[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
34.1 Definitions for Groups |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Find the order of G/H where G is the Free Group modulo relations, and
H is the subgroup of G generated by subgroup. subgroup is an optional
argument, defaulting to []. In doing this it produces a
multiplication table for the right action of G on G/H, where the
cosets are enumerated [H,Hg2,Hg3,...]. This can be seen internally in
the $todd_coxeter_state
.
The multiplication tables for the variables are in
table:todd_coxeter_state[2]
. Then table[i]
gives the table for
the ith variable. mulcoset(coset,i) := table[varnum][coset];
Example:
(%i1) symet(n):=create_list( if (j - i) = 1 then (p(i,j))^^3 else if (not i = j) then (p(i,j))^^2 else p(i,i) , j, 1, n-1, i, 1, j); <3> (%o1) symet(n) := create_list(if j - i = 1 then p(i, j) <2> else (if not i = j then p(i, j) else p(i, i)), j, 1, n - 1, i, 1, j) (%i2) p(i,j) := concat(x,i).concat(x,j); (%o2) p(i, j) := concat(x, i) . concat(x, j) (%i3) symet(5); <2> <3> <2> <2> <3> (%o3) [x1 , (x1 . x2) , x2 , (x1 . x3) , (x2 . x3) , <2> <2> <2> <3> <2> x3 , (x1 . x4) , (x2 . x4) , (x3 . x4) , x4 ] (%i4) todd_coxeter(%o3); Rows tried 426 (%o4) 120 (%i5) todd_coxeter(%o3,[x1]); Rows tried 213 (%o5) 60 (%i6) todd_coxeter(%o3,[x1,x2]); Rows tried 71 (%o6) 20 (%i7) table:todd_coxeter_state[2]$ (%i8) table[1]; (%o8) {Array: (SIGNED-BYTE 30) #(0 2 1 3 7 6 5 4 8 11 17 9 12 14 # 13 20 16 10 18 19 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)} |
Note only the elements 1 thru 20 of this array %o8
are meaningful.
table[1][4] = 7
indicates coset4.var1 = coset7
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated on March, 19 2006 using texi2html 1.76.