Exciton Kataura Plot Page
This page started on Aug 10, 2010.
Last modified: Tue Oct 14 16:54:47 JST 2014
We are frequently asked to share our numerical database of the
Kataura plot.
This page is then created for nanotube
researchers who wish to assign the (n,m) value from:
- Optical transition energies Eii
Especially the environmental effects on
Eii are taken into account for several surrounding
materials.
- Raman intensity of radial breathing modes (RBM)
Based on exciton programs within the extended
tight binding (ETB) method.
Most of the descriptions of the data are already given in the
papers mentioned in the section "how to
cite".
However, we also give some brief descriptions
below.
Jump to:
- Calculated Eii with constant
κ = 2.22
Without considering environmental
effects, the following Kataura plot is already good enough to
assign a bundled SWNT sample with medium diameter of about ~1.4
nm.
- Available data (ver. 1.03):
- Transition energy vs inverse
diameter: download (*.pdf, 180kb)
- Transition energy vs
diameter: download (*.pdf, 183kb)
- Spreadsheet: download (*.xls, 200kb)
- Calculated Eii with κ
function (considering environmental effects):
- Some notes before downloading:
-
Eii for any environment with respect
to the supergrowth (SG) sample EiiSG is calculated using the following
formula:
Eii = EiiSG - Čκ
[A + B(p/dt) + C(p/dt)2] ...(1)
where A, B, and C are the fitting parameters depending on our sample;
p is the nanotube cutting line index for each Eii transition, i.e.
p = 1, 2, 4, 5, 7, 8, ... for E11S, E22S, E33S, E44S, E55S, E66S, ... (S-SWNTs)
p = 3, 6, 9, 12, ... for E11L, E11H, E22L, E22H, ... (M-SWNTs)
Čκ =
Cκ/CκSG is unique for each surrounding material system.
- The Cκ values are obtained from fitting dielectric constant:
κ - 1 = Cκ [p0.8
(1/dt)1.6 (1/lk)0.4 - 1.39] ...(2)
Once we know the Cκ value for a specific SWNT
sample, we can extrapolate all Eii for that sample
using Eq. (1).
- In the case of SG, AACVD (alcohol-assisted CVD), and HiPco we can use
A = 42.8 meV, B = 46.34 meV nm, C = 7.47 meV nm2.
(If the values of A, B, and C here are not good for your sample, please send us your data and we will recalculate these parameters.
In our experience we could minimize the discrepancy between theory-experiment down to 50 meV).
- Available data (ver. 1.03):
- Eii for the standard supergrowth (SG) sample
(Cκ =
0.84): download (*.xls, 140kb)
- Brief explanation for the above
data: download (*.doc, 328kb)
- Cκ values for some environment:
Measurement |
Raman spectroscopy (RRS) |
Photoluminiscence (PL) |
Synthesis method (Environment) |
SG (as-grown) |
AACVD (as-grown) |
HiPCO (SDS)b) |
HiPCO (SDS)b,c) |
AACVD (hexane)c) |
AACVD (Chloroform)c) |
air-suspended SWNTd) |
air-suspended SWNT + BSTd,e) |
Cκ |
0.84 +/- 0.03 |
1.19 +/- 0.02 |
1.28 +/- 0.05 |
1.29 +/- 0.05 |
1.49 +/- 0.04 |
1.73 +/- 0.06 |
1.28 +/- 0.03 |
0.84 +/- 0.05 |
Čκa) |
1.00 |
1.42 |
1.52 |
1.54 |
1.77 |
2.06 |
1.52 |
1.00 |
a)Here we define: Čκ =
Cκ/CκSG.
b)The Čκ values from two
different measurements (PL and RRS) are within their error bars.
c)The experimental Eii values used in the κ calculations
are obtained from Y. Ohno et al., phys. stat. sol. (b) 244, 4002 (2007).
d)The experimental Eii values used in the κ calculations
are obtained from P. Finnie et al., Phys. Rev. Lett. 94, 247401 (2005).
e)BST = Bandgap Shift Transition, which makes the air evaporated by temperature.
- RBM Raman intensity
The resonance Raman intensity is calculated for several chiralities with
dt = 0.6-1.6 nm
- Available data (ver 1.02):
[go to top]
If you use the data in this
webpage for any presentation, please cite the
following papers:
- For the optical transition energies with the environmental
effect correction:
- A. R. T. Nugraha, R. Saito, K. Sato, P. T. Araujo, A. Jorio, and
M. S. Dresselhaus, Dielectric constant model for environmental
effects on the exciton energies of single wall carbon nanotubes,
Appl. Phys. Lett. 97, 091905 (2010), doi:10.1063/1.3485293
- K. Sato, R. Saito, J. Jiang, G. Dresselhaus, and M. S. Dresselhaus,
Discontinuity in the family pattern of single-wall carbon
nanotubes, Phys. Rev. B 76, 195446 (2007),
doi:10.1103/PhysRevB.76.195446
- For the Raman intensity:
- K. Sato, R. Saito, A. R. T. Nugraha,
S. Maruyama, Excitonic effects on radial breathing mode intensity
of single wall carbon nanotubes, Chem. Phys. Lett. 497, 94
(2010).doi:10.1016/j.cplett.2010.07.099
[go to top]
If you have experimental data for a specific surrounding material
not mentioned in this page, please send us the data.
We may help in analyzing them and send you back.
[go to top]
You have to agree with the following restriction if you use the data
from this page.
- The usage of this data is purely for science.
- There is no responsibility from us for any loss or damage when
you use the data.
- The data might be updated when the programs are improved.
- No questions should be asked without reading the references.
[go to top]
Review articles/thesis:
- Raman
spectroscopy of graphene and carbon nanotubes, R. Saito,
M. Hofmann, G. Dresselhaus, A. Jorio, M. S. Dresselhaus, Advances in
Physics 60, 413-550, (2011).
- Exciton
Photophysics of Carbon Nanotubes, M. S. Dresselhaus,
G. Dresselhaus, R. Saito, A. Jorio, Annu. Rev. Phys. Chem. 58,
719-747, (2007).
- Raman
Spectroscopy of Carbon Nanotubes, M. S. Dresselhaus,
G. Dresselhaus, R. Saito, and A. Jorio, Physics Reports 409, 47-99
(2005).
- Exciton environmental
effects of single wall carbon nanotubes, Ahmad R. T. Nugraha,
Master Thesis, Tohoku University (2010).
Original papers:
- Excitonic
Effects on Raman Intensity of Single Wall Carbon Nanotubes,
Kentaro Sato, Ahmad R. T. Nugraha and Riichiro Saito, e-Journal of
Surface Science and Nanotechnology 8, 358-361 (2010).
- Exciton energy
calculations for single wall carbon nanotubes, R. Saito, K. Sato,
P. T. Araujo, A. Jorio, G. Dresselhaus, M. S. Dresselhaus,
Phys. Stat. Sol. B 246, 2581-2585, (2009).
- Diameter Dependence of the Dielectric Constant for the Excitonic
Transition Energy of Single-Wall Carbon Nanotubes, P. T. Araujo,
A. Jorio, M. S. Dresselhaus, K. Sato, R. Saito, Phys. Rev. Lett. 103,
146802-1-4, (2009).
- Dependence
of exciton transition energy of single-walled carbon nanotubes on
surrounding dielectric materials, Y. Miyauchi, R. Saito, K. Sato,
Y. Ohno, S. Iwasaki, T. Mizutani, J. Jiang, S. Maruyama,
Chem. Phys. Lett. 442, 394-399, (2007).
- Chirality
dependence of exciton effects in single-wall carbon
nanotubes:Tight-binding model, J. Jiang, R. Saito,
Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus, and
M. S. Dresselhaus, Phys. Rev. B 75, 035407, (2007).
-
Exciton-photon, exciton-phonon matrix elements, and resonant Raman
intensity of single-wall carbon nanotubes, J. Jiang, R. Saito,
K. Sato, J. S. Park, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, and
M. S. Dresselhaus, Phys. Rev. B 75, 035405, (2007).
- Photoluminescence
and population analysis of single walled carbon nanotubes produced by
CVD and pulsed-laser vaporization methods,T. Okazaki, T. Saito,
K. Matsuura, S. Ohshima, M. Yumura, Y. Oyama, R. Saito, S. Iijima,
Chem. Phys. Lett. 420, 286-290 (2006).
- Carbon nanotube
population analysis from Raman and photoluminescence intensities,
A. Jorio, C. Fantini, M. A. Pimenta, D. A. Heller, M. S. Strano,
M. S. Dresselhaus, Y. Oyama, J. Jiang, and R. Saito,
Appl. Phys. Lett. 88, 023109 (2006).
- Phonon-assisted
excitonic recombination channels observed in DNA-wrapped carbon
nanotubes using Photoluminescence spectroscopy, S. G. Chou,
F. Plentz Filho, J. Jiang, R. Saito, D. Nezich, H. B. Ribeiro,
A. Jorio, M. A. Pimenta, Ge. G. Samsonidze, A. P. Santos, M. Zheng,
G. B. Onoa, E. D. Semke, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. Lett. 94, 127402, (2005).
[go to top]
Any questions? Feel free to ask us:
(e-mail addresses are combined with @flex.phys.tohoku.ac.jp)