What is a good reference in Prof. Dresselhaus and Saito group?

Last modified: Mon Jan 5 14:31:32 JST 2015


In order to access the pdf files, you need type
login: nanotube password: graphene.

Some people are complaining that we have too many publications on Raman spectroscopy.
Many people ask us some good references for citing our papers on Raman spectroscopy.
The following are the recommended references with the pdf file.
Some symbols such as a1181 are mgm.bib labels in Prof. Dresselhaus group.
If you have any further questions, please let us know.


Subjects:

  1. Nanotube Textbook?

  2. Review papers (Nanotube and Graphene)?

  3. D-band, G'-band, Double resonance Raman spectroscopy?

  4. RBM Radial Breathing mode, single nanotube spectroscopy?

  5. Breit-Wigner-Fano line, Kohn Anomaly?

  6. Exciton energy, exciton-phonon interaction?

  7. Structure and Electronic structure of single wall carbon nanotubes (early papers)?

  8. Double wall carbon nanotubes (early papers + PL)?

  9. Kataura plot, Trigonal Warping Effect?

  10. Raman at armchair and zigzag edge of graphene?

  11. Cutting line concept?

  12. Raman excitation profile?

  13. Resonance Window (Gamma values)?

  14. Raman spectra (early papers) Phonon dispersion?

  15. Electron-phonon interaction?

  16. Polarization dependence?

  17. Chiral angle dependence of G-band?

  18. Second order Raman : Intermediate Frequency modes, iTOLA, M band?

  19. Graphene, Edge states, Gauge field?

  20. Coherent phonon spectroscopy?


  1. Nanotube Textbook? (back to menu)

    s617: "Physical Properties of Carbon Nanotubes" by R. Saito, G. Dresselhaus, M. S. Dresselhaus, Imperial College Press, (1998) (no pdf copy)

    n1314: "Raman Spectroscopy in Graphene Related Systems" by A. Jorio, M. S. Dresselhaus, R. Saito, G. Dresselhaus, Wiley-VCH Verlag, (2010) (no pdf copy)

  2. Review papers? (back to menu)

    i1335: Review article "Raman spectroscopy of Graphene and Carbon Nanotubes", R. Saito et al. Adv. in Phys., 60, pp. 413-550 (2011). (the most recent, long)

    f1176: Review article "Exciton Photophysics of Carbon nanotubes", M. S. Dresselhaus et al. Annu. Rev. Phys. Chem. Chem. Phys. 719-747 (2007).

    i1049: Review article "Raman Spectroscopy of Carbon Nanotubes", M. S. Dresselhaus et al. Phys. Rep. 409, pp. 47-99 (2005).

    f1020: Review article "Double resonance Raman spectroscopy of single wall carbon nanotubes" R. Saito et al. New. J. Phys. 5, 157.1.-15 (2003).

    i1179: Review article "Studying Disorder in Graphite-based Systems by Raman Spectroscopy" M. A. Pimenta et al, Phys. Chem. Chem. Phys., 9, 1276 (2007).

    d1018: Review article "Characterizing carbon nanotube samples with resonance Raman scattering", A. Jorio et al. New. J. Phys. 5, 139.1-17 (2003).

    : Review article "Coherent phonons in carbon nanotubes and graphene", J. H. Kim et al. Chem. Phys. 413, 55-80 (2013).

  3. D-band, G'-band, Double resonance Raman spectroscopy? (back to menu)

    c887: "Probing phonon dispersion relations of graphite by double resonance Raman scattering", R. Saito et al. Phys. Rev. Lett, 88 027401 (2002)

    f1020: Review article "Double resonance Raman spectroscopy of single wall carbon nanotubes" R. Saito et al. New. J. Phys. 5, 157.1.-15 (2003)

    i1179: Review article "Studying Disorder in Graphite-based Systems by Raman Spectroscopy" M. A. Pimenta et al, Phys. Chem. Chem. Phys., 9, 1276 (2007)

  4. RBM Radial Breathing mode, single nanotube spectroscopy? (back to menu)

    l818: A. Jorio et al.: Structural (n,m) determination of isolated single wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett. 86, 1118 (2001)

  5. Breit-Wigner-Fano line, Kohn Anomaly (back to menu)

    a807: S. D. M. Brown et al: Phys. Rev. B 63, 155414 (2001).

    q1239: K. Sasaki et al.: Curvature induced optical phonon energy shift in metallic carbon nanotubes Phys. Rev. B 77, 245441 (2008).

    g1255: K. Sasaki et al.: Chirality dependent frequency shift of radial breathing mode in metallic carbon nanotubes, Phys. Rev. B, 78, 235405 (2008).

  6. Exciton energy, exciton-phonon interaction (back to menu)

    a1171: J. Jiang et al., Chirality dependence of exciton effects in single-wall carbon nanotubes, Phys. Rev. B 75 035407 (2007).

    j1180: J. Jiang et al., Exciton-photon, Exciton-phonon matrix elements and Resonance Raman Intensity of single wall carbon nanotubes, Phys. Rev. B 75 035405 (2007).

    i1049: M. S. Dresselhaus et al., Raman spectroscopy of carbon nanotubes, Phys. Rep. 409, 47 (2005)

  7. Structure and Electronic structure of single wall carbon nanotubes (early papers) (back to menu)

    p458: M. S. Dresselhaus et al., Carbon fibers based on C60 and their symmetry, Phys. Rev. B 45, 6234 (1992).

    c471: R. Saito et al., Electronic structures of carbon fibers based on C60, Phys. Rev. B 46, 1804 (1992).

    g475: R. Saito et al., Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204 (1992).

    x466: M. S. Dresselhaus et al., C60-related tubules, Solid State Commun., 84, 201 (1992).

  8. Double wall carbon nanotubes (early papers + PL) (back to menu)

    s487: R. Saito et al., J. Appl. Phys. 73, 494 (1993). (Electronic structure of DWNTs)

    w881: R. Saito et al., Chem. Phys. Lett. 348, 187 (2001) (Interaction between outer and inner layers).

    p1264: D. Shimamoto et al., Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes, Appl. Phys. Lett. 94 083106 (2009). (PL of DWNTs)

  9. Kataura plot, Trigonal Warping Effect (back to menu)

    b782: R. Saito et al.: Trigonal warping effect of carbon nanotubes, Phys. Rev. B, 61, 2981 (2000). (Our Original Kataura Plot)

    w1089: Ge. G. Samsonidze et al.: Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters, Appl. Phys. Lett., 85, 5703 (2004). (Extended Kataura Plot)

    j1336: A. R. T. Nugraha et al.: Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes, Appl. Phys. Lett., 97, 091905 (2010). (Exciton Kataura Plot)

  10. Raman at armchair and zigzag edge of graphene (back to menu)

    d1044: L. G. Cancado et al.: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett., 93, 047403 (2004). (experiment)

    e1305: K. Sasaki et al.: Kohn Anomalies in Graphene Nanoribbons, Phys. Rev. B 80, 155450 (2009). (theory)

  11. Cutting line concept (back to menu)

    t1008: Ge. G. Samsonidze et al.: The concept of cutting lines in carbon nanotube science, J. Nanosicence Nanotechnology, 3, 431 (2003).

    w1141: R. Saito et al.: Cutting lines near the Fermi energy of single wall carbon nanotubes, Phys. Rev. B 72, 153413 (2005).

  12. Raman excitation profile (back to menu)

    j842: A. Jorio et al.: Joint density of electronic states for one isolated single wall carbon nanotube studied by resonant Raman scattering, Phys. Rev. B, 63, 245416 (2001).

  13. Resonance Window (Gamma values) (back to menu)

    b1172: J. S. Park et al.: Raman resonance window of single wall carbon nanotubes, Phys. Rev. B 74, 165414 (2006).

  14. Raman spectra (early papers) Phonon dispersion (back to menu)

    r668: R. Saito et al.: Raman Intensity of Single-Wall Carbon Nanotubes, Phys. Rev. B, 57, 4145 (1998).

  15. Electron-phonon interaction (back to menu)

    s1033: J. Jiang et al.: Electron-phonon interaction and relaxation time in graphite, Chem. Phys. Lett., 392, 383 (2004). (Origin of black radiation of graphene).

    x1142: J. Jiang et al.: Electron-phonon matrix elements in single-wall carbon nanotubes, Phys. Rev. B, 72, 235408 (2005). (on-site and off-site electron-phonon)

  16. Polarization dependence (back to menu)

    e1305: K. Sasaki et al.: Kohn Anomalies in Graphene Nanoribbons, Phys. Rev. B 80, 155450 (2009). (G-band)

    a1379: E. B. Barros et al.: D band Raman intensity calculation in armchair edged graphene nanoribbons, Phys. Rev. B, 83, 245435 (2011). (D-band)

  17. Chiral angle dependence of G-band (back to menu)

    r824: R. Saito et al.: Chirality Dependent G-band Raman Intensity of Carbon Nanotubes, Phys. Rev. B, 64, 085312 (2001). (G-band)

  18. Second order Raman : Intermediate Frequency modes, iTOLA, M band (back to menu)

    p926: V. W. Brar et al.: Second-order harmonic and combination modes in graphite, single wall carbon nanotube bundles, and isolated single wall carbon nanotubes, Phys. Rev. B, 66, 155418 (2002). (ITOLA, M)

    s1137: C. Fantini et al.: Step-like dispersion of the intermediate frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B, 72, 085446 (2005). (IFM)

  19. Edge states, Gauge field (back to menu)

    sasaki08-ykis: K. Sasaki and R. S.: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl., 176, 253 (2008).

  20. Coherent phonon spectroscopy (back to menu)

    kkato08-CP: K. Kato et al.: Coherent phonon anisotropy in aligned single-walled carbon nanotubes, Nano Lett., 8, 3102, (2008). (Polarization dependece).

    sanders09-CP: G. D. Sanders et al.: Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes, Phys. Rev. B, 79, 205434, (2009). (Theory).

    No pdf file avairable: Review article: G. D. Sanders et al.: Theory of coherent phonons in carbon nanotubes and graphene nanoribbons, J. Phys. Cond. Matt., 25 144201-1-32, (2013).


Last modified: Sat Apr 13 20:18:35 JST 2013