[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
16.1 Introduction to Elliptic Functions and Integrals | ||
16.2 Functions and Variables for Elliptic Functions | ||
16.3 Functions and Variables for Elliptic Integrals |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Maximaは Jacobiの楕円関数と不完全楕円積分のサポートを含みます。 これは、数値評価はもちろんこれらの関数のシンボル操作を含みます。 これらの関数の定義とプロパティの多くは Abramowitz and Stegun, 16-17章にあります。 可能な限り、そこで与えられた定義と関係を使います。
特に、すべての楕円関数と積分は 法 kや率角 \alphaの代わりにパラメータ mを使います。 これは、 楕円関数のために率角を使うAbramowitz and Stegunと違うところです。 以下の関係は真です: m = k^2 and k = \sin(\alpha)
楕円関数と積分は、主としてシンボル計算をサポートするように意図されています。 それ故に関数と積分の導関数のほとんどが知られています。 しかしながら、もし浮動小数点値を与えたなら浮動小数点の結果を返します。
楕円関数と積分の他の性質のほとんどのサポートはまだ書かれていません。
楕円関数のいくつかの例:
(%i1) jacobi_sn (u, m); (%o1) jacobi_sn(u, m) (%i2) jacobi_sn (u, 1); (%o2) tanh(u) (%i3) jacobi_sn (u, 0); (%o3) sin(u) (%i4) diff (jacobi_sn (u, m), u); (%o4) jacobi_cn(u, m) jacobi_dn(u, m) (%i5) diff (jacobi_sn (u, m), m); (%o5) jacobi_cn(u, m) jacobi_dn(u, m) elliptic_e(asin(jacobi_sn(u, m)), m) (u - ------------------------------------)/(2 m) 1 - m 2 jacobi_cn (u, m) jacobi_sn(u, m) + -------------------------------- 2 (1 - m) |
楕円積分のいくつかの例:
(%i1) elliptic_f (phi, m); (%o1) elliptic_f(phi, m) (%i2) elliptic_f (phi, 0); (%o2) phi (%i3) elliptic_f (phi, 1); phi %pi (%o3) log(tan(--- + ---)) 2 4 (%i4) elliptic_e (phi, 1); (%o4) sin(phi) (%i5) elliptic_e (phi, 0); (%o5) phi (%i6) elliptic_kc (1/2); 1 (%o6) elliptic_kc(-) 2 (%i7) makegamma (%); 2 1 gamma (-) 4 (%o7) ----------- 4 sqrt(%pi) (%i8) diff (elliptic_f (phi, m), phi); 1 (%o8) --------------------- 2 sqrt(1 - m sin (phi)) (%i9) diff (elliptic_f (phi, m), m); elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m) (%o9) (----------------------------------------------- m cos(phi) sin(phi) - ---------------------)/(2 (1 - m)) 2 sqrt(1 - m sin (phi)) |
楕円関数と積分のサポートは、Raymond Toyによって書かれました。 Maximaの配布を管理するGeneral Public License (GPL)の条件のもと置かれています。
Categories: Elliptic functions
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Jacobiの楕円関数 sn(u,m)
Categories: Elliptic functions
Jacobiの楕円関数 cn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 dn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 ns(u,m) = 1/sn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 sc(u,m) = sn(u,m)/cn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 sd(u,m) = sn(u,m)/dn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 nc(u,m) = 1/cn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 cs(u,m) = cn(u,m)/sn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 cd(u,m) = cn(u,m)/dn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 nd(u,m) = 1/dn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 ds(u,m) = dn(u,m)/sn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数 dc(u,m) = dn(u,m)/cn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 sn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 cn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 dn(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 ns(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 sc(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 sd(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 nc(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 cs(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 cd(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 nd(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 ds(u,m).
Categories: Elliptic functions
Jacobiの楕円関数の逆関数 dc(u,m).
Categories: Elliptic functions
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
以下のように定義された第一種不完全楕円積分
integrate(1/sqrt(1 - m*sin(x)^2), x, 0, phi)
elliptic_eと elliptic_kcも参照してください。
Categories: Elliptic integrals
以下のように定義された第二種不完全楕円積分
elliptic_e(phi, m) = integrate(sqrt(1 - m*sin(x)^2), x, 0, phi)
elliptic_fとelliptic_ecも参照してください。
Categories: Elliptic integrals
以下のように定義された第二種不完全楕円積分
integrate(dn(v,m)^2,v,0,u) = integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t, 0, tau)
ここで tau = sn(u,m).
これは
elliptic_eu(u, m) = elliptic_e(asin(sn(u,m)),m) によって elliptic_eと関連付けられます。
elliptic_eも参照してください。
以下のように定義された第三種不完全楕円積分
integrate(1/(1-n*sin(x)^2)/sqrt(1 - m*sin(x)^2), x, 0, phi)
Maximaが知っている phiに関する唯一の導関数
Categories: Elliptic integrals
以下のように定義された第一種完全楕円積分
integrate(1/sqrt(1 - m*sin(x)^2), x, 0, %pi/2)
mのある値に関して
積分の値は Gamma関数で表されることが知られています。
それらを評価するには makegamma
を使ってください。
Categories: Elliptic integrals
以下のように定義された第二種完全楕円積分
integrate(sqrt(1 - m*sin(x)^2), x, 0, %pi/2)
mのある値に関して
積分の値は Gamma関数で表されることが知られています。
それらを評価するには makegamma
を使ってください。
Categories: Elliptic integrals
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by 市川雄二 on June, 21 2016 using texi2html 1.76.