In order to access the pdf files, you need type
login: nanotube password: graphene.
Some people are complaining that we have too many publications on Raman spectroscopy.
Many people ask us some good references for
citing our papers on Raman spectroscopy.
The following are the recommended references with the pdf file.
Some symbols such as a1181 are mgm.bib labels in Prof. Dresselhaus group.
If you have any further questions, please let us know.
Subjects:
s617: "Physical Properties of Carbon Nanotubes" by R. Saito, G. Dresselhaus, M. S. Dresselhaus, Imperial College Press, (1998) (no pdf copy)
n1314: "Raman Spectroscopy in Graphene Related Systems" by A. Jorio, M. S. Dresselhaus, R. Saito, G. Dresselhaus, Wiley-VCH Verlag, (2010) (no pdf copy)
saito16-JPCM: Review article "Raman spectroscopy of transition metal dichalcogenides", R. Saito et al., Journal of Physics: Condensed Matter, 28, 353002-1-16, (2016).
saito13: Review article "Gate modulated Raman spectroscopy of graphene and carbon nanotubes", R. Saito et al., Solid State Commun. 175-176, 18-34, (2013).
i1335: Review article "Raman spectroscopy of Graphene and Carbon Nanotubes", R. Saito et al. Adv. in Phys., 60, pp. 413-550 (2011).
f1176: Review article "Exciton Photophysics of Carbon nanotubes",
M. S. Dresselhaus et al. Annu. Rev. Phys. Chem. Chem. Phys. 719-747 (2007).
i1049: Review article "Raman Spectroscopy of Carbon Nanotubes",
M. S. Dresselhaus et al. Phys. Rep. 409, pp. 47-99 (2005).
f1020: Review article "Double resonance Raman spectroscopy of single wall carbon nanotubes" R. Saito et al. New. J. Phys. 5, 157.1.-15 (2003).
i1179: Review article "Studying Disorder in Graphite-based Systems by Raman Spectroscopy" M. A. Pimenta et al,
Phys. Chem. Chem. Phys., 9, 1276 (2007).
d1018: Review article "Characterizing carbon nanotube samples with resonance Raman scattering",
A. Jorio et al. New. J. Phys. 5, 139.1-17 (2003).
: Review article "Coherent phonons in carbon nanotubes and graphene", J. H. Kim et al. Chem. Phys. 413, 55-80 (2013).
c887: "Probing phonon dispersion relations of
graphite by double resonance Raman scattering", R. Saito et
al. Phys. Rev. Lett, 88 027401 (2002)
f1020: Review article "Double resonance Raman spectroscopy of single wall carbon nanotubes" R. Saito et al. New. J. Phys. 5, 157.1.-15 (2003)
i1179: Review article "Studying Disorder in Graphite-based Systems by Raman Spectroscopy" M. A. Pimenta et al,
Phys. Chem. Chem. Phys., 9, 1276 (2007)
l818: A. Jorio et
al.: Structural (n,m) determination of isolated
single wall carbon nanotubes by resonant Raman
scattering, Phys. Rev. Lett. 86, 1118 (2001)
a807: S. D. M. Brown et al: Phys. Rev. B 63, 155414 (2001).
q1239: K. Sasaki et al.:
Curvature induced optical phonon energy shift in metallic carbon nanotubes
Phys. Rev. B 77, 245441 (2008).
g1255: K. Sasaki et al.:
Chirality dependent frequency shift of radial breathing mode in metallic carbon nanotubes, Phys. Rev. B, 78, 235405 (2008).
a1171: J. Jiang et al., Chirality dependence of exciton effects in single-wall carbon nanotubes, Phys. Rev. B 75 035407 (2007).
j1180: J. Jiang et al., Exciton-photon, Exciton-phonon matrix elements and Resonance Raman
Intensity of single wall carbon nanotubes, Phys. Rev. B 75 035405 (2007).
i1049: M. S. Dresselhaus et al., Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47 (2005)
p458: M. S. Dresselhaus et al., Carbon
fibers based on C60 and their symmetry, Phys. Rev. B 45, 6234 (1992).
c471: R. Saito et al., Electronic
structures of carbon fibers based on C60, Phys. Rev. B 46, 1804 (1992).
g475: R. Saito et al., Electronic structure of chiral graphene
tubules, Appl. Phys. Lett. 60, 2204 (1992).
x466: M. S. Dresselhaus et al., C60-related tubules, Solid State Commun., 84, 201 (1992).
s487: R. Saito et al., J. Appl. Phys. 73, 494 (1993). (Electronic structure of DWNTs)
w881: R. Saito et al., Chem. Phys. Lett. 348, 187 (2001) (Interaction between outer and inner layers).
p1264: D. Shimamoto et al., Strong and stable photoluminescence from the semiconducting
inner tubes within double walled carbon nanotubes, Appl. Phys. Lett. 94 083106 (2009). (PL of DWNTs)
b782: R. Saito et al.:
Trigonal warping effect of carbon nanotubes,
Phys. Rev. B, 61, 2981 (2000).
(Our Original Kataura Plot)
w1089: Ge. G. Samsonidze et al.:
Family behavior of the optical transition energies in single-wall carbon
nanotubes of smaller diameters, Appl. Phys. Lett., 85, 5703 (2004).
(Extended Kataura Plot)
j1336: A. R. T. Nugraha et al.:
Dielectric constant model for environmental effects on the exciton energies
of single wall carbon nanotubes, Appl. Phys. Lett., 97, 091905 (2010).
(Exciton Kataura Plot)
d1044: L. G. Cancado et al.:
Anisotropy of the Raman spectra of nanographite ribbons,exit
Phys. Rev. Lett., 93, 047403 (2004). (experiment)
e1305: K. Sasaki et al.:
Kohn Anomalies in Graphene Nanoribbons,
Phys. Rev. B 80, 155450 (2009). (theory)
t1008: Ge. G. Samsonidze et al.:
The concept of cutting lines in carbon nanotube science,
J. Nanosicence Nanotechnology, 3, 431 (2003).
c1017: Ge. G. Samsonidze et al.:
Interband optical transitions in left and right handed single wall carbon nanotubes, Phys. Rev. B 69, 205402 (2004).
w1141: R. Saito et al.:
Cutting lines near the Fermi energy of single wall carbon nanotubes,
Phys. Rev. B 72, 153413 (2005).
j842: A. Jorio et al.:
Joint density of electronic states for one isolated single wall
carbon nanotube studied by resonant Raman scattering,
Phys. Rev. B, 63, 245416 (2001).
b1172: J. S. Park et al.:
Raman resonance window of single wall carbon nanotubes,
Phys. Rev. B 74, 165414 (2006).
r668: R. Saito et al.:
Raman Intensity of Single-Wall Carbon
Nanotubes, Phys. Rev. B, 57, 4145 (1998).
s1033: J. Jiang et al.:
Electron-phonon interaction and relaxation time in graphite, Chem. Phys. Lett., 392, 383 (2004). (Origin of black radiation of graphene).
x1142: J. Jiang et al.:
Electron-phonon matrix elements in single-wall carbon nanotubes,
Phys. Rev. B, 72, 235408 (2005). (on-site and off-site electron-phonon)
e1305: K. Sasaki et al.:
Kohn Anomalies in Graphene Nanoribbons,
Phys. Rev. B 80, 155450 (2009). (G-band)
a1379: E. B. Barros et al.:
D band Raman intensity calculation in armchair edged graphene nanoribbons,
Phys. Rev. B, 83, 245435 (2011). (D-band)
r824: R. Saito et al.:
Chirality Dependent G-band Raman Intensity of Carbon Nanotubes,
Phys. Rev. B, 64, 085312 (2001). (G-band)
p926: V. W. Brar et al.:
Second-order harmonic and combination modes in graphite,
single wall carbon nanotube bundles, and isolated single
wall carbon nanotubes,
Phys. Rev. B, 66, 155418 (2002). (ITOLA, M)
s1137: C. Fantini et al.:
Step-like dispersion of the intermediate frequency Raman
modes in semiconducting and metallic carbon nanotubes,
Phys. Rev. B, 72, 085446 (2005). (IFM)
sasaki08-ykis: K. Sasaki and R. S.:
Pseudospin and deformation-induced gauge field in graphene,
Prog. Theor. Phys. Suppl., 176, 253 (2008).
kkato08-CP: K. Kato et al.: Coherent phonon anisotropy in aligned single-walled carbon nanotubes,
Nano Lett., 8, 3102, (2008). (Polarization dependece).
sanders09-CP: G. D. Sanders et al.: Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes,
Phys. Rev. B, 79, 205434, (2009). (Theory).
No pdf file avairable: Review article: G. D. Sanders et al.:
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons,
J. Phys. Cond. Matt., 25 144201-1-32, (2013).
Last modified: Wed Aug 26 17:09:37 JST 2020