
 

®

  

crc MegaCore Function

 

Parameterized CRC
Generator/Checker

 

April 1999, ver. 2 Data Sheet

                             
Features ■ crc  MegaCoreTM function, general-purpose cyclic redundancy code 

(CRC) generator and checker

■ Optimized for the FLEX® device architecture

■ Supported by the MAX+PLUS® II development system

■ High-speed operation, over 100 MHz for many configurations

■ Fully parameterized, including:

– Any length generator polynomial

– Input data width, from 1 bit to the width of the polynomial

– Any initial value

■ Built-in support for: 

– Inverting output data

– Reflecting (reversing bit order) input and output data

General 
Description

The crc  MegaCore function is a general-purpose CRC generator and 

checker that validates data frames and ensures that data corruption 

during transmission is detected. The crc  function is fully parameterized, 

and therefore can be used in virtually any design that requires a CRC 

checker. See Figure 1.

Figure 1. crc Symbol

CRC

POLY[ ]
XOROUT[ ]
CLOCK
ACLR
SLOAD
RUN_NSHIFT
INIT[ ]
DATA_IN[ ]
ENABLE

CRC_OUT[ ]

WIDTH=
SHIFT="NO"
REFIN="NO"
REFOUT="NO"
WPAR=1
USE_CARRY="NO"
Altera Corporation  1

A-DS-CRC-02



 

crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet

             
AHDL Function Prototype

The Altera® Hardware Description Language (AHDL) Function 

Prototype of the crc  function is shown below:

FUNCTION crc ( poly[WIDTH-1..0], xorout[WIDTH-1..0], clock, 
aclr,  sload, run_nshift, init[WIDTH-1..0],  
data_in[WPAR-1..0], enable)
WITH (WIDTH, SHIFT, REFOUT, REFIN, WPAR, USE_CARRY)
RETURNS (crc_out[WIDTH-1..0]);

VHDL Component Declaration

The VHDL Component Declaration of the crc  function is shown below:

COMPONENT crc 
GENERIC (

WIDTH : POSITIVE;
SHIFT : STRING := "NO"; 
REFOUT : STRING := "NO"; 
REFIN : STRING := "NO"; 
WPAR : POSITIVE := 1; 
USE_CARRY : STRING : = "NO";

PORT ( 
poly : IN STD_LOGIC_VECTOR

(WIDTH-1 DOWNTO 0); 
xorout  : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0)

:= (OTHERS => '0'); 
clock  : IN STD_LOGIC; 
aclr : IN STD_LOGIC : = '0'; 
sload : IN STD_LOGIC; 
run_nshift : IN STD_LOGIC; 
init : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
data_in : IN STD_LOGIC_VECTOR(WPAR-1 DOWNTO 0); 
enable : IN STD_LOGIC := '1'; 
crc_out : OUT 
STD_LOGIC_VECTOR(WIDTH-1  DOWNTO 0) );

END COMPONENT;
2 Altera Corporation



 

crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet

                                                               
Parameters

Table 1 describes the parameters of the crc  function.

Table 1. crc Parameters 

Name Required Default Description

WIDTH Yes — Width of the generator polynomial.

SHIFT No "NO" If "YES"  is specified, the run_nshift  
input is used. If "NO"  is specified, the 
run_nshift  input is not used. 

REFIN No "NO" If "YES"  is specified, the crc  function will 
reflect (bit reverse) the input data. The 
REFIN parameter allows a different bit 
order, e.g., some algorithms require the 
most significant bit (MSB) first, while 
others require the least significant bit 
(LSB) first.

REFOUT No "NO" Specifies whether or not the output data 
bits are reflected.

WPAR No 1 The WPAR parameter indicates the width 
of the input word. Some systems require 
data to be processed one bit at a time. In 
this case, WPAR would be set to 1. Other 
systems require that data be processed in 
bytes, words, or double words. In this 
case, WPAR would be set to 8, 16 , or 32  
respectively. The WPAR parameter may 
be any factor of WIDTH. 

USE_CARRY No "NO" Specifies whether or not carry chain logic 
is used during synthesis.
Altera Corporation  3



 

crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet

                                           
Ports

Table 2 describes the input and output ports of the crc  function.

Table 2. crc Ports (Part 1 of 2)

Name Required Type Description

poly[WIDTH-1..0] Yes Input The poly[WIDTH-1..0]  input is used to define 
the generator polynomial. However, the 
polynomial must first be converted to a binary 
value. For example, the CRC-16 generator 
polynomial is defined as: X16 + X15+ X2+ X0, and 
can be transformed into a binary number by 
placing a logic 1 in every position where there is a 
non-zero power in the generator polynomial. 
Thus, the CRC-16 generator polynomial equals 
the following 17-bit binary number: 
11000000000000101 . 

Because every generator polynomial has a logic 1 
as its MSB, the MSB is left off when specifying the 
polynomial as a binary number. Thus, the 17-bit 
binary number, which represents the CRC-16 
generator polynomial, becomes the following 
16-bit binary number: B"1000000000000101" 

or H"8005" .

xorout[WIDTH-1..0] No (Default = GND) Input Some CRC algorithms specify that the CRC 
register value be inverted before being output. 
When using one of these algorithms, the 
xorout[WIDTH-1..0]  input specifies which bits 
should be inverted, e.g., any bit with a logic 1 
value in the xorout[WIDTH-1..0]  word will be 
inverted between the CRC register and the 
crc_out[WIDTH-1..0]  output.

clock Yes Input Clock input.

aclr No Input Asynchronous clear. 

sload Yes Input Synchronous load. Loads the value on the 
init[WIDTH-1..0]  bus into the CRC register.
4 Altera Corporation



 

crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet

                 
Altera Corporation  5

Table 3 summarizes the parameters for several standard CRC algorithms, 

including the algorithm width, polynomial value, initial value 

(hexadecimal radix), whether the bit order of the input and output data is 

reversed (reflected), the XORed output, and check  values.

run_nshift No Input Run/shift. When high, the crc  function is 
operating as a CRC generator. When this input is 
low and the SHIFT  parameter is set to "YES" , the 
crc  register is serially shifted to the right.

init[WIDTH-1..0] Yes Input The init[WIDTH-1..0]  input specifies the 
initial value of the CRC register when the 
algorithm starts. This input allows the designer to 
dynamically place any value into the CRC register 
whenever the sload  input is high, which also 
allows the designer to initialize the CRC register 
synchronously. The init[WIDTH-1..0]  input is 
used for both setting the initial value of the CRC 
and starting mid-stream.

In many systems, such as networking 
applications, data frames from different data 
streams are received in an interleaved order. For 
multiple data streams where the CRC must be 
calculated over many data frames, intermediate 
CRC values can be stored and loaded from a 
RAM buffer.

data_in[WPAR-1..0] Yes Input Input data stream.

enable No Input Clock enable

crc_out[WIDTH-1..0] Yes Output Computed CRC output.

Table 2. crc Ports (Part 2 of 2)

Name Required Type Description



crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet
Notes: 
(1) The results in this table are shown with the WPAR parameter set to 8. If the WPAR parameter is set to 1 (i.e., data is 

input serially), the input data should arrive LSB first.

(2) CHECK is not a parameter, but a simple way to verify that the algorithm is working properly. The CHECK word is 

the CRC output (crc_out[ WIDTH-1..0 ] ) value when the ASCII string "123456789"  (equivalent to the decimal 

string "49  50  51  52  53  54  55  56  57" ) is input to the CRC algorithm. 

Functional 
Description

The crc  function validates data streams via redundant encoding. CRCs 

are a preferred type of redundant encoding, where redundant bits are 

spread over more bits than the original data stream. Similar to parity 

checking, CRC encoding is a method of generating a code to verify the 

integrity of the data stream. However, while parity checking uses one bit 

to indicate even or odd parity, CRC encoding uses multiple bits, and 

therefore catches more errors in the data stream. 

CRCs are particularly effective for two reasons:

■ CRCs provide excellent protection against common errors such as 

burst errors, in which consecutive bits in a data stream are corrupted 

during transmission.

■ The original data is the first part of the transmission, which makes 

systems that use CRCs easy to understand and implement.

The crc  function is fully parameterized. Thus, virtually any CRC 

algorithm can be defined using the parameters described in this data sheet 

(see “Parameters” on page 3). To maximize flexibility, the crc  function 

also allows designers to set port values, e.g., initial register values can be 

set via the init[ WIDTH-1..0  ]  input. See Table 4.

Table 3. Parameters for Various Standard CRC Algorithms      Notes (1), (2)

NAME WIDTH POLY INIT REFIN REFOUT XOROUT CHECK

(Hexadecimal) (Hexadecimal)

CRC-16/ARC 16 8005 0000 "YES" "YES" 0000 BB3D

CRC-16/CITT 16 1021 FFFF "NO" "NO" 0000 29B1

Kermit 16 8408 0000 "YES" "YES" 0000 0C73

CRC-32/ 
ADCCP

32 04C11DB7 FFFFFFFF "YES" "YES" FFFFFFFF CBF43926

JamCRC 32 04C11DB7 FFFFFFFF "YES" "YES" 00000000 340BC6D9

ZMODEM 16 1021 0000 "NO" "NO" 0000 31C3
6 Altera Corporation



crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet
   

Notes:
(1) The fastest speed grade from the FLEX 10K, FLEX 8000, and FLEX 6000 device families was used.

(2) The size and performance of the crc  function will vary depending on the logic synthesis settings, device fitting, 

and chosen polynomial.

The size of the crc  function’s generator polynomial can be defined to 

meet designer specifications. The larger the CRC polynomial length, the 

greater the chance of transmission error detection. 

1 Contact Rocksoft Corporation directly for more information on a 

generic parameterized model for CRC algorithms (see 

“References” on page 8 for details).

Pattern 
Generation 
Program

A vector generation program, available with the crc  function, has the 

same parameters as the crc  function and generates vector files to verify 

the operation of the crc  function. Figure 2 shows a sample 

implementation of the crc  function, with a CRC-32 algorithm and a 

byte-wide input.

Figure 2.  crc Function Implementing a Byte-Wide CRC-32 Algorithm

Table 4. Sample crc MegaCore Function Performance & Logic Cell Usage 

CRC Configuration with FLEX Devices (1) Size (Logic 
Elements) (2)

Performance (2)
(MHz) 

Performance 
(Mbits/Second)

CRC-32 
generator polynomial

32-bit wide input 318 28 896

8-bit wide input 87 70 560

1-bit wide input 32 > 125 > 125

CRC-16/CCITT
generator polynomial

16-bit wide input 39 75 1,200

8-bit wide input 24 100 800

1-bit wide input 16 > 125 > 125

CRC

POLY[ ]
XOROUT[ ]
CLOCK
ACLR
SLOAD
RUN_NSHIFT
INIT[ ]
DATA_IN[ ]
ENABLE

CRC_OUT[ ] CRC_OUT[31..0]

DATA_IN[7..0]

CLOCK

LPM_CONSTANT

(CVALUE) RESULT[]

LPM_CVALUE=H"04C11DB7
LPM_WIDTH=32

VCC
VCC

VCC

SLOAD

WIDTH=32
SHIFT="NO"
REFIN="YES"
REFOUT="YES"
WPAR=8
USE_CARRY="NO"
Altera Corporation  7



crc MegaCore Function P arameteriz ed CRC Generator/Chec ker Data Sheet
Altera, MAX, MAX+PLUS, MAX+PLUS II, FLEX, FLEX 10K FLEX 8000, FLEX 6000, EPF10K10, and MegaCore

are trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera

acknowledges the trademarks of other organizations for their respective products or services mentioned in this

document, specifically: Rocksoft is a trademark of Rocksoft Corporation. Altera products are protected under

numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera

warrants performance of its semiconductor products to current specifications in accordance with Altera’s

standard warranty, but reserves the right to make changes to any products and services at any time without

notice. Altera assumes no responsibility or liability arising out of the application or use of

any information, product, or service described herein except as expressly agreed to in

writing by Altera Corporation. Altera customers are advised to obtain the latest version of

device specifications before relying on any published information and before placing

orders for products or services. 

Copyright   1999 Altera Corporation. All rights reserved.

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 544-7104
Literature Services:
(888) 3-ALTERA
lit_req@altera.com

®

Figure 3 shows a simulation timing waveform of the crc  function 

designed to implement a CRC-32 algorithm using the byte-wide (ASCII) 

input string " 123456789 " . In ASCII format, " 1"  equals 49 in decimal 

format, so the decimal string of characters is 49 to 57. The hexadecimal 

output of Figure 3 is H"CBF43926" . Operating at 60 MHz in an 

EPF10K10-3 device, the design uses 101 FLEX logic elements.

Figure 3. Simulation Timing Waveform of Byte-Wide CRC-32 Algorithm

References Williams, Ross N. A Painless Guide to CRC Error Detection Algorithms. 
Version 3. Hazelwood Park, Australia: Rocksoft PTY Ltd, 1996.

This document explains CRCs and their table-driven implementations, 

and also provides a generic parameterized model CRC algorithm. For 

more information on this document, go to the Rocksoft web site at: 

http://www.rocksoft.com.

sload

clock

1.1 µs300 ns 400 ns 500 ns 600 ns 700 ns 800 ns 900 ns 1.0 µs200 ns

crc_out[31..0] 0000 83DCEFB7 4F5344CD 884863D2 9BE3E0A3 CBF53A1C 0972D361 5003699F 9AE0DAAF CBF43926

data_in[7..0] 49 50 51 52 53 54 55 56 57 0
8 Altera Corporation

Printed on Recycled Paper.


	Contents
	crc MegaCore Function Parameterized CRC Generator/Checker Data Sheet
	Features
	General Description
	AHDL Function Prototype
	VHDL Component Declaration
	Parameters
	Ports

	Functional Description
	Pattern Generation Program
	References


