000000
С	-4.2544541	2.4563102	0.000000
С	-4.9635298	3.6844653	0.000000
С	-4.2544541	4.9126205	0.000000
С	-4.2544541	0.0000000	0.000000
С	-4.9635298	1.2281551	0.000000
С	-4.9635298	-1.2281551	0.0000000
С	-4.2544541	-2.4563102	0.0000000
Н	-2.6744327	-4.6322533	0.0000000
H	-0.5472056	-5.8604084	0.0000000
Н	1.9653570	-5.8604084	0.000000
Н	4.0925841	-4.6322533	0.000000
H	6.2198111	-3.4040982	0.000000
H	7.4760924	-1.2281551	0.000000
Н	7.4760924	1.2281551	0.0000000
Н	7.4760924	3.6844653	0.0000000
H	6.2198111	5.8604084	0.0000000
H	4.0925841	7.0885635	0.0000000
H	1.9653570	8.3167186	0.0000000
H	-0.5472056	8.3167186	0.000000
H	-2.6744327	7.0885635	0.000000
H	-4.8016597	5.8604084	0.000000
H	-6.0579411	3.6844653	0.000000
H	-6.0579411	1.2281551	0.000000
H	-6.0579411	-1.2281551	0.0000000
H	-4.8016597	-3.4040982	0.000000

$C_{24}H_{12}$ 2枚+Li

С	0.0000000	0.000000	0.0000000
С	1.4427325	0.0000000	0.0000000
С	2.1478471	1.2475134	0.0000000
С	1.4240367	2.4860961	0.0455291
С	-0.0064232	2.4793746	0.0497670
С	-0.7167503	1.2331939	0.0066285
С	-0.7017186	-1.2410329	-0.1665460
С	0.0115185	-2.4400658	-0.2265988
С	1.4418471	-2.4773200	-0.1321863
С	2.1592258	-1.2206875	-0.1236844
С	3.5625717	-1.1663911	-0.2856931
С	4.2456682	0.0368608	-0.2936990
С	3.5589882	1.2637615	-0.1492647
С	4.2389646	2.5179078	-0.1869707
С	3.5454872	3.7048556	-0.1233952
С	2.1247045	3.7197437	-0.0293790

С	1.3880308	4.9340191	-0.0503027
С	0.0064848	4.9282436	-0.0483825
С	-0.7201362	3.7070770	-0.0253115
С	-2.1379149	3.6796026	-0.1195767
С	-2.8224207	2.4789318	-0.1858239
С	-2.1347256	1.2400786	-0.1462510
С	-2.8149911	-0.0032885	-0.2976688
С	-2.1288247	-1.1937963	-0.3112497
H	-0.5297478	-3.3757110	-0.4465959
H	1.9618890	-3.3406803	-0.5906439
Н	4.1162408	-2.1047331	-0.4084552
н	5.3339488	0.0500749	-0.4204488
Н	5.3309790	2.5185425	-0.2787474
н	4.0793649	4.6611713	-0.1606799
н н	1 9351845	5 8830124	-0 0845493
и	-0 5490702	5 8723262	-0.0815412
и и	-2 6839385	4 6287312	-0 1579541
u u	-3 9140903	2 4746509	-0.2827080
n u	3.9140803	2.4740309	0.2027000
н	-3.9044749	0.0066126	-0.4154949
н тт	-2.6666169	-2.1380065	-0.4449303
	0.6689094	0.9743440	2.2443739
C	-0.0616269	-0.4366581	4.2245216
С	1.3805359	-0.4328582	4.2656874
С	2.0751643	0.7903162	4.5392684
С	1.3426715	2.0108785	4.7234159
С	-0.0869878	2.0016709	4.6760765
С	-0.7879501	0.7707080	4.4463343
С	-0.7574947	-1.6874269	4.1173042
С	-0.0364272	-2.8722331	3.9544220
С	1.3961766	-2.8857156	3.8947228
С	2.1032106	-1.6517160	4.1610145
С	3.5009059	-1.6280947	4.3718438
С	4.1736355	-0.4498859	4.6434398
С	3.4812878	0.7792222	4.7303467
С	4.1494272	2.0013815	5.0412973
С	3.4483083	3.1750391	5.1984304
С	2.0307364	3.2054551	5.0669597
С	1.2837672	4.3887764	5.3107104
С	-0.0970636	4.3802812	5.2667663
С	-0.8126330	3.1872190	4.9763785
С	-2.2322272	3.1380549	5.0214816
С	-2.9083374	1.9470151	4.8245147
С	-2.2095849	0.7432386	4.5563634
С	-2.8836396	-0.5067498	4,4347470
c	-2 1883530	-1 6738709	4 2280816
ч	-0 5757699	-3 8345548	3 9668972
и	1 9112455	-3 8229518	4 1814752
u u	1.0112400	-2 5706021	4.1014/02
п	4.0505140	-2.5700021	4.3103077
н v	0.2011431 E 0202025	-0.4001508	4.00224/9
н т	ə.2383235 2.0700222	1.9059231	5.1038067
H T	3.9729666	4.1052214	5.4443551
H T	1.8218704	5.3125350	5.5521164
Н 	-0.6610964	5.2969333	5.4733458
H	-2.7869108	4.0586793	5.2342054
H	-4.0022245	1.9206847	4.8866290
Н	-3.9760256	-0.5213106	4.5213170
H	-2.7241119	-2.6269922	4.1537061